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ABSTRACT Cities are embracing data-intensive applications to maximize their constrained transportation
networks. Platforms such as Google offer route planning services to mitigate the effect of traffic congestion.
These use remote servers that require an Internet connection, which exposes data to increased risk of network
failures and latency issues. Edge computing, an alternative to centralized architectures, offers computational
power at the edge that could be used for similar services. Road side units (RSU), Internet of Things (IoT)
devices within a city, offer an opportunity to offload computation to the edge. To provide an environment for
processing on RSUs, we introduce RSU-Edge, a distributed edge computing system for RSUs. We design
and develop a decentralized route planning service over RSU-Edge. In the service, the city is divided into
grids and assigned an RSU. Users send trip queries to the service and obtain routes. For maximum accuracy,
tasks must be allocated to optimal RSUs. However, this overloads RSUs, increasing delay. To reduce delays,
tasks may be reallocated from overloaded RSUs to its neighbors. The distance between the optimal and actual
allocation causes accuracy loss due to stale data. The problem is identifying the most efficient allocation of
tasks such that response constraints are met while maintaining acceptable accuracy. We created the system
and present an analysis of a case study in Nashville, Tennessee that shows the effect of our algorithm on
route accuracy and query response, given varying neighbor levels. We find that our system can respond to
1000 queries up to 57.17% faster, with only a model accuracy loss of 5.57% to 7.25% compared to using
only optimal grid allocation.

INDEX TERMS Distributed computing, middleware, transportation, vehicle routing, road side units.

I. INTRODUCTION
Urban cities are growing at a rapid pace. This growth, bol-
stered by businesses, commerce, and opportunities, is bring-
ing more and more people into these urban landscapes,
putting a strain on the cities’ limited infrastructure. For exam-
ple, roads are faced with an influx of motorists resulting
in heavy traffic, which makes living in cities unbearable.
To meet the growing demands, cities and private companies
are turning to data-intensive applications to make the most
out of the limited resources. Companies such as Google,
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Apple, and Waze1 created traffic-aware navigation apps that
leverage crowd-sourced information and cloud environments.
These applications allow users access to up-to-date routing
information for their daily commutes.

Cloud environments running on centralized architectures
can process data effectively for existing services, however,
future use cases such as autonomous vehicles have their own
challenges [1], such as requiring ultra-reliable low-latency
communications [2]. These requirements expose the limita-
tions of the cloud and call for a new architecture that better
fits the requirements for real-time analysis and processing of
city-level data.

1https://www.waze.com/
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One way to resolve the issue is to use edge computing.
Sub-networks of Internet of Things (IoT) devices [3], [4]
is one approach to implementing edge computing. One
example of these is the road side unit (RSU). RSUs are
resource-constrained devices, are placed along city roads and
highways. RSUs are readily available and are more robust
under communication constraints.

Their location at the edge, and their proximity to users,
can help decrease latency. Also, these networks are capa-
ble of performing tasks in the absence of the cloud. These
characteristics of edge computing make it very attractive for
cities, especially those in developing countries, with insuffi-
cient investments in infrastructure. Leveraging devices at the
edge, where there is little to no cost of utilizing them, is a
sustainable solution for smart city services.

Prior efforts to harness these untapped computational
resources include various Platform-as-a-Service (PaaS)
approaches such as Arkessa,2 Axeda,3 and Xively.4 These
approaches suffer from two limitations that prevent it from
broader utility. First, these rely on support from the cloud to
deploy them over IoT devices. Second, these have not yet
achieved the context-based decentralized stream processing
which is needed for real-time, city-wide data processing and
analysis.

Harnessing the untapped resources of IoT devices would
enable these devices to perform tasks without the presence
of the cloud. To accomplish this Edge and Fog computing
paradigms execute processes on the devices at the edge.
However, these paradigms do not consider the utilization of
computational resources at the edge. Due to the inherent het-
erogeneity of the devices, a middleware for interoperability
and to maximize the available resources is needed.

Harnessing these untapped resources typically means
performing tasks, meant for cloud-based and centralized
platforms, on the edge. However, utilizing a decentralized
system for centralized architectures is another challenge.
One such task, which leverages the resources and city-wide
data on the edge, is route planning. Route planning is a
well-researched field [5], however, most state-of-the-art algo-
rithms [6], [7], [8] are typically developed and used with
centralized approaches. In these scenarios, data is shared and
paralleled, allowing for typical search algorithms access to
shared memory and direct communication between multiple
processors. Efforts have beenmade to utilize these algorithms
in a distributed setting. We discuss these existing solutions in
detail in Section II.
Contributions: The key problem, in designing route

planning algorithms that take advantage of decentralized net-
works such as the RSU sub-network, is the efficient distribu-
tion and processing of routing tasks. This article introduces
Road Side Units for Edge Computing (RSU-Edge), a middle-
ware that enables route planning services on road side units.

2https://www.arkessa.com/
3https://www.immixgroup.com/Axeda/
4https://xively.com/

Our approach assumes a smart city where RSUs are
deployed along roads and highways. The city is divided into
grids which are then assigned RSUs. Each RSU has its own
local speed data, models for route planning, and awareness
about its neighbors. The goal of the service is to be able to
respond to the user’s route planning queries with the highest
accuracy. This is obtained by using the most up-to-date data
available in each RSU as weights to generate routes for
trip queries. Tasks must be allocated to the optimal RSUs
specified by the system. However, forcing all tasks to only
this optimal allocation causes a load imbalance which causes
a delay in the overall response time of the system. Conversely,
allocating tasks to sub-optimal, less utilized RSUs results in
stale data being used, which gives a route based on old traffic
information. This is because eachRSUs local speed data takes
time to propagate to neighboring nodes.

The problem thus, how to allocate tasks in an efficient
manner over all the RSUs such that we can respond in an
acceptable time with acceptable model accuracy. To fully
utilize the decentralized nature of the sub-network, we devel-
oped a task allocation algorithm that distributes tasks based
on a region of interest heuristic. To evaluate this system,
we conducted an experiment based on real-world speed data
of Nashville. After the experiment, we examine the poten-
tial trade-off between query processing delay and model
accuracy based on various parameters of the task allocation
algorithm.

The specific contributions of this article are as follows:
• We introduce a middleware which utilizes available
resources from decentralized edge devices to process
and analyze city-wide data.

• We design and develop a decentralized route planning
service over a distributed network of road side units.
We design a task allocation algorithm for handling
queries and allocating tasks efficiently and to decrease
response time while maintaining a high model accuracy.
Our code is available online.5

• We provide a proof-of-concept implementation of the
middleware and service. We evaluate this approach
using actual data from Nashville, Tennessee. Summariz-
ing the results of the present study suggests that a decen-
tralized route planning service can feasibly work on
distributed nodes given a trade-off between accuracy and
speed. We found that we can improve query response
time by up to 57.17% with only a 7.25% decrease in
accuracy by using neighbor RSUs.

Outline: The rest of the paper is organized as follows.
Section II details fundamental notation and related work
related to this article. We introduce RSU-Edge in Section III.
Section IV defines the problem and discusses our task alloca-
tion algorithm. We evaluate the system and show the results
in Section V followed by a discussion of its performance in
Section VI. Finally Section VII concludes the paper.

5https://github.com/linusmotu/mqtt-dist-routing
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II. RELATED WORK
A. INTERNET OF THINGS AND TASK ASSIGNMENT
Internet of Things (IoT) allows data to be generated at such
a high volume and many services have been created to uti-
lize such influx of data. However, processing of these data
is typically handed off to centralized clouds due to IoT
devices’ resource constraints [9]. Cloud computing comple-
ments IoT’s data generation with near-unlimited processing
and storage for use in smart applications. Despite the known
advantages of deploying services over the cloud, the distance
between the user and the cloud as well as the unpredictabil-
ity of end-to-end networks, introduce latency [10]. These
latencies can be detrimental to response time requirements
of services, affecting its quality of service (QoS). To address
this, efforts turn to edge and fog networks as methods to
bring processing and computation nearer to the network’s
edge, reducing latency [4], [11]. Ren et al. [12] utilized the
collaborative effort of edge nodes and the cloud to minimize
latency. Assigning latency-sensitive tasks closer to the data
while still being able to assign computationally intensive
tasks to the cloud. Yu et al. [13] showed that even though the
edge computing servers have less computation power than the
cloud, they still provide better QoS (Quality of Service) and
lower latency to the end-users.

The main challenges associated with edge and fog com-
puting relates to their usability, coordination, and task assign-
ment. Zeng et al. [14] worked on task scheduling on the fog,
to optimize constrained resources to minimize task execution
time. Moschitta et al. [15] studied managing and utilizing fog
resources to improve the performance of IoT services, such
as response time, energy consumption, and cost reduction.
Plenty of research has gone into the design and development
of urban middleware with the intention of coordinating large
systems of heterogeneous edge or fog networks [16], [17]
and [18].

A middleware is a software that provides interoperability
among incompatible devices and applications. It is one of
the technologies that enables IoT solutions [19], [20]. The
middleware allows developers to work with heterogeneous
objects without having to invest significant amounts of time
to learn specific hardware platforms. Additionally, the mid-
dleware can receive, process, and distribute data over the
network.

One of the main objectives of middleware is to maximize
available resources. A way to achieve this is to identify the
most efficient way of dividing computation tasks into man-
ageable pieces and assigning them to the available nodes.
We refer to this problem as the task allocation problem [21].
This problem has been extensively studied in the cloud archi-
tecture [22]–[24]. The main objective of these works is to
efficiently utilize processing resources and still be to meet all
job deadlines. However, the task allocation problem in cloud
computing does not take into account parameters such as data
transfer delays, typically the networking between machines
in a cloud environment is negligible. Another key compo-
nent of urban middleware is resource discovery, a vital step

especially considering the heterogeneity of devices within the
edge and fog networks [25], [26].

Research in the provisioning of resources in edge
and fog networks have increasingly become important.
Skarlat et al. [27], [28] proposed a platform centered around
the idea of fog colonies (sets of fog nodes) with a centralized
cloud for additional resources when needed. Xu et al. [29]
proposed a platform for location-based and latency-sensitive
applications that use micro data centers on the network
edge or large centralized cloud for processing. This research
includes a cloud component for additional processing and
storage. Research on In-situ edge IoT devices looks at task
assignment without relying on cloud resources [30], [31].

There is no shortage in the number of available IoT devices
currently deployed in the wild. Computational resources
are abundant, the problem is that most of it exist on often
idle devices. Existing solutions for harnessing this power,
such as volunteer computing (e.g., BOINC), are centralized
platforms in which an entity can control participation and
pricing. MODiCuM [32], a distributed-ledger based plat-
form for decentralized computation, offers a system for an
open market of computational resources. It offers a smart
contract-based protocol, incentivizing creators, and resource
providers to join an open-market, allowing users to harness
the computational power at the edge.

B. CENTRALIZED AND DECENTRALIZED ROUTING
Dijkstra [5], Bellman [33] and Ford [34] proposed some of the
first routing planning algorithms. Routing algorithms such
as A* [35] use heuristics to guide the shortest path search
while contraction hierarchies [6] simplify the graph for faster
search.

Current state of the art route planning is typically deployed
in centralized cloud systems [6]–[8]. In this architecture,
the routing algorithms are deployed in a central location
from which it serves user queries. Within this context,
QoS improvements (e.g., in terms of query response
time) have been made by parallelizing shortest path
algorithms [36]–[38]. These parallelized algorithms split pro-
cessing over multiple nodes. These approaches provide high
scalability, optimal for cloud-based services. However, these
models assume a shared memory and do not take into account
network latency between nodes, and therefore are not easily
adaptable to edge or fog-centric architectures.

C. PRELIMINARY WORK
We designed a task allocation algorithm intended for decen-
tralized route planning. We evaluated this design only using
simulations, without devices-in-the-loop. All processing and
delay computations were synthetic and processes were run in
a single thread. In this article, we further develop this design
and test them with devices-in-the-loop. All route and speed
data are based on real-world data. The results and discus-
sions in this study validate the results from the prior study
in [39].
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III. SYSTEM ARCHITECTURE
In [40] we proposed a middleware for heterogeneous IoT
devices (sensors and actuators) that is capable of processing
data streams in real-time and in a distributed manner. In this
article, we introduce RSU-Edge, a realization of such a mid-
dleware for RSU devices. The primary goal of the RSU-Edge
is task distribution and the distributed execution of the tasks
over multiple IoT devices. In this section, we define what
we assume to be a modern smart city. We then outline the
RSU-Edge architecture and methods for data collection used
for the distributed route planning service. Table 1 summarizes
all the symbols used in this article.

TABLE 1. List of symbols.

A. SMART CITY
We assume that smart cities are equipped with sensors and
computational resources that allow it to monitor and optimize
their resources to maximize its services to its citizens. Fig. 1
shows our idea of a smart city. We assume that traffic lights
and lamp posts, equipped with road side units, exist along
the city roads and highways. We assume that mobility data,
generated by passing vehicles, are sent to sensors nearby or
within the RSUs.

The main components are as follows:
1) Road Side Unit (RSU): Low power computational

nodes [41] located near roads and highways in the

FIGURE 1. Smart city system architecture.

transport network. They are resource constrained,
low-power devices. Each RSU is able to gather infor-
mation such as speed, congestion, and flow of traf-
fic from sensors and vehicles within their area of
responsibility. Together, all RSUs form a fog net-
work that is more private and reliable than traditional
networks [42].

2) Broker: The primary role of the broker is as the central
administrator of the RSUs. It generates, distributes, and
aggregates messages to and from the RSUs. A broker
can be deployed on computational nodes such as an
RSU. These brokers can be deployed as the sole process
of the RSU or co-exist with route planning processes
due to their low computational needs. It is assumed
that RSUs connect to the brokers via wired/wireless
networking.

Broker to RSU and RSU to RSU are assumed to have
wired/wireless network connectivity.

B. SPATIAL REGION
The target area is a city region converted into a network graph
N = (V ,E), where the road intersections are its vertices V
and its roads are the edges E . This is then divided into
equidistant and similar shaped grids Gr = {g1, g2, · · · , gm}.
Each grid is assumed to have an allocation of RSUs which
handle road information and local data within the particular
grid. Each RSU is assumed to be both computational and
memory resource-constrained thus can only process a finite
amount of tasks and data. This collection of RSUs forms a
sub-network.

To work around RSU resource constraints, these grids
can be further sub-divided into sub-grids. Each result-
ing sub-grid has to accommodate fewer tasks and sen-
sor data. This process can be repeated as many times
as needed until the desired sensor density per RSU is
achieved.

VOLUME 8, 2020 176137
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FIGURE 2. (Left) Data gathering and propagation architecture of RSU-Edge. Each RSU gathers mobility data from vehicles in their area and then
propagates them to other RSUs within their search area. (Right) Distributed Route Planning architecture of RSU-Edge and the flow of interaction between
components. Once the user sends a query to the Broker, getOptimalSequenceGrid generates an optimal route for the query. The query is then divided
into tasks which are then sent to corresponding RSUs by distributeTasks. Each findPartialRoute and sendPartialRoute is run in a sequential
manner. Once all routes have been sent to the broker and aggregated, the user receives the complete route.

C. DECENTRALIZED ROUTE PLANNING SERVICE
This service runs on the RSU-Edge that utilizes the dis-
tributed characteristics of the architecture. This system allows
users access to time-dependent and privacy-preserved ser-
vices for smart transportation. With respect to the problem
of consistency, availability and partitioning for distributed
systems, RSU-Edge is able to work under partitioning. Since
RSUs, each with their local data, form their own sub-network,
the service is able to maintain availability even with the loss
of cloud services. Services that make use of geospatial data,
such as smart grids and smart mobility, can effectively use this
system. However, for this article, we focus on implementing
a decentralized route planning service.

We assume that each grid contains several road segments
and each road is assigned an RSU that handles all incoming
speed data.6 Each RSU ri ∈ R receives mobility data from
vehicles on roads within their designated grids gi.
Each RSU stores up-to-date speed data only for the roads of

the grid it is assigned to. Each RSU propagates its aggregated
data to neighboring RSUs at a set delay interval. Data shared
with neighbors is assumed to not be as up-to-date as data
found at the data source. This historical data distribution alle-
viates communication costs between RSUs while allowing
the system to maintain a snapshot of the whole target area’s
speed information for route planning.

Our system consists of the following types of data:
1) Mobility data: Periodically collected up-to-date speed

data from vehicles that pass along roads within the RSU
sensor’s range. These are stored as time-series data with
both road speed and location information. These are
used as the weights of the network data.

2) Historical data: These are assumed to be data that has
been averaged and propagated to neighboring RSUs
within a region of interest. This is not up-to-date data

6 These RSUs are all connected but have one RSU as the representative of
the grid, which we refer to in the paper.

and are snapshots of neighboring RSUs data at a previ-
ous time frame.

3) Network data: Each RSU maintains a list of sub-
graphs, Gi, extracted from the global routing graph
N = (V ,E).

Figure 2 (left) shows the methods used to prop-
agate data between RSUs. Passing vehicles call 1©
sendMobilityData to the nearest RSU on the road.
At some time interval or delay, each RSU will call 2©
propagateMobilityData to all the RSUs within its
region of interest. All RSUs within the target area perform
this.

D. QUERIES AND TASKS
Each RSU r ∈ R is able to receive a query q with parameters
(id, s, d, τ ). id is used to differentiate queries while s and
d are the user’s start location and trip destination respec-
tively. Finally τ is the departure time for the planned trip.
Queries can be received asynchronously by any RSU. Queries
received within the same time window p are denoted as
Qp = {qp,1, qp,2, · · · , qp,ni}.
We assume that for every query, q there exists an optimal

sequence of grids, SG, from s to d . We assume that each RSU
has a trained model for identifying the next best grid given
a set of inputs: current grid, source, destination, and time.
By recursively utilizing this model from the source until the
destination, we generate the optimal sequence grid, SG [43].
For every sequence grid, SG, a sequence of tasks Tq =
〈tq,1, tq,2, . . . , tq,kq〉 is generated, where tq,i is the route plan-
ning task that passes through gq,i ∈ SG. Task tq,i executes the
heuristic generation of routes within a single grid, gq,i, using
various path searching algorithms such asDijkstra’s, to obtain
the fastest time to traverse the particular grid.

Assigning tasks tq,i to the corresponding RSU of grid
gq,i for all instances of i, yields the highest model accuracy
since we assume this combination provides path searching

176138 VOLUME 8, 2020
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algorithms access to the grid’s up-to-date local data, to be
used as weights.

IV. DISTRIBUTED ROUTE PLANNING
The distributed route planning service needs to provide a
shortest route from a source to a destination for a given
departure time. User’s queries can be sent to any RSU which
then serves as the broker for this particular query. The archi-
tecture is seen in Fig. 2, describes all major components of
the platform. Each edge includes a circled number, i.e, #©.

A. DEFINITION OF THE PROBLEM
For a target area that is populated by a set of RSUs R, a set of
user queries q is sent within a period p. For each q, an optimal
route is generated by 2© getOptimalSequenceGrid.
The route is broken down to its corresponding grids and
divided into separate tasks by 3© generateTasks. The set
of all tasks T for all queries Q must be allocated to RSUs
R for processing. The problem thus, identifying the most
efficient and optimal allocation of tasks T to RSUs R. All task
assignments should satisfy the constraints on query response
delay while maximizing the overall accuracy of the result.

1) DELAY
We set Eq. 1 as the first constraint. We define T as the set of
all tasks Tq of all queries q ∈ Qp, sent at time period p.

T ,
⋃
q∈Qi

Tq (1)

For every pair of task t ∈ T and RSU r ∈ R, we define a
variable xt,r which is 1 if t is assigned to r and 0 otherwise.
We assume that every task t ∈ T is assigned to a

single RSU, so the following condition must hold.

∀t ∈ T ,
∑
r∈R

xt,r = 1 (2)

In each sequence of tasks Tq for query q, tasks must be
sequentially executed. Hence the following equation must
hold. Here, ST (t) and ET (t) represent task execution start
and end times, respectively. Here tq,i is the current task
being executed at grid i and tq,i+1 is the next task in the
sequence Tq, to be executed in the next grid i+1 in sequence.
Here kq is the last grid in the sequence for query q.

∀Tq(q ∈ Qi)∀i(1 ≤ i ≤ kq − 1)ET (tq,i) < ST (tq,i+1) (3)

Upon assignment of all tasks in T , we define that the
overall service delay for queries Qi, should not exceed some
delay threshold Dth. Here, IT (q) is the time when the query
is issued.

∀q ∈ Qi,ET (tkq )− IT (q) ≤ Dth (4)

Also, we define that the number of tasks t that can be
queued on any single RSU r should not exceed the queue
length threshold TQth. Here TQ(r) is the number of tasks
queued on RSU r .

∀r ∈ R,TQ(r) ≤ TQth (5)

However, in cases where all RSUs have reached the TQth,
the task is allocated to the least utilized available neighbor
RSU. The purpose of Eq. 5 is to facilitate task load distribu-
tion over all the RSUs.

Each RSU r must first execute all tasks, within its task
queue, ahead of task tq,i. The worst-case execution time of
task tq,i will be the sum of worst-case execution times of all
tasks ahead of it in the queue.

Then, task execution start and end times of each task tq,i
can be defined as follows.

ST (tq,i)
def
= IT (q)+

i−1∑
j=1

∑
r∈R

∑
t ′∈T

ct(t ′, r) · xt ′,r · xtq,j,r (6)

ET (tq,i)
def
= ST (tq,i)+

∑
r∈R

ct(tq,i, r) · xt,r (7)

where ct(t, r) represents the computation time of task t exe-
cuted at RSU r . These are given in advance.
Equation 6 defines that task, tq,i can only be executed after

all prior tasks from the same query, (tq,1, . . . , tq,i−1), have
been processed. This means that the result of these tasks, such
as travel time and shortest paths, has been generated.

2) ACCURACY
For every query, Qi, a set of tasks Tq is generated based
on the optimal sequence grid, SG(q). Assigning tasks to the
grids in SG produces the highest accuracy for route planning.
However, due to the computational and memory constraints
of the RSUs, tasks often take longer to be processed than to be
assigned. As the task queue increases, the execution time of
any additional tasks will increase as denoted by Equation 6.
This increase in total execution time results in query response
delays. A solution would be to allocate certain tasks onto less
utilized but sub-optimal neighbor RSUs.

We assume that all RSUs only have up-to-date access to
their local data and access to only stale data from neigh-
boring ones. We assume that RSUs propagate their data
to nodes within their region of interest, using gossip-based
protocols [44]. The neighboring RSUs pass the received
information, as well as their local data, to their neighbors.
The size and rate of propagated data decreases the farther the
receiving RSUs is from the data source. Thus tasks allocated
to sub-optimal RSUs produce less up-to-date, but nonetheless
correct route from s to d . The staleness of this data is given
by the differences between the optimal and actual assignment
locations as follows:

MA(g, g′) , 1−MD(g, g′) (8)

where MD(g, g′) is a factor of the Manhattan Distance
between the optimal and actual grid assignments, while
MA(g, g′) is the estimated model accuracy difference due to
task allocation.

3) IMPACT OF ACCURACY AND DELAY
To demonstrate the impact of delay and accuracy on the route
planning output, we use a sample route, Fig. 3, with 5 RSUs

VOLUME 8, 2020 176139



J. P. V. Talusan et al.: Route Planning Through Distributed Computing by RSUs

FIGURE 3. Decentralized Route Planning example to show the effects of
accuracy and delay.

and a trip query from source s to destination d . An optimal
route will have all its tasks allocated to optimal RSUs. How-
ever, this optimal route might exceed the Dth shown in Eq.4.
If all the tasks are forced to optimal RSUs, up-to-date data is
used resulting in high accuracy at the cost of processing time.

When tasks are re-allocated to sub-optimal RSUs such that
the new allocation sequence does not exceed Dth, the route
from s to d is still obtained. However, the data used may
not be up-to-date, given by Eq. 8, resulting in a route of
lower quality. A low-quality result does not mean an error
in the routing, instead it means that the data being used to
generate the route is not up-to-date resulting in a different
route (dashed vs dotted line) to the same s to d . This increases
the chances of using congested routes. The trade-off is that
these sub-optimal RSUswill be able to process the tasks faster
since they meet the Dth and/or TQth constraints.

4) UTILITY FUNCTION
Given the example above, we assume users have two require-
ments from the service. First, to receive a response within
a preferable time delay and secondly, to receive it with an
acceptable degree of accuracy. Based on these two require-
ments, we design the utility function U (q) as follows.
At every time i, the tasks Tq generated by a query q, should
be assigned to RSUs such that it meets the constraints while
maximizing the accuracy of the generated route.

U (q) =
kq∑
j=1

MA(gq,j, g(tq,j))
kq

(9)

5) OBJECTIVE FUNCTION
The purpose of distributed task allocation is to find the most
optimal assignments of tasks to RSUs that satisfy the given
constraints while maximizing the accuracy of the generated
routes. The objective therefore is:

Maximize:
∑
q∈Qi

U (q) subject to (2)− (5) (10)

Algorithm 1 getOptimalSequenceGrid
Input: Source s ∈ V , Destination d ∈ V , Time: τ
Output: Optimal sequence grid OG
1: Initialize SeqGrids list
2: i← 0
3: SeqGrids[i]← GetGrid(s)
4: gfinal ← GetGrid(d)
5: while SeqGrids[i] 6= gfinal do
6: currentGrid ← SeqGrids[i]
7: SeqGrids[i+1] ← GetNextGrid(currentGrid, gfinal ,

τ )
8: i← i+ 1
9: end while
10: SeqGrids[i]← gfinal
11: return SeqGrids

Algorithm 2 Get Next Grid
Input: Current Grid: gcurr , Destination: gdest , Time: τ
Output: Next Grid: gnext
1: Get Equivalent Grid Routing model Ê
2: gnext ← Ê .predict(gcurr , gdest , τ )
3: return gnext

B. REGION OF INTEREST HEURISTIC
To meet the objective function, our system needs to divide
queries into tasks and then allocate them to RSUs such that
accuracy is maximized while constraints are met. Region of
interest controls the search area for RSUs that can be used
to handle tasks that cannot be allocated to optimal RSUs
because of over-utilization. Over-utilization occurs when the
RSU exceeds either Dth or TQth, such that further allocation
to it will cause delay on the system.

For our approach, we vary the region of interest using the
neighbor levels. A level of 0 allocates tasks only to the most
optimal RSUs as decided by SG. This prioritizes accuracy
over the processing time. Figure 4 shows how the levels
affect the region of interest. For levels 1 and 2, we increase
the region of interest to the surrounding 8 and 24 RSUs
around the optimal RSU respectively. The wider the region
of interest, the greater the number of RSUs available for task
reallocation. However, thewider region of interest also affects
the distance between the optimal RSU and the selected RSU,
given by Eq. 8.

C. DECENTRALIZED ROUTE PLANNING EXAMPLE
To demonstrate the overall execution of the route planning
service, we use Fig. 3 which shows a network partitioned into
5 RSUs. This network is equipped with the RSU-Edge shown
in Fig. 2. The information flow is initiated by a user calling
1© sendQuery with parameters (id, s, d, τs) to RSU1. The
rest of the flow follows the numbered components in Fig. 2.

Upon receiving the query from the user, RSU1 calls 2©
getOptimalSequenceGrid, which executes Algo. 1.
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Algorithm 3 Sequence Grid Task Allocator
Input: Set of queries: Q
Output: Modified Grid:MG
1: for all q ∈ Q do
2: OGq← getOptimalSequenceGrid(q.s, q.d, q.τ )
3: if Delay(OGq) > Dth then
4: OGq←ModGSeq(OGq)
5: end if
6: distributeTasks(OGq)
7: end for

Algorithm 4Modified Sequence Grid Generation
Input: Sequence Grid: SG, Neighbor Level: L
Output: Modified Grid:MG
1: MG← SG
2: while Delay(MG) > Dth and |SG| 6= ∅ do
3: g← a grid randomly selected in SG
4: ns← GetGridNeighbors(g,L)
5: bg← GetLeastUtilized(ns)
6: MG← modifiedMG by replacing g with bg
7: SG← SG− {g}
8: end while
9: return MG

FIGURE 4. Region of interest based on varying Neighbor levels for RSU at
the location (i, j). Neighbor level 1 includes the N0 grid at (i, j) and all
N1 grids. Level 2 includes all grids N0, N1, and N2. As neighbor level
increases, more grids become alternative grids.

This uses the source, destination and time parameter of the
query as well as the Equivalent Grid Routing model (Ê) [43],
to recursively identify the optimal grid sequence SG, from
the source s to the destination d . Ê is a routing model used
by Algo. 2, that predicts the best neighboring grid through
which the shortest path likely resides for a particular route.
Ê(s, d, τs) returns the next best possible grid to travel to
destination d from s at time τs.
Here, the optimal sequence grid generated is as follows:

[RSU1,RSU2,RSU3,RSU5]. A set of tasks for this sequence
is then generated by 3© generateTasks. These tasks are

then run through the task allocator described by Algo. 3.
Algorithm 3 first assigns tasks to the optimal sequence grid,
and then it measures the total delay given this configura-
tion. If such a configuration causes a delay greater than Dth,
we modify the sequence grid using Algorithm 4.

In Algorithm 4, we pick the most utilized RSU in the
optimal grid sequence SG, and then we select an RSU within
its region of interest. We move this RSU’s task assignment to
the least utilized RSU in that region of interest, modifying the
current sequence of grids in response. The total delay of this
new sequence grid is again checked against Dth.
This process is repeated until the total response time for

the query is less than Dth. We then assign the tasks to this
sequence of grids, making sure to consider the task queue
constraint in Eq. 5, during the allocation.

In this example, we assume that the modified sequence
grid is now [RSU1,RSU2,RSU4,RSU5]. The two-fold impact
on accuracy and delay of the allocation algorithm was dis-
cussed in Section IV-A3. Once the task allocation algo-
rithm has verified that constraints have been met or search
has been exhausted, tasks are distributed to the RSUs
following the modified sequence grid with a call to 4©
distributeTasks.

Tasks are distributed in parallel and executed sequen-
tially (Eq. 3). RSU1 processes the task once it appears at
the start of the queue. It generates a partial route with a
call to 5© findPartialRoute and sends it to the bro-
ker for aggregation with 7© sendPartialRoute. At the
same time, it notifies the next RSU in sequence, RSU2, via
6© notifyNextRSU and the process continues. Once the
final RSU, RSU5 sends its partial route, the broker calls
8© sendCompleteRoute to send the final route to the
requesting user.

V. EXPERIMENT AND RESULTS
In this section, we evaluate our distributed route planning ser-
vice over RSU-Edge. We evaluate the system in two phases.
First, we revisit and update the simulation done in the previ-
ous paper which evaluates the system without devices in the
loop. This is done to prove the feasibility of the system as
well as to identify the parameters that would be used in the
next phase of evaluation. In the second phase, we evaluate
the approach on real-world data where we implement the
RSU-Edge and RSUs onDocker containers. The goal of these
experiments is to identify the effects of task allocation algo-
rithm on processing delay, accuracy, and generated routes.

A. PHASE 1: FEASIBILITY TEST AND PARAMETER
IDENTIFICATION
In [39], we simulated 600 RSUs, and used 100 trip queries to
evaluate it. We revisit that scenario but increase the number
of queries and give a clearer view of the effect of neighbor
levels which we validate afterward in Phase 2.

Based on the top 10 employers in Nashville which have
nearly 140,000 employees [45] and assuming people have
variable work shifts with a variance in departure time of
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one hour, our system needs to be able to process around
12,000 queries every 5 minutes.

We simulate the division of these user queries into tasks
and then allocate these tasks to 600 different RSUs. We vary
the neighbor levels and identify the effect the distribution
of 230,000 tasks (generated from the 12,000 queries) has on
overall query response time and model accuracy.

Processing starts once all tasks have been allocated. Pro-
cessing time is measured in cycles. Total processing time is
based on the number of cycles needed before all tasks in all
RSU’s task queue have been processed. A task is processed
by removing it from the RSU’s task queue if it is flagged as
done, else it is left there to be checked again in the next cycle.

We define each cycle as one loop across all RSUs. Since
tasks must be processed in sequence, task tq,i−1 must be
executed before task tq,i. For every cycle, we loop through
each RSU with a non-empty task queue and we get its task at
the start of the queue and flag it as done if it is the starting task
of the query, tq,0 or if the previous tasks from the same query
tq,i−1, has been done. A task that is done is removed from
the task queue. A single cycle is done once all RSUs with
non-empty task queues have been checked. The cycle repeats
as long as there are RSUs with non-empty task queues.

At the end of every cycle, tasks flagged as done are
reviewed. A query q is finished when all of its tasks,
Tq = 〈tq,1, tq,2, . . . , tq,kq〉, have been flagged as done.
When forcing tasks to be allocated optimally (level 0),

certain RSUs have more than 2000 tasks allocated to it.
Increasing the search grid for task allocation allows tasks to
be assigned to more RSUs, resulting in a muchmore balanced
distribution of tasks. This is reflected in the total task process-
ing time. Figure 5 shows that using at least neighbor level 1,
all tasks finish in less than half the cycles of neighbor level 0.

Due to the increase in the number of possible RSUs to
assign tasks to, the average Manhattan distance between the
optimal and actual RSUs used increases the higher the neigh-
bor level. Figure 6 shows the relationship betweenManhattan
distance and average cycles per query completion for differ-
ent neighbor levels.

B. PHASE 2: REAL-WORLD DATA AND SCALABILITY
The goal is to investigate the feasibility of the approach
in Phase 1. We compare the performance of our service’s
task allocation algorithm to the intuitive case of using only
the optimal allocations to have the highest model accuracy.
We use total query processing time and route travel time
accuracy as performance metrics to show the effect of our
algorithm on the service.

We perform simulations and experiments on Docker con-
tainers to be able to easily test and adjust the parameters of the
system and algorithms while also keeping scalability in mind.
The number of grids and queries used in this experiment
has been reduced since the actual route generating processes
will be done on containers on a single physical machine.
Table 2 shows the devices that were used or tested in this
section.

FIGURE 5. Synthetic Processing time for all 12,000 queries. Neighbor
Level 0 takes more than 2 times longer than when utilizing neighbor
grids.

FIGURE 6. The trade-off when utilizing neighboring nodes to decrease
query response time is the increase in Manhattan Distance between
optimal and allocated RSUs, resulting in a decrease in model accuracy.

TABLE 2. Comparison of computational resources of devices used in the
experiment.

From 600RSUs, we choose a subset of 49 RSUs.Wematch
this reduction in the number of processing nodes to the
number of queries. We pick 1,000 queries from a total
of 12,000 queries. This allows us to focus more on under-
standing how communication between RSUs occurs while
maintaining the query to RSU ratio we used in the simula-
tion experiments. For this experiment, we assume that RSUs
have the similar computational capacity to Raspberry Pi-like
devices.

1) CONTAINER BENCHMARKING
Since we assume the RSU to be similar to a Raspberry Pi level
device, we verify the difference in computational capacities
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of our Docker containers and a single Raspberry Pi. For the
following experiments, we use a single Mac mini hosting
all 49 RSUs via Docker containers is used. This was used
without any limitations on its computational and memory
resources.We run a route planning benchmark on all 49 RSUs
simultaneously and then on a single Raspberry Pi. The bench-
mark runs 1,000 queries on the devices andwe get the average
time it takes to complete all queries as a measurement of the
device’s computational capacity.

We tested two different devices, a Mac mini, and a
Macbook Pro, as the central physical host machines for
containers. Figure 7 is the result of running route planning
benchmarks on the devices.

FIGURE 7. Comparing the overall processing time for 1000 trip queries
using Docker containers and Raspberry Pi 3B. Mac mini and Macbook Pro
devices are running 49 containers simultaneously and benchmarks are
run simultaneously on all containers.

The results show that the 49 RSUs being emulated on
Docker containers on the Mac mini have a similar com-
putational capacity as Raspberry Pi 3B. For all subsequent
experiments, a Mac mini hosting all 49 Docker containers
emulating RSUs, will be used.

2) EXPERIMENT PARAMETERS
• Network Graph: The target area, shown in Figure 8, is a
20 km× 20 km area in Nashville, TN. A network graph,
N = (V ,E), is constructed with geometries and data
supplied by HERE API [48]. The region used in this
study has a total of 1924 nodes and 8522 edges.

• Graph Partitions: The network graph is first divided into
a 5× 5 grid. However as Figure 8 shows, some grids still
have a higher density of roads and sensors. These grids
were then sub-divided into a further 2× 2 grid. Figure 8
shows the division as well as the density of roads and
sensors assigned to a particular grid. Each grid has a size
of 15 km2, while each sub-grid is 3.75 km2.

• Road Side Units: 49 RSUs are used and deployed. RSUs
are assumed to be static and connected via a wired
network.

FIGURE 8. The target area is divided into a 5 × 5 grid layout. Each
over-utilized grid is further divided into sub-grids. The bar shows the
density of road segments in the grid.

FIGURE 9. CDF curves showing the effect of Neighbor Levels on the
query response times.

• Mobility data: To simulate traffic across roads, data
collected by HERE API for the region on March 2018 is
used. These data are collected by sensors placed near
road segments. We assume these sensors gather data and
send them to representative RSUs for aggregation and
processing. This data is logged in one-minute intervals
which are then averaged into one-hour time windows,
resulting in 24-speed data entries per RSU per day.
These are used as the edge weights for the network graph
above.

• Trip Query data: From the network graph, we pick
1,000 uniformly distributed source and destination
pairs along with randomly selected departure times.
We assume these queries are sent within five minutes,
aggregated, and then processed.

• Constraints: For all the subsequent experiments, TQth is
set at 100.

C. EXPERIMENT EVALUATION
Processing time, ct(t ′, r), is measured as the time it takes for
a sent query to be responded to with the final route. These
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FIGURE 10. Effect of utilizing neighbor nodes during task allocation on
total query time.

include the generation of the optimal sequence grid, task
allocation, and task execution. Accuracy is measured in terms
of total travel time per route.

To quantify the effects of varying neighbor levels on task
allocation, processing time, and accuracy, we send 1,000 trip
queries to the broker. All queries are sent to a single broker
and it performs all sequence grid (SG), generation as well as
task allocations.

1) TASK ALLOCATION
Task allocation time is negligible when compared to the
total processing time as shown in Table 3. Total task alloca-
tion for 1000 queries, is 1.7 seconds (the execution time of
Algorithms 1 and 3) while total processing time takes
145 seconds.

TABLE 3. Effect of number of queries on allocation and processing
(neighbor level 1).

Figure 11 shows the breakdown of how sub-tasks are allo-
cated to the different RSUs. Certain high usage RSUs that
have sub-grids have their tasks distributed internally. With
neighbor level 0, these high usage RSUs have five times the
number of tasks allocated to it while some RSUs such as
SPE6g have little to no allocated tasks. In neighbor level 0,
there is a direct correlation between the number of tasks and
the number of roads in an RSU.

2) PROCESSING TIME
Figure 9 shows how much faster processing times are
when utilizing neighbor grids. Without using neighbor grids,
the service gets overloaded when around 35% of the queries
are being processed. On the other hand, using neighbor grids
allow the service to comfortably handle subsequent tasks.

The similarities between Neighbor levels 1 and 2 are due to
the computational limitations of the host device.

The processing time for each query includes the delay it
takes for messages to be sent between a broker and RSUs.
An average message between broker and RSU has 0.5KB of
information, while a response to user queries has 0.7KB.

Messages sent from broker to RSUs contain the following
information:
• Unique Task ID
• RSU ID allocation
• Next RSU in sequence
• Source
• Destination
• Departure time
In their response to Brokers, RSUs add the following to the

message:
• Partial Route
• Partial route travel time
Query response messages contain:
• Unique Query id
• Final route
• Final route travel time
Assuming that RSUs and brokers have a wired/wireless

connection such as LTE, this message will be sent in millisec-
onds and thus negligible. Similarly, processed responses will
be sent back in milliseconds using Dedicated Short Range
Communication (DSRC) or LTE connectivity.

3) ACCURACY
Tasks are processed faster when using neighbor levels 1 and 2.
This is because tasks are allocated to less utilized but less
optimal RSUs, resulting in a decrease in model accuracy.
We measure this accuracy as the overall travel time for a
generated route. We assume that routes generated by with
neighbor level 0 have 100% accuracy. Each task allocated
differently from the most optimal RSU penalizes the data
being obtained. This penalty is a function of the Manhattan
distance, between optimal and assigned RSU as described
in Equation 8.

To simulate this loss of accuracy, we define that the Man-
hattan distance between optimal and assigned RSU be equiv-
alent to the staleness of the speed data in minutes. In prior
experiments, aManhattan distance of 1means that only speed
data from 60 minutes ago will be available to that assigned
RSU to be used in generating routes.

We assume that this staleness of data is an adequate mea-
sure of possible inaccuracies due to sub-optimal task allo-
cations. Figure 10 shows that the trade-off for decreasing
query response time by around 50% is a 5.5% loss in model
accuracy. While Neighbor level 1 is providing an acceptable
trade-off, Neighbor level 2 shows no substantial decrease in
processing time to justify the additional 2% of loss. This
loss in accuracy is primarily due to the Manhattan distance
between optimal and assigned RSUs as shown in Figure 12.
With neighbor level 2, almost 400 tasks that were assigned

176144 VOLUME 8, 2020



J. P. V. Talusan et al.: Route Planning Through Distributed Computing by RSUs

FIGURE 11. Task allocation.

FIGURE 12. Histogram of manhattan distances based on Neighbor Levels.

to an RSU four Manhattan distances away from its optimal
allocation.

The 60-minute delays were based on the assumed speed
with which data is propagated to neighbor nodes. We vary the
delay of speed updates between neighbor nodes to verify its
effect on the overall accuracy of the system. Figure 13 shows
that as we increase the delay between speed updates, the aver-
age travel time error per trip increases. Also, we defined
dynamic speed updates based on how often the road speed
changes. The goal for this dynamic method of updating speed
data is to obtain a balance between the number of messages
between RSUs and the overall travel time accuracy. In this
method, we divided the roads into four distinct categories,
and based on the frequency of speed changes throughout the
day, we assign them varying speed updates ranging from 5,
10, 30, and 60 minutes.

This gives a better description of the effect of road speed
changes on the travel time. The drawback would be the com-
munication costs between nodes as updates are sent between
them.

4) CONCURRENT QUERY COUNT
We have seen that there is a substantial decrease in processing
timewhen using neighbor levels 1 and 2 over neighbor level 0.

FIGURE 13. Effect of varying delay on average travel time errors. The
rightmost point (Dynamic) is based on assigning different delays based
on road speed changes. Nodes get speed updates in increments of 5, 10,
30, and 60 minutes based on how often the road speed changes.

However, a median of almost 100 seconds of processing time
for neighbor level 1 is still quite large. Here we test varying
concurrent queries on the system with a neighbor level 1.

Figure 14 shows how long it takes for different concurrent
queries to be completely processed. Processing time increases
tenfold when increasing the number of concurrent queries
from 200 to 2,000. Table 3 shows the time it takes different
numbers of concurrent queries to be queried, allocated com-
pletely, and finally processed.

5) ROUTE GENERATION
For 1,000 trip queries, the majority of the trips have the same
routes regardless of the neighbor level. This is either due to
tasks being allocated optimally or speed data is close enough
that there is no need for rerouting. These instances occur
in more than half of the trips. For these trips the average
difference in trip travel times for neighbor levels 1 and 2 are
3.5% and 4.5% respectively.
However, for the remaining trips, the routes differ because

the staleness of the data was large enough to affect the route
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FIGURE 14. Box plots showing the effect of the number of concurrent
queries sent on the query response times of the system (Neighbor
level 1).

planning. For these trips, users had to be routed through
different roads. For these trips the average difference in travel
times for neighbor levels 1 and 2 are 12.7% and 18.11%
respectively. Although higher, these differences occurred
only in 81 trips out of 1,000.

Figure 15 shows a worst-case scenario due to data stale-
ness. Each route passes through the same set of grids; how-
ever, the route generated by level 2 diverges the most, which
is to be expected, especially on roads where traffic changes
more drastically. This particular route passes through down-
town, which we assume to have very large speed changes
throughout the day. Due to the staleness of available data due
to task reallocation, the final route differs between neighbor
levels. In this scenario level 1 and 2 had a difference in travel
times of 7.37% and 31.81% respectively.

FIGURE 15. Routes generated with varying neighbor levels. Circle and
triangle are source and destination respectively. Only the 2nd half of the
route is shared by all.

VI. DISCUSSION AND LIMITATIONS
A. DISCUSSION
We showed in Figure 7 that emulating 49 RSUs on aMacmini
gave similar results to Raspberry Pi-like devices. Running all
experiments using this configuration, gives us an idea of how
a Raspberry Pi or a similar device would perform as an RSU
given the same parameters.

We checked how characteristics of a decentralized route
planning service would change depending on varying param-
eters. In Section V-C, we found that by simply increasing the
region of interest for available RSUs, we can decrease the
processing time. Figure 10 shows that by including neighbor
grids as possible reallocation alternatives, the overall process-
ing time for user queries is decreased by 50%. Section V-C3
shows that while this task allocation algorithm offers the
benefit of decreased processing time, there is a trade-off
with model accuracy. As tasks get allocated farther and far-
ther away from the most optimal RSU, the available speed
data becomes staler. However, Figure 10 shows that for
1,000 queries the total travel time accuracy is decreased by
an average of only 7%.

Finally, we tested the actual route being generated by the
service in Section V-C5. We found that utilizing neighbor
nodes did not have a large negative effect on the actual
route planning algorithm. Out of 1,000 trip queries, more
than half was given the same route regardless of the travel
time difference which had an average of 4.5% decrease in
model accuracy. Less than 10% of the trips had a route that
was affected by the staleness of available data due to the
distance between optimal and assigned RSUs. Of these trips,
the decrease in accuracy is 12.7% and 18.11% for neighbor
levels 1 and 2 respectively. The decrease in accuracy does
not impact the correctness of the route, only the timeliness
of the data being used. Lower quality or less accurate route
increases the chances that the route will pass through con-
gested roads.

B. LIMITATIONS
The first limitation of our study was the way we stored
local speed data. Depending on the transport network den-
sity, speed data could easily reach millions of rows of data.
While an updating database of time-series data is preferred,
we found that it consumes too much processing time (when
accessing stored data files) or waits for too long (database
querying) for the response to be sent in close to real-time.

To work around this and still be able to provide speed data
for route planning, we averaged data over the month into
1,440 data points (per minute, per day) and stored them as
a look-up table. While real-time updating local data provides
significant improvements in actual route generation, this is
beyond the scope of this study.

The second limitation was the way the optimal sequence
grids are generated. We assume that there is only a single
optimal route per trip query. For trips with multiple optimal
feasible routes, we must update the Equivalent Grid Routing
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model (Ê). Updating themodel to handle such trips and routes
is beyond the scope of this article.

VII. CONCLUSION AND FUTURE WORK
We proposed a decentralized route planning service that runs
on RSU-Edge. This service provides the shortest route from a
source to a destination. To achieve the highest accuracy, tasks
must be allocated to the most optimal RSUs defined by the
optimal grid sequence. However, due to resource constraints,
allocating all tasks to their optimal RSUs will result in delays
to the overall query response.

The problem is how to ensure that all task assignments sat-
isfy query response constraints while maximizing the overall
accuracy of the result. To solve this, we proposed a distributed
task allocation algorithm that identifies the most optimal
assignments to meet accuracy and time requirements.

Evaluating the system on real-world data, we measured the
efficiency of the system based on various parameters such as
the region of interest, concurrent queries, and computational
capacity.We found potential trade-offs between overall query
processing time and model accuracy when using different
neighbor levels. By having a wider region of interest for
available RSUs, we decrease processing time by 50% with
an average of 7% decrease in model accuracy.
As future work, we must verify the performance of the

middleware and distributed route planning service. To accom-
plish that, the system must be deployed and validated with
real-world test cases. The actual deployment of this sys-
tem introduces new challenges that must be solved such
as geographical distances and communication delays. Thus,
the network configuration and architecture must be carefully
planned. In Japan, ITS (Intelligent Transport Systems) are
steadily expanding with the popularization of ETC (Elec-
tronic Toll Collection) systems. With ETC 2.0 [49], vehicles
have the ability for V2V and vehicle to RSU communication.
We should consider how our architecture will be deployed in
such an environment.
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