
111

HPRoP: Hierarchical Privacy-Preserving Route Planning for
Smart Cities
FRANCIS TIAUSAS, Nara Institute of Science and Technology (NAIST), Japan
KEIICHI YASUMOTO, Nara Institute of Science and Technology (NAIST), Japan and RIKEN Center for
Advanced Intelligence Project (AIP), Japan
JOSE PAOLO TALUSAN, Vanderbilt University, USA
HAYATO YAMANA,Waseda University, Japan
HIROZUMI YAMAGUCHI, Osaka University, Japan
SHAMEEK BHATTACHARJEE,Western Michigan University, USA
ABHISHEK DUBEY, Vanderbilt University, USA
SAJAL K. DAS,Missouri University of Science and Technology, USA

Route Planning Systems (RPS) are a core component of autonomous personal transport systems essential
for safe and efficient navigation of dynamic urban environments with the support of edge-based smart city
infrastructure, but they also raise concerns about user route privacy in the context of both privately-owned and
commercial vehicles. Numerous high profile data breaches in recent years have fortunately motivated research
on privacy-preserving RPS, but most of them are rendered impractical by greatly increased communication and
processing overhead. We address this by proposing an approach called Hierarchical Privacy-Preserving Route
Planning (HPRoP) which divides and distributes the route planning task across multiple levels, and protects
locations along the entire route. This is done by combining Inertial Flow partitioning, Private Information
Retrieval (PIR), and Edge Computing techniques with our novel route planning heuristic algorithm. Normalized
metrics were also formulated to quantify the privacy of the source/destination points (endpoint location privacy)
and the route itself (route privacy). Evaluation on a simulated road network showed that HPRoP reliably
produces routes differing only by ≤ 20% in length from optimal shortest paths, with completion times within
∼ 25 seconds which is reasonable for a PIR-based approach. On top of this, more than half of the produced
routes achieved near-optimal endpoint location privacy (∼ 1.0) and good route privacy (≥ 0.8).

CCS Concepts: • Security and privacy→ Privacy-preserving protocols; Domain-specific security and privacy
architectures.

Additional Key Words and Phrases: Route Planning Services, Location Privacy, Route Planning Algorithms

Authors’ addresses: Francis Tiausas, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192, Nara, Japan,
tiausas.francis_jerome.ta5@is.naist.jp; Keiichi Yasumoto, yasumoto@is.naist.jp, Nara Institute of Science and Technology
(NAIST), Ikoma, 630-0192, Nara, Japan and RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, 103-0027,
Japan; Jose Paolo Talusan, jose.paolo.talusan@vanderbilt.edu, Vanderbilt University, 2201 West End, Nashville, Tennessee,
USA; Hayato Yamana, yamana@waseda.jp, Waseda University, 1-104 Totsukamachi, Shinjuku, Tokyo, Japan; Hirozumi
Yamaguchi, h-yamagu@ist.osaka-u.ac.jp, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Japan; Shameek Bhattacharjee,
shameek.bhattacharjee@wmich.edu, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, Michigan, USA;
Abhishek Dubey, abhishek.dubey@vanderbilt.edu, Vanderbilt University, 2201 West End, Nashville, Tennessee, USA; Sajal
K. Das, sdas@mst.edu, Missouri University of Science and Technology, 300 W 13th St., Rolla, Missouri, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
2378-962X/2023/10-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

https://doi.org/XXXXXXX.XXXXXXX

111:2 Tiausas, et al.

ACM Reference Format:
Francis Tiausas, Keiichi Yasumoto, Jose Paolo Talusan, Hayato Yamana, Hirozumi Yamaguchi, Shameek
Bhattacharjee, Abhishek Dubey, and Sajal K. Das. 2023. HPRoP: Hierarchical Privacy-Preserving Route
Planning for Smart Cities. ACM Trans. Cyber-Phys. Syst. 6, 4, Article 111 (October 2023), 25 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Route Planning Services (RPS) are web-based applications which can calculate routes between two
chosen points in a road network, and are indispensable navigational aids for commuters, vehicle
operators, autonomous vehicles, etc. However, these same routes can reveal points of interest [15]
which may contain users’ places of work and residence, in addition to highly-sensitive information
about their political, sexual, or religious tendencies [30]. Furthermore, this exposes users to risks of
targeted criminal acts, mass surveillance, discrimination, etc. The rise in high-profile data breaches
over the past decade has highlighted the importance of protecting user location (and route) data,
and has spurred many recent works focusing on adding privacy-preserving mechanisms to RPS.

In the RPS context, privacy primarily entails keeping users’ origin, destination, and route informa-
tion from being acquired by untrusted entities. It exists side-by-side with other important Quality
of Service (QoS) metrics such as Utility (e.g. the accuracy of the routes, etc.) and Performance (e.g.
the response time of the RPS, etc.) which affect whether or not an RPS would gain widespread
adoption. Rev#3,

Comm.
#7

Finding a good balance between these metrics is crucial for any privacy-preserving RPS.
For instance, privacy-preserving protocols for querying road traffic data have been developed for
Vehicle Ad-hoc Networks (VANETs) but these either offload the computation cost of route planning
onto the vehicle itself [24, 25, 39] or an external trusted entity [3, 4]. The latter approaches are
already done by modern RPS, while the former are not web-based RPS at all. Structured encryp-
tion schemes [17, 26, 37] provide privacy-protection for both user queries and road network data
while also being relatively lightweight and efficient but at the cost of inherently leaking some
query-related information which are detrimental to the privacy of user routes.
Aside from these, there are also works that utilize Private Information Retrieval (PIR) [7] since

this protocol has strong privacy guarantees. In an RPS, their efficiency depends mostly on the
routing algorithm but are often considered too computationally-heavy to be used on very large
databases — such as the road network graph of a large city. As such, only a few examples of
PIR-based RPS have been developed over the past decade. One approach [35] compresses road
network graphs in a novel PIR-queryable manner but results in longer pre-processing and query
response times. The other approach [28] partitions the road network into disjoint subgraphs and
these are individually retrieved via PIR to inform a local routing algorithm on the user’s device. This
results in longer route completion times since many PIR queries are needed to complete the route.
Both approaches clearly entail a significant degradation of QoS which dissuades most mainstream
RPS from experimenting with and adopting them.

Rev#1,
Comm.
#3

Our approach aims to create a RPS that addresses the aforementioned issues by fulfilling the
following three objectives: (1) produce close-to-optimal users’ routes, (2) provide strong privacy
guarantees for users’ route data, and (3) maintain an adequate level of performance by minimizing
processing and communication overhead as much as possible. The approach involves two phases.
In the pre-processing phase, a graph partitioning technique is used to hierarchically divide the road
network into balanced partitions. Routes within each partition are then pre-computed and stored
in separate databases, and the same is done for an additional set of routes between neighboring
partitions. In the routing phase, a novel hierarchical heuristic algorithm on the user’s device
privately obtains partial routes from the different partition databases using PIR, and iteratively

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:3

combines them to create a progressively finer route. We named the proposed approach, Hierarchical
Privacy-Preserving Route Planning (HPRoP), which makes the following key contributions:

• Rev#3,
Comm.
#6

A RPS that uses a hierarchical partitioning of the road network with a novel hierarchical
route planning algorithm to produce routes with good optimal route approximation while
maintaining strong privacy guarantees and low route completion times,
• A pair of privacy metrics — endpoint location privacy and route privacy — Rev#3,

Comm.
#6

that aim to be
general enough to be applicable to other privacy-preserving RPS while also accounting
for specific characteristics of PIR-based RPS (such as providing strong privacy guarantees
between routes in the same database), and
• A comprehensive evaluation of the Utility, Privacy, and Performance of the proposed RPS on
a simulated road network based on Osaka City against two PIR-based baseline approaches.

Rev#1,
Comm.
#6

Note that the baseline approaches mentioned above were also developed solely for this paper to
address the lack of recent PIR-based route planning approaches which HPRoP can be compared
against. However, we do not count them as separate contributions since they are primarily used as
an evaluation tool. The rest of this article is organized as follows. Section 2 presents a summary
of prior work related to privacy-preserving route planning. Section 3 discusses the mathematical
models, assumptions, and other preliminaries. Section 4 presents the concept and intuition behind
route planning under the constraints of PIR. Section 5 defines and discusses the privacy metrics
used to evaluate the RPS. Section 6 presents the key ideas behind the approach itself, and the details
of the heuristic algorithm. Section 7 discusses the evaluation framework and the results. Section 8
concludes with a brief summary of the article and some notes on potential future work.

2 RELATEDWORK
Most algorithms for calculating exact shortest paths require knowledge of the exact source and
destination locations. Classical algorithms like Dijkstra’s and Bellman-Ford [10] calculate routes
by repeatedly scanning connected vertices from some source point and assigning them weights
until a path to the destination point is found. Modern algorithms improve upon this by leveraging
unique properties of road networks. ALT [18] pre-computes distances to fixed landmarks, and
uses them as lower bounds to informa a bidirectional A* search [21]. Contraction Hierarchies [16]
pre-processes the network graph to establish “shortcut edges,” facilitating faster route calculation
between distant points. Customizable Route Planning [11] uses the network graph’s topology in their
metric-independent hierarchical routing method. Regardless, deploying these on the server-side
inevitably means that the user’s origin and destination must be divulged so that the final route can
be computed. Meanwhile, deploying these on the client-side means downloading large amounts of
road network data, and computing routes on more resource-constrained machines. In other words,
the first case compromises privacy while the second degrades functionality.
Alternatively, algorithms for finding approximate shortest paths also exist, focusing on quickly

obtaining short routes rather than finding the exact shortest ones. Point-to-point variants of these
[8, 22, 23] were developed at a time when mobile computational power was very limited, and have
been outclassed by modern exact shortest path algorithms. Yet, these remain useful in All-Pairs
Shortest Path (APSP) distance oracles [1, 34] for speeding up goal-directed route calculations.

Rev#3,
Comm.
#7

Recent research on privacy-preserving route planning techniques generally fall under three
categories: (1) Structured Encryption-based, (2) PIR-based, and (3) Other encryption-based schemes.
In addition, a number of schemes for privately querying road traffic information with applications
to vehicle navigation systems also exist, but, since these either perform route planning on the
vehicle itself [24, 25, 39] or an external trusted entity [3, 4], these works have been excluded here.

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:4 Tiausas, et al.

Structured Encryption [6] refers to techniques that allows data structures to be encrypted such
that these can be queried later in a privacy-preserving manner. They are typically more efficient in
terms of computation time and communication overhead at the cost of leaking a small amount of
information about the data and the queries. The approaches in [26, 37] use structured encryption
to find the shortest distance between vertex-pairs in encrypted graphs. These, however, are only
able to find shortest distance values instead of the actual shortest paths, and are vulnerable to
collusion between the storage and computing servers — which are essentially the same entity in the
RPS context. In contrast, [17] is able to retrieve the actual shortest paths on a single-server setup
which effectively eliminates the aforementioned issues. However, pre-computing the encrypted
database for large sparse graphs (i.e. with |𝑉 | ≥ 10, 000 and |𝐸 | ≥ 30, 000) took upwards of 16.5
hours and produced very large files (around 4.4 GB), rendering it impractical for dynamic scenarios
such as real-time route planning. Rev#3,

Comm.
#4

Additionally, while all three have heavily-constrained leakage
profiles, some of the information they inherently leak may be detrimental to route privacy. For
instance, the number of potential query elements (i.e. the database size) can be used to determine
the specific subgraph of the road network graph being used. Query repetitions and total queries
for route completion can be jointly analyzed across multiple sessions to deduce the actual route.
Different approaches may also leak other information in addition to the ones mentioned here.

PIR [7] is a technique that allows remote databases to be queried in such a way that the retrieved
element would not be revealed to the service provider or any third-party entity. PIR-based schemes,
therefore, have slightly stronger privacy guarantees in that repeated queries and underlying
database sizes are not leaked, but have the disadvantage of much higher communication overhead.
While most modern implementations [2, 19, 27, 29] have become very communication-efficient
(i.e. up to 𝑂 (

√
𝑁)), they remain impractical for accessing a database of APSP in a large city. This

is because PIR schemes need to go through each individual element to avoid leaking information
about the element being retrieved [5]. The approach in [35] describes a method for compressing
road network graphs via sign-decomposition combined with Yao’s garbled circuits [36] and PIR to
protect both user queries and said graph, giving it strong end-to-end privacy guarantees. However,
it also has relatively long pre-processing and query response times since the protocol must operate
on compressed and encrypted data at all times. The approach in [28] partitions the network graph
into disjoint sections (i.e. each consisting of a separate subgraph) which can then be retrieved via PIR
during local computation of a shortest path during the routing phase. While this requires minimal
pre-processing time, the total route completion time remains rather long since the locally-run
routing algorithm would need multiple PIR queries to complete a single route.

Other encryption-based schemes with much stronger privacy guarantees also exist but they are
also much less efficient than the previous two. For instance, [38] allows users to request routes
between arbitrary source and destination partitions, as well as within said partitions in a privacy-
preserving manner using 1-of-n Oblivious Transfer [31]. However, the scheme needs to compute
All-Pairs of Shortest Paths (APSP) for the aforementioned partitions during the routing phase,
drastically slowing down query response times. Similarly, the work in [14] uses Paillier’s Encryption
to privately query outgoing edge weights from vertices in the road network graph which, in turn,
is used to inform a route planning algorithm running locally on the user’s own device. The scheme,
unfortunately, has a very high communication overhead since it has to make a separate query for
every vertex that needs to be “scanned” by the routing algorithm.
As this works aims to achieve strong privacy guarantees for users’ routes while also meeting

utility and performance targets, PIR was chosen as the core privacy-preservation mechanism for
the proposed approach. Unlike structured encryption, it does not leak information about query

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:5

repetitions, which can potentially be analyzed by an adversary to distinguish between different
route requests by the same user.

3 MODELS AND ASSUMPTIONS
This section presents the assumptions and mathematical models related to the road network graph,
its corresponding partition graph, and the “approximate” routes that can be derived from the latter.

Table 1. Summary of Symbols used in Sec. 3

Symbol Description
𝐺 = (𝑉 , 𝐸) Road network graph with road segments 𝐸 and intersections𝑉
𝑙𝐺 (𝑢, 𝑣) Length of a road segment having endpoints (𝑢, 𝑣)

𝑠,𝑑 Source (𝑠) and Destination (𝑑) vertices
𝑟𝐺 (𝑠,𝑑) Path/route between 𝑠 and 𝑑

𝐿𝐺 (𝑟𝐺 (𝑠,𝑑)) Total length of path/route 𝑟𝐺 (𝑠,𝑑)
𝑅𝐺 (𝑠,𝑑) All possible paths between 𝑠 and 𝑑
𝜌𝐺 (𝑠,𝑑) Shortest path between 𝑠 and 𝑑

𝐺𝑃 = (𝑃,𝐶) Partition graph derived from𝐺 with the set of all partitions 𝑃 and the connections between them𝐶

𝑝 = (𝑉𝑝 , 𝐸𝑝) A partition (i.e., a subgraph of𝐺) consisting of road segments 𝐸𝑝 and endpoints𝑉𝑝 within it
𝑁𝐵𝑝𝑢 Set of all neighboring partitions for partition 𝑝𝑢

ℓ Partition level
L Maximum partition level (0 ≤ ℓ ≤ L)
𝑃 ℓ Subset of partitions in 𝑃 at level ℓ
𝑝ℓ
𝑖

A partition belonging under 𝑃 ℓ with a given index 𝑖
𝑥𝑢 Representative vertex for the partition 𝑝𝑢

𝑐𝑝𝑢𝑝𝑣 A connection between partitions 𝑝𝑢 and 𝑝𝑣 through shortest path 𝜌𝐺 (𝑥𝑢 , 𝑥𝑣)
𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣) Shortest path distance between 𝑢 and 𝑣 in𝐺
D(𝑝) Database of shortest paths for partition 𝑝

C(𝜌0, ..., 𝜌𝑛) Arbitrary route combination heuristic
𝑟 ∗
𝐺
(𝑢, 𝑣) Approximate shortest path between 𝑢 and 𝑣

𝛼 (𝑟 ∗
𝐺
(𝑢, 𝑣)) Optimal route approximation metric

3.1 Road Network Partitioning Model
A road network can be modelled as a directed graph𝐺 = (𝑉 , 𝐸) where the edges 𝐸 represent road
segments, and the vertices 𝑉 represent either road intersections or terminals. Each road segment
𝑒 ∈ 𝐸 is a directed edge between two vertices 𝑢, 𝑣 ∈ 𝑉 such that 𝑒 = (𝑢, 𝑣), with parallel opposing
lanes being represented by two directed edges going in opposite directions. The traversal cost
for 𝑒 is given by its length, 𝑙𝐺 (𝑢, 𝑣). A route or path between two vertices 𝑠, 𝑑 ∈ 𝑉 is defined as
a sequence of vertices 𝑟𝐺 (𝑠, 𝑑) = (𝑣𝑠𝑑1 , 𝑣𝑠𝑑2 , . . . , 𝑣𝑠𝑑𝑛−1, 𝑣

𝑠𝑑
𝑛) where the first vertex 𝑣𝑠𝑑1 = 𝑠 and the

last vertex 𝑣𝑠𝑑𝑛 = 𝑑 . The total length of 𝑟𝐺 (𝑠, 𝑑) is given by 𝐿𝐺 (𝑟𝐺 (𝑠, 𝑑)) =
∑ |𝑟𝐺 (𝑠,𝑑) |−1

𝑖=1 𝑙𝐺 (𝑣𝑠𝑑𝑖 , 𝑣𝑠𝑑𝑖+1).
Denoting all possible paths (between 𝑠 and 𝑑) as 𝑅𝐺 (𝑠, 𝑑), the Shortest Path is then:

𝜌𝐺 (𝑠, 𝑑) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑟 ∈𝑅𝐺 (𝑠,𝑑) 𝐿𝐺 (𝑟) (1)
Most modern route planning algorithms can already deal with very large road networks, but

typically do not incorporate route privacy protection mechanisms out of the box, as they tend to
significantly increase processing and communication overhead as mentioned in Sec. 2. However,
if the route planning task can be divided, then the additional processing cost incurred by the
privacy mechanism can be distributed across multiple devices instead and ultimately improve RPS
performance. This is done by first dividing the road network into different areas called partitions.
An arbitrary partitioning of the road network graph 𝐺 is represented by a separate partition

graph 𝐺𝑃 = (𝑃,𝐶) where the vertices 𝑃 represent partitions and the edges 𝐶 represent connections

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:6 Tiausas, et al.

Fig. 1. Types of shortest paths stored by each partition

between them. Each partition 𝑝 ∈ 𝑃 is a subgraph 𝑝 = (𝑉𝑝 , 𝐸𝑝) such that 𝑉𝑝 ⊆ 𝑉 and 𝐸𝑝 ⊆ 𝐸. Each
connection 𝑐𝑝𝑢𝑝𝑣 ∈ 𝐶 is a shortest path 𝜌𝐺 (𝑥𝑢, 𝑥𝑣) between the representative vertices 𝑥𝑢, 𝑥𝑣 ∈ 𝑉 of
any two neighboring partitions 𝑝𝑢, 𝑝𝑣 ∈ 𝑃 where 𝑥𝑢 ∈ 𝑉𝑝𝑢 ∧𝑥𝑣 ∈ 𝑉𝑝𝑣 . Two partitions are considered
“neighbors” if ∃ 𝑒 = (𝑢, 𝑣) s.t. 𝑒 ∈ 𝐸 ∧𝑢 ∈ 𝑉𝑝𝑢 ∧ 𝑣 ∈ 𝑉𝑝𝑣 . Finally, the set of all neighboring partitions
for 𝑝𝑢 is defined as 𝑁𝐵𝑝𝑢 = {𝑝𝑣 |𝑝𝑣 ∈ 𝑃 ∧ (𝑐𝑝𝑢𝑝𝑣 ∈ 𝐶 ∨ 𝑐𝑝𝑣𝑝𝑢 ∈ 𝐶)}
Representative vertices are ideally chosen to minimize the shortest path distance to all other

vertices in the partition. Rev#1,
Comm.
#2

Vertices with high graph centrality are good candidates, but our preliminary
experiments show that it is viable to simply choose the vertex closest to the geospatial average of the
coordinates of each partition’s vertices with no impact on routing performance. Thus, representative
vertices were chosen via this method. It then follows that 𝑙𝐺𝑃

(𝑝𝑢, 𝑝𝑣) = 𝐿𝐺 (𝜌𝐺 (𝑥𝑢, 𝑥𝑣)). For
simplicity, the shortest path distance between any 𝑢, 𝑣 ∈ 𝐺 is represented by 𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣), while
𝑑𝑖𝑠𝑡𝐺𝑃

(𝑝𝑢, 𝑝𝑣) refers to the shortest path distance between their containing partitions, 𝑝𝑢, 𝑝𝑣 ∈ 𝑃 .
Partitions are defined in a hierarchical manner with the maximum partition level beingL, and the

subset of partitions for each level ℓ < L denoted as 𝑃 ℓ ⊆ 𝑃 such that 𝑃 ℓ ⊂ 𝑃 ℓ−1 for ℓ > 0. A partition
may also be defined as 𝑝ℓ𝑖 where ℓ is the partition’s level and 𝑖 is the partition’s index at that level
given 𝑃 ℓ = {𝑝ℓ0, 𝑝ℓ1, . . . , 𝑝ℓ𝑛}. The base level partition set 𝑃0 contains only one partition/subgraph
𝑝00 = 𝐺 at ℓ = 0. Conversely, 𝑝00 might be composed of several smaller partitions 𝑝10 , 𝑝11 , 𝑝12 , and
𝑝13 at ℓ = 1 such that all of them are subgraphs of 𝑝00 , and so on. For clarity, partition levels will
henceforth be referred to by their position (i.e., higher or lower) instead of their subgraph’s size.

Each partition 𝑝ℓ has three sets of shortest path data as depicted in Fig. 1: (1) the shortest paths
within the partition 𝑝ℓ (black edges), (2) the shortest paths to its neighboring partitions, 𝑁𝐵𝑝ℓ (blue
edges), and (3) the shortest paths between the containing partition, 𝑝ℓ−1, to its own neighbors,
𝑁𝐵𝑝ℓ−1 (green edges). This database of shortest paths is represented by D(𝑝ℓ).

3.2 Approximate Shortest Path Model
Our approach relaxes the shortest path problem by accepting approximate shortest paths between
two areas (in this case, partitions) containing 𝑠 and 𝑑 in place of the exact shortest path between
the two points. This, in turn, reduces the number of queries required to obtain a route (hence,
faster route completion times) at the cost of potentially having slightly longer paths. These are
formally defined here as follows. Given an arbitrary 𝑠, 𝑑 ∈ 𝑉 , the exact shortest path 𝜌𝐺 (𝑠, 𝑑) rarely
coincides with the shortest path 𝜌𝐺𝑃

(𝑥𝑠 , 𝑥𝑑) where 𝑥𝑠 and 𝑥𝑑 are the representative vertices in the
same partitions as 𝑠 and 𝑑 , respectively. This is because only routes between representative vertices

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:7

of partitions in 𝑃 can be produced from𝐺𝑃 , and it is highly likely that 𝑠 ≠ 𝑥𝑠 or 𝑑 ≠ 𝑥𝑑 . However, it
it is still possible to “complete” the route by adding in the missing start and end sections. Letting
C(𝜌1, ..., 𝜌𝑛) be a route combination heuristic, the simplest “completed” route would be:

𝑟 ∗𝐺 (𝑠, 𝑑) = C(𝜌𝐺 (𝑠, 𝑥𝑠), 𝜌𝐺𝑃
(𝑥𝑠 , 𝑥𝑑), 𝜌𝐺 (𝑥𝑑 , 𝑑)) (2)

This can be generalized further by replacing 𝜌𝐺𝑃
(𝑥𝑠 , 𝑥𝑑) with C(𝜌𝐺𝑃

(𝑥1, 𝑥2), . . . , 𝜌𝐺𝑃
(𝑥𝑛−1, 𝑥𝑛)):

𝑟 ∗𝐺 (𝑠, 𝑑) = C(𝜌𝐺 (𝑠, 𝑥𝑠), 𝜌𝐺𝑃
(𝑥1, 𝑥2), . . . , 𝜌𝐺𝑃

(𝑥𝑛−1, 𝑥𝑛), 𝜌𝐺 (𝑥𝑑 , 𝑑)) (3)
where 𝑥1 = 𝑥𝑠 and 𝑥𝑛 = 𝑥𝑑 . In this work, these kinds of combined paths are designated as
approximate shortest paths, and their quality is measured based on how well they approximate their
counterpart exact shortest paths. This metric is defined as the optimal route approximation:

𝛼 (𝑟 ∗𝐺 (𝑠, 𝑑)) =
𝑙𝐺 (𝑟 ∗𝐺 (𝑠, 𝑑))
𝑑𝑖𝑠𝑡∗

𝐺
(𝑠, 𝑑) (4)

where 𝑙𝐺 (𝑟 ∗𝐺 (𝑠, 𝑑)) is the length of the approximate shortest path, and 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑑) is the length of
the exact shortest path in 𝐺 .

3.3 Assumptions
Rev#1,
Comm.
#1

Having presented the mathematical models relevant to route planning, we now state the core
assumptions in this work as follows. Foremost is that the RPS operates over a particular service
region, and is primarily used by the general public for their day-to-day activities. The service region
in this case is assumed to be a geographical area of arbitrary shape and size that has fixed bounds.
This area is assumed to have comprehensive road network data available such that a RPS can be
used to calculate routes within it. This road network is assumed to be represented as a graph that
can be divided multiple times to produce subgraphs representing partitions as per Sec. 3.1. Each
highest-level partition is assumed to be handled by a distinct physical or virtual device for the
purpose of the RPS. Additionally, it is assumed that each partition can calculate, build, and maintain
its own database of shortest paths D(𝑝) independent of its other tasks. This per-partition database
is then assumed to be queryable by users in a privacy-preserving manner through PIR.
We additionally assume that all entities other than the user are potential threats — henceforth,

simply called “adversaries” — interested in gaining access to the user’s route information. Note that
no distinction is made between the service providers themselves and malicious third-parties. The
kinds of information that can be leaked include the user’s: (1) exact origin, (2) exact destination,
and (3) the calculated “route” between them.
4 ROUTE PLANNINGWITH PIR

Table 2. Summary of Symbols used in Sec. 4

Symbol Description
𝑅∗
𝐺

Set of shortest paths between all possible pairs of vertices in𝑉
𝐿𝑚𝑎𝑥
𝐺

Length of the longest path in the set, 𝑅∗
𝐺

C𝑝𝑖𝑟 Constant representing the impact of database sizes on record retrieval times for PIR
N𝑝 Average number of vertices in a partition (across all 𝑝 ∈ 𝑃)

𝑉
𝑎𝑑 𝑗
𝑝 Set of vertices in partition 𝑝 that are adjacent to other partitions
N𝑎𝑑 𝑗
𝑝 Average number of vertices adjacent to other partitions (i.e.𝑉𝑎𝑑 𝑗

𝑝) (across all 𝑝 ∈ 𝑃)
N𝑐 Average number of external connections (across all 𝑝 ∈ 𝑃)

Rev#1,
Comm.
#6

PIR can be used by RPS to provide strong privacy guarantees by protecting the database
representation of the road network graph used to calculate routes. In the simplest case, consider

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:8 Tiausas, et al.

a database containing APSP for the whole road network graph, indexed by pairs of origin and
destination vertices, (𝑠, 𝑑). PIR can then be used to retrieve any route between any two locations on
the road network using a single query (i.e.𝑂 (1)) with very high privacy. This is the naive approach
which is not feasible in practice for two reasons: (1) it requires a prohibitively large amount of
storage space, and (2) pre-computing APSP information for large road network graphs takes a very
long time.
Assuming a graph with 10, 000 vertices, a longest path length of 20 vertices, and a 1-byte

representation for vertex data, the total PIR database size is already be around 2 GB. This is even
larger for city-sized road networks such as Osaka City’s which has ∼ 99, 000 vertices (∼ 200.8
GB keeping all other parameters same). In short, letting 𝑅∗

𝐺
= {𝑟 ∗

𝐺
(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 } and 𝐿𝑚𝑎𝑥

𝐺
=

𝐿𝐺 (argmax𝑟 ∈𝑅∗
𝐺
|𝑟 |), the space complexity for such an approach is 𝑂 (|𝑉 |2 · 𝐿𝑚𝑎𝑥

𝐺
). This issue is

made even worse by PIR since individual record retrieval times become slower with larger database
sizes. This has been verified through preliminary experiments where data retrieval times were
observed to scale linearly with database sizes by a constant factor, C𝑝𝑖𝑟 , such that accessing a single
route would have a time complexity of 𝑂 (C𝑝𝑖𝑟 · |𝑉 |2) ≈ 𝑂 (|𝑉 |2) instead of the expected 𝑂 (1).
Since time complexity is heavily dependent on space-complexity for PIR-based approaches,

existing works [28, 35] have focused on tackling the space complexity problem since pre-processing
is assumed to be done offline only once. This is not the case for real-world road networks, however,
where traffic conditions can change very quickly. One way to solve this is by distributing route
data among several edge servers such that each one only manages vertices for a distinct partition.
This reduces the time complexity to𝑂 (|𝑉 | · N𝑝) whereN𝑝 = 1/|𝑃 | ·∑𝑝∈𝑃 |𝑉𝑝 | is the average vertex
count per partition, while the per-partition space complexity becomes 𝑂 (N𝑝 · |𝑉 | · 𝐿𝑚𝑎𝑥

𝐺
). These

databases still need to be kept updated, but it is much easier to do so in a distributed manner.
However, dividing the data comes at the cost of weaker privacy since the set of route data stored
on the accessed edge server is assumed known to the adversary. This is analyzed further in Sec. 5.

Table 3. Summary of Time and Space Complexity for Sec. 4

Space Complexity Time Complexity
Naive 𝑂 (|𝑉 |2 · 𝐿𝑚𝑎𝑥

𝐺
) 𝑂 (|𝑉 |2)

EPR-D 𝑂 (N𝑝 · [N𝑝 + N𝑎𝑑 𝑗
𝑝]) 𝑂 (N𝑝 · [N𝑝 + N𝑎𝑑 𝑗

𝑝] · [|𝑉 | + |𝐸 |𝑙𝑜𝑔 |𝑉 |])
APR-D 𝑂 ([N2

𝑝 + N𝑐] · 𝑅
∗,𝑚𝑎𝑥
𝐺

) 𝑂 ([N2
𝑝 + N𝑐] · [(|𝑃 | + |𝐶 |𝑙𝑜𝑔 |𝑃 |) + 2)])

4.1 Exact Partial Region Dijkstra’s Algorithm (EPR-D)
Rev#1,
Comm.
#6

The space complexity problem can be mitigated further by storing only edge weights between
adjacent vertex pairs as this is the minimum information needed by Dijkstra’s algorithm. This
is also known as the adjacency matrix representation which readily maps into a database which
can then be used with any PIR scheme. We designated this PIR-adapted approach as Exact Partial
Region Dijkstra’s Algorithm (EPR-D), since it simply partitions and distributes graph data across
several edge servers, and produces exact shortest paths. A notable disadvantage is its use of separate
PIR queries to retrieve information for each vertex since the original algorithm tends to scan a
lot of vertices which can make route completion times very long. It is also possible to reidentify
routes based on the sequence of edge servers queried by the user. This is examined further in
Sec. 5. Rev#1,

Comm.
#5

This is reflected in its average time complexity of 𝑂 (N𝑝 · [N𝑝 + N𝑎𝑑 𝑗
𝑝] · [|𝑉 | + |𝐸 |𝑙𝑜𝑔|𝑉 |])

where N𝑎𝑑 𝑗
𝑝 = 1/|𝑃 | ·∑𝑝∈𝑃 |𝑉

𝑎𝑑 𝑗
𝑝 | is the average number of vertices adjacent to other partitions,

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:9

in turn, represented by 𝑉 𝑎𝑑 𝑗
𝑝 = {𝑣 |𝑣 ∉ 𝑉𝑝 ∧ [(𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢 ∈ 𝑉𝑝]}. Meanwhile, its average per-par-

tition space complexity is 𝑂 (N𝑝 · [N𝑝 + N𝑎𝑑 𝑗
𝑝]). Table 3 summarizes the complexity of EPR-D.

4.2 Approximate Partial Region Dijkstra’s Algorithm (APR-D)
Rev#1,
Comm.
#6

A possible solution to the time complexity issue is by allowing the RPS to produce approximate
shortest paths instead of exact shortest paths. This can be done as follows: (1) calculate an approxi-
mate route between source and destination partitions 𝑝𝑠 and 𝑝𝑑 using Dijkstra’s algorithm over
partition graph 𝐺𝑃 , (2) retrieve subpaths to both 𝑠 and 𝑑 from within their respective partitions
via database lookup, and (3) merge all obtained paths to form the final route. We designated this
approach as Approximate Partial Region Dijkstra’s Algorithm (APR-D), since it produces approx-
imate routes instead of exact ones. While it is significantly faster than EPR-D, it requires more
space (since full routes are stored). It also has weaker privacy guarantees since routes between
distant areas tend to follow the same intermediate route as will be expanded upon in Sec. 5. Rev#1,

Comm.
#5

Since
the database has to store complete routes, the space complexity is larger than EPR-D’s being at
𝑂 ([N 2

𝑝 + N𝑐] · 𝑅∗,𝑚𝑎𝑥

𝐺
) whereN𝑐 = 1/|𝑃 | ·∑𝑝∈𝑃 |𝐶𝑝 | is the average number of external connections

from each partition. The different stages have different time complexities, with the first stage having
𝑂 ([N 2

𝑝 + N𝑐] · [|𝑃 | + |𝐶 |𝑙𝑜𝑔|𝑃 |]) and the second stage having 𝑂 (2 · N 2
𝑝 + N𝑐). The combined time

complexity is then 𝑂 ([N 2
𝑝 + N𝑐] · [(|𝑃 | + |𝐶 |𝑙𝑜𝑔 |𝑃 |) + 2)]) which is significantly less than that of

EPR-D since |𝑃 | << |𝑉 |. The complexity of APR-D is also summarized in Table 3.
5 PROPOSED PRIVACY METRICS
To evaluate the effectiveness of a privacy-preserving PIR-based RPS, objectively quantifiable privacy
metrics must first be established in the RPS context. Thus, the two models presented in this section
jointly characterize the privacy of the different kinds of information that can be leaked by an RPS
as described in Sec. 3.3.

Table 4. Summary of Symbols used in Sec. 5

Symbol Description
Ω (𝑠,𝑑) Endpoint location privacy metric
R𝐺 (𝑢, 𝑣) Arbitrary routing mechanism operating on some graph𝐺
𝑄𝑠,𝑑 Query sequence used to obtain a route from 𝑠 to 𝑑
𝑄∗ An arbitrary query sequence for no specific route

Φ(𝑄∗) Route privacy metric for some candidate query sequence𝑄∗
𝑃𝑠,𝑑 Partition sequence derived from some query sequence𝑄𝑠,𝑑

𝑘 (𝑄𝑠,𝑑 ,𝑄
∗) Indicator function for checking if𝑄∗ can replace𝑄𝑠,𝑑 and vice versa

𝑉𝑋 A subset of𝑉 containing only the representative vertices

5.1 Endpoint Location Privacy Model
As mentioned in Sec. 3.1, the partition database is used to store the shortest paths for each partition,
and is queried privately using PIR in our approach. The queried partitions are assumed to be
knowable by adversaries, but strong privacy is still guaranteed for exact locations within each
partition. Let R𝐺𝑃

(𝑠, 𝑑) be a routing mechanism which returns the approximate shortest path
𝜌𝐺𝑃
(𝑠, 𝑑), and suppose that the origin location 𝑠 is replaced with a nearby location 𝑠′. If 𝑠′ is still

in the same partition as 𝑠 (i.e., 𝑠′ ∈ 𝑉𝑝𝑠), then R𝐺𝑃
(𝑠′, 𝑑) = R𝐺𝑃

(𝑠, 𝑑). The same applies replacing 𝑑
with any 𝑑 ′ ∈ 𝑉𝑝𝑑 . An adversary knowing only R𝐺𝑃

(𝑠, 𝑑) would be unable to distinguish 𝑠, 𝑑 from
all other possible 𝑠′, 𝑑 ′ as long as 𝑠′ ∈ 𝑉𝑝𝑠 and 𝑑 ′ ∈ 𝑉𝑝𝑑 . Thus, location privacy is guaranteed for 𝑠
and 𝑑 within 𝑝𝑠 and 𝑝𝑑 respectively.

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:10 Tiausas, et al.

Fig. 2. Queried Partitions using Dijkstra’s algorithm to calculate two routes with the same origin but different
destinations (∼ 1 km away from each other). The numbers indicate how many queries were handled by each
partition.

The privacy for any 𝑠, 𝑑 pair is then proportional to the number of possible 𝑠′, 𝑑 ′ pairs that can
be drawn between 𝑉𝑝𝑠 and 𝑉𝑝𝑑 . This is designated as the endpoint location privacy metric:

Ω(𝑠, 𝑑) = 1 − 1
|𝑉𝑝𝑠 | · |𝑉𝑝𝑑 |

(5)

where 𝑉𝑝𝑠 and 𝑉𝑝𝑑 give the sets of all vertices in 𝑝𝑠 and 𝑝𝑑 , respectively. Rev#1,
Comm.
#4

Note that while having
more vertices per partition (i.e. larger |𝑉𝑝𝑠 | and |𝑉𝑝𝑑 |) is advantageous for endpoint location privacy,
this also means higher computation overhead for PIR. Extensive preliminary experiments with the
PIR scheme used by our approach showed that the retrieval times scaled almost linearly with the
database size at a rate of roughly 1

45000 ≈ 2.22 × 10−5 seconds per record. That is, a database with
|𝑉𝑝 |2 ≈ 10000 routes was found to have an average retrieval time of ∼ 0.25 seconds, while another
with |𝑉𝑝 |2 ≈ 100000 routes took ∼ 2 seconds.

5.2 Route Privacy Model
Endpoint location privacy assumes that a route’s origin and destination partition are already known,
and thus quantifies only the privacy of the exact origin and destination points. This section focuses
on the privacy of the routes themselves. As with endpoint location privacy, it is assumed that
the queried partitions are knowable by adversaries. It is also assumed that they have in-depth
knowledge about the algorithms used by the RPS.
Let 𝑄𝑠,𝑑 = {𝑞0, . . . , 𝑞𝑛} be the query sequence that a user must perform to obtain a route from 𝑠

to 𝑑 . This sequence can be transformed into a partition sequence 𝑃𝑠,𝑑 = {𝑝0, . . . , 𝑝𝑛} (where 𝑝0 = 𝑝𝑠
and 𝑝𝑛 = 𝑝𝑑) using a function 𝑓𝑞𝑝 : 𝑄 −→ 𝑃 that maps every element of 𝑄 to its handling partition
in 𝑃 . If the partitioning is hierarchical, then only the highest-level partitions are considered since
they already contain the shortest path data of lower-level partitions as stated in Sec. 3.1.

Note that partition sequences are not simply partitions along the final route. For instance, in the
case of Dijkstra’s algorithm, they can be thought of as the entire sequence of “scanned” vertices as
depicted in Fig. 2. It is therefore possible for several routes to share the same partition sequence
(though unlikely in the case of Dijkstra’s). This is modeled as an indicator function that identifies

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:11

whether or not a candidate 𝑄∗ can replace 𝑄𝑠,𝑑 for calculating 𝑟𝐺𝑃
(𝑠, 𝑑) and vice versa:

𝑘 (𝑄𝑠,𝑑 , 𝑄
∗) =

{
1 if 𝑓𝑞𝑝 (𝑄𝑠,𝑑) = 𝑓𝑞𝑝 (𝑄∗)
0 otherwise

(6)

With this, the lower bound for the total number of distinct routes that share 𝑄∗ is:∑︁
𝑠′,𝑑 ′∈𝑉𝑋

𝑘 (𝑄𝑠′,𝑑 ′ , 𝑄
∗) (7)

where 𝑉𝑋 ⊆ 𝑉 contains only the representative vertices (e.g., 𝑥𝑢, 𝑥𝑣) associated with the partition
graph𝐺𝑃 as described in Sec. 3.1. This ensures that routes where 𝑝𝑠′ ≠ 𝑝𝑠 and 𝑝𝑑 ′ ≠ 𝑝𝑑 are counted
with equal importance as the route where 𝑝𝑠′ = 𝑝𝑠 ∧ 𝑝𝑑 ′ = 𝑝𝑑 — hence, the focus on distinct routes.
Finally, the route privacy can then be quantified for any 𝑄∗ as follows:

Φ(𝑄∗) = 1 − 1∑
𝑠′,𝑑 ′∈𝑉𝑋

𝑘 (𝑄𝑠′,𝑑 ′ , 𝑄
∗) (8)

6 HIERARCHICAL PRIVACY-PRESERVING ROUTE PLANNING
Rev#1,
Comm.
#1

Our proposed approach, Hierarchical Privacy-Preserving Route Planning (HPRoP), is built up from
several key design choices to meet particular requirements. That is, HPRoP should be able to:
• REQ1: Compose feasible approximate shortest paths by carefully choosing its component
routes from the appropriate partitions,
• REQ2: Privately retrieve component route information from said partitions with minimal
processing overhead,
• REQ3: Produce an approximate shortest path with good optimal route approximation values
(i.e., 𝛼 (𝑟 ∗

𝐺
(𝑠, 𝑑)) close to 1.0),

• REQ4: Ensure a good level of privacy protection for the user’s exact origin and destination
points, and intermediate route,
• REQ5: Reflect dynamic and up-to-date road conditions, and
• REQ6: Scale reasonably well with changes in client demand and computational resource
availability over time and per area.

All these are brought together by a novel hierarchical route planning heuristic presented in the
latter half of this section, along with other improvements to privacy and routing.

6.1 Private Information Retrieval (PIR)
HPRoP uses PIR as its core route privacy-preservation mechanism. The choice of implementation
was the SealPIR [2] library configured to use Brakerski/Fan-Vercauteren (BFV) Homomorphic
Encryption (HE)[13] with a database upper bound of 𝑁 = 216, a plaintext modulus of 𝑙𝑜𝑔(𝑡) = 12,
and a dimensionality factor, 𝑑 = 2. This implementation was chosen specifically for its significantly
reduced processing and communication overhead compared to other HE-based ones, making it
ideal for an RPS. This along with the hierarchical route planning heuristic drastically reduces the
number of queries and, in effect, the route completion time.

6.2 Inertial Flow Partitioning
Optimal route approximation and endpoint location privacy are highly-dependent on how the
service region is partitioned. Straightforward methods such as grid partitioning are simple but
often result in disjoint partition subgraphs in the presence of natural barriers like rivers, etc. To
mitigate this, one way would be to ensure that each partition subgraph is a strongly-connected

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:12 Tiausas, et al.

Fig. 3. Road network graph of Osaka City, Japan hierarchically-partitioned using the Inertial Flow algorithm

Fig. 4. Cloud-based Architecture (Left) vs Distributed/Edge-based Architecture (Right)

component, ensuring high internal connectivity and reachability. Examples of road network graph
aware partitioning methods include PUNCH [12], Buffoon [32], and Inertial Flow [33].

Inertial Flow was chosen for HPRoP as it is a relatively simple algorithm based on maximum flow
which results in balanced partitions and also preserves internal connectivity. A vertex threshold
of around 300 nodes per partition was chosen instead of an area-based threshold to guarantee an
Endpoint Location Privacy of Ω(𝑠, 𝑑) ≈ 99.998% (i.e., < 0.002% probability). Rev#1,

Comm.
#4

Moreover, based on
preliminary experiments with SealPIR, a partition database with 3002 ≈ 90000 routes is expected
to have retrieval times between 1.5 − 2.5 seconds (1.75 seconds on average) which is viable when
combined with HPRoP’s reduced query counts. A queue is initialized by adding the entire road
network graph to it. A graph from this queue is then used as input to the Inertial Flow algorithm to
produce two balanced partition subgraphs. The simple iterative technique in [1] was used alongside
Inertial Flow to find and apply optimal cuts during this step. If any of the subgraphs do not yet
satisfy vertex threshold, they are simply added back to the queue. This entire procedure is then
repeated until the queue is empty. Afterwards, every two consecutive cuts was then retroactively
denoted as a separate partition level as shown in Fig. 3, and the partitions under each are then
tagged accordingly. Due to the vertex threshold, the highest level partition may vary greatly from
area to area. Some routes therefore require more queries to complete over other routes, which
increases profiling risk. A partition level threshold ℓ𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 3 was therefore imposed such that
higher level ones were reassigned to ℓ = ℓ𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

6.3 Distributed Architecture
HPRoP leverages the hierarchically partitioned road network by delegating each partition to a
different entity. In the cloud-based scenario, these entities would be server instances; while, in
the edge-based scenario, these would be edge-servers throughout the smart city. The edge-based
architecture presents several advantages. First, it allows PIR queries to be directed only to partitions
which have the information necessary to answer them, effectively distributing the computational
load of using PIR. Second, it allows the system to better scale based on the number of users,

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:13

availability of computing resources, etc. which can vary greatly at different times across different
parts of the city as shown in Fig. 4. Finally, it also makes the pre-computation of shortest paths to
neighboring partitions more efficient since it can be done independently by every partition after an
initial exchange of road condition information with said neighbors. This is useful for reflecting
dynamic road conditions bound to some local area.

6.4 Heuristic Algorithm
HPRoP uses a simple heuristic algorithm to arrive at an approximate shortest path as follows:
(1) Initialization: Find an initial basis route between the lowest level partitions containing source

and destination, then move up one level.
(2) Subroute Connection: Connect the source and destination partitions at the current level to the

basis route using subroutes.
(3) Basis Route Merging: Merge the subroutes into the basis route.
(4) Repeat steps (2) to (3) until the highest partition level is reached

Algorithm 1: Hierarchical Route Planning Heuristic
Input: Source node 𝑠 , Destination node 𝑑 , Current level 𝑙𝑐
Output: The final route 𝑟∗

1 begin
2 𝑙𝑜 ← 𝐹𝑖𝑛𝑑𝐵𝑎𝑠𝑒𝐿𝑒𝑣𝑒𝑙 (𝑠,𝑑) ;
3 𝑟∗ ← 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑃𝑎𝑡ℎ (𝑝𝑙𝑜𝑠 , 𝑝

𝑙𝑜
𝑑
, “from source”) ;

4 Initialize 𝑙𝑐 ← 𝑙𝑜 + 1;
5 while 𝑙𝑐 ≤ 𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
6 Initialize 𝑟 𝑙𝑐𝑠 , 𝑟

𝑙𝑐
𝑑
← [];

7 if 𝑙𝑐 < (𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 1) then
8 𝑟

𝑙𝑐
𝑠 ← 𝐺𝑒𝑡𝑆𝑢𝑏𝑟𝑜𝑢𝑡𝑒 (𝑠, 𝑙𝑐 , 𝑟∗, “from source”) ;

9 𝑟
𝑙𝑐
𝑑
← 𝐺𝑒𝑡𝑆𝑢𝑏𝑟𝑜𝑢𝑡𝑒 (𝑑, 𝑙𝑐 , 𝑟∗, “from destination”) ;

10 else
11 𝑟

𝑙𝑐
𝑠 ← 𝐺𝑒𝑡𝐸𝑛𝑑𝑆𝑢𝑏𝑟𝑜𝑢𝑡𝑒 (𝑠, 𝑙𝑐 , 𝑟∗, “from source”) ;

12 𝑟
𝑙𝑐
𝑑
← 𝐺𝑒𝑡𝐸𝑛𝑑𝑆𝑢𝑏𝑟𝑜𝑢𝑡𝑒 (𝑑, 𝑙𝑐 , 𝑟∗, “from destination”) ;

13 𝑟∗ ← 𝑀𝑒𝑟𝑔𝑒𝑅𝑜𝑢𝑡𝑒𝑠 (𝑟∗, 𝑟 𝑙𝑐𝑠 , 𝑟
𝑙𝑐
𝑑
) ;

14 𝑙𝑐 ← 𝑙𝑐 + 1;
15 return 𝑟∗;

Algo. 1 runs exclusively on the client-side, sending PIR queries to edge servers handling specific
partitions. Route information is obtained solely through these PIR queries, and, thus, no information
is leaked by the queries themselves. However, the number of queries, their timestamps, and the
partitions they were sent to are still assumed to be known to the adversary.

The algorithm starts with an Initialization step (lines 2-4 in Algo. 1) which finds an approximate
shortest path between the lowest level partitions containing 𝑠 and 𝑑 separately as shown in Fig. 5.
This level is denoted as the base level 𝑙𝑜 = argmin𝑙 (𝑝𝑙𝑠 ≠ 𝑝𝑙

𝑑
). For simplicity, this is just denoted

as 𝐹𝑖𝑛𝑑𝐵𝑎𝑠𝑒𝐿𝑒𝑣𝑒𝑙 (𝑠, 𝑑) in Algo. 1. The client then sends a PIR query to partition 𝑝
𝑙𝑜
𝑠 , retrieving a

route to partition 𝑝
𝑙𝑜
𝑑
. This corresponds to 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑃𝑎𝑡ℎ(𝑝𝑢, 𝑝𝑣,𝔇) which retrieves the shortest

path between two partitions taking into account some direction flag𝔇. This flag simply indicates
whether the path is being calculated from the source or the destination, which will be relevant later.

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:14 Tiausas, et al.

Fig. 5. Initialization: Find a shortest path between
the lowest-level partitions containing 𝑠 (blue cir-
cle) and 𝑑 (green) separately.

Fig. 6. Initialization: Use discovered path as basis
route (purple line) for the next level

Fig. 7. Source Subroute Connection: Find and
connect source subroute (blue line) to basis route
(purple line)

Fig. 8. Dest. Subroute Connection: Find and con-
nect dest. subroute (green line) to basis route (pur-
ple line)

Fig. 9. Basis Route Merging: Merge routes and
use as new basis route (purple line)

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:15

The retrieved route is then denoted as the initial basis route 𝑟∗ shown in Fig. 6. At the end of this
step, the current level variable 𝑙𝑐 is also initialized (line 4).

Algorithm 2: Subroute Connection
Input: Basis node 𝑥 , Current level 𝑙𝑐 , Basis route 𝑟∗, Direction𝔇

Output: Subroute at the current level 𝑟 𝑙𝑐𝑥
1 begin
2 Initialize 𝑟 𝑙𝑐𝑥 ← [];
3 𝑝𝑐 ← 𝑝

𝑙𝑐
𝑥 ; // This retrieves either source or destination sub-partition depending on direction𝔇

4 𝑅𝑃𝑙𝑐 ← 𝐹𝑖𝑛𝑑𝑅𝑜𝑢𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝑟∗, 𝑙𝑐)
5 if 𝔇 is “from destination” then
6 𝑅𝑒𝑣𝑒𝑟𝑠𝑒 (𝑅𝑃𝑙𝑐) ;
7 𝑖 ← 0;
8 while 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑟 𝑙𝑐𝑥 , 𝑟∗) and 𝑖 < |𝑅𝑃𝑙𝑐 | do
9 𝑟𝑝𝑎𝑟𝑡 ← 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑃𝑎𝑡ℎ (𝑝𝑐 , 𝑅𝑃𝑙𝑐 [𝑖],𝔇) ;

10 if 𝔇 is “from source” then
11 𝑟

𝑙𝑐
𝑥 ← 𝑟

𝑙𝑐
𝑥 + 𝑟𝑝𝑎𝑟𝑡 ;

12 else if 𝔇 is “from destination” then
13 𝑟

𝑙𝑐
𝑥 ← 𝑟𝑝𝑎𝑟𝑡 + 𝑟 𝑙𝑐𝑥 ;

14 𝑝𝑐 ← 𝑅𝑃𝑙𝑐 [𝑖];
15 𝑖 ← 𝑖 + 1;

16 return 𝑟
𝑙𝑐
𝑥 ;

The main loop starts from the Subroute Connection steps (lines 6-9 in Algo. 1). The algorithm for
Subroute Connection itself is described in Algo. 2. A subroute 𝑟 𝑙𝑐𝑥 is defined as a path that connects
a basis partition 𝑝

𝑙𝑐
𝑥 to the current basis route 𝑟∗. Rev#2,

Comm.
#3

The basis partition given by 𝑝
𝑙𝑐
𝑥 is always the

source or destination partition at level 𝑙𝑐 containing some vertex 𝑥 , and is used to obtain the source
or destination sub-partitions (depending on the direction 𝔇) at line 3 of Algo. 2. For instance,
the source subroute is obtained by finding a sequence of shortest paths from 𝑝

𝑙𝑐
𝑠 that connects

to the basis route as shown in Fig. 7. This step also uses several important functions, such as:
(1) 𝐹𝑖𝑛𝑑𝑅𝑜𝑢𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝑟∗, 𝑙) which gives the sequence of partitions at level 𝑙 along 𝑟∗, and (2)
𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑟 𝑙𝑐𝑥 , 𝑟∗) which is “True” if 𝑟 𝑙𝑐𝑥 and 𝑟∗ have no common vertices. Starting from 𝑝

𝑙𝑐
𝑥 ,

it builds 𝑟 𝑙𝑐𝑥 by retrieving a path to nearby connected partitions (line 9) and then connecting them
to the subroute (lines 10-13). Since 𝑟 𝑙𝑐𝑥 might not yet intersect 𝑟∗ during the initial iteration, this is
repeated with an updated reference partition (lines 14-15) until an intersection is found. Computing
the destination subroute follows the same steps but first has to reverse the aforementioned sequence
(lines 5-7) so that the algorithm can begin from the last route partition. This step is shown in Fig. 8.

The Basis Route Merging step (line 13 in Algo. 1) is performed once the source and destination
subroutes are found. The basic idea is to find the “best” point at which the subroutes intersect with
the basis route and join them there. For the source subroute, the “best” point is as far as possible
from the start of the basis route; while for the destination subroute, this is as far as possible from
the end of the basis route. This is illustrated in Fig. 9. This merged route is then used as the new
basis route. The current level 𝑙𝑐 is then updated (line 15), and the loop is restarted. The loop is
terminated once 𝑙𝑐 reaches 𝑙𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

Rev#1,
Comm.
#5

The time complexity of this algorithm depends on the required number of PIR database lookups.
Finding the initial basis route and calculating the final routes at 𝑝𝑠 and 𝑝𝑑 always require a single
lookup each. Meanwhile, the number of lookups at each level depends on the maximum length

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:16 Tiausas, et al.

of the shortest path in 𝐺𝑃 at that level which is given by𝑚𝑎𝑥𝑝ℓ
𝑢 ,𝑝

ℓ
𝑣 ∈𝑃 ℓ |𝑟 ∗

𝐺ℓ
𝑃

(𝑝ℓ𝑢, 𝑝ℓ𝑣) | where 𝐺 ℓ
𝑃
⊂ 𝐺𝑃

containing only that level’s partitions 𝑃 ℓ and connections 𝐶ℓ . The average time complexity is then:

𝑂

(
[N 2

𝑝 +
∑︁
ℓ∈𝐿
N ℓ

𝑐] ·
[
3 +

∑︁
ℓ∈𝐿

2 · max
𝑝ℓ
𝑢 ,𝑝

ℓ
𝑣 ∈𝑃 ℓ
|𝑟 ∗
𝐺ℓ
𝑃

(𝑝ℓ𝑢, 𝑝ℓ𝑣) |
])

(9)

where N ℓ
𝑐 is the average number of connections from each partition at level ℓ . Since HPRoP

precomputes and stores shortest path data for multiple levels per partition, it is necessary to
account for N ℓ

𝑐 in HPRoP’s space complexity:

𝑂 ([N 2
𝑝 +

∑︁
ℓ∈𝐿
N ℓ

𝑐] · 𝑅∗,𝑚𝑎𝑥

𝐺
) (10)

6.4.1 Route Privacy Mechanism. Route privacy as defined in Sec. 5.2 quantifies the privacy based on
how many other possible routes have a query sequence matching that of a given route, where more
matches mean better privacy. That is, an adequate route privacy mechanism should: (1) maximize
the matching of query sequences between all possible routes, and (2) minimize the information gain
from the order of queries in the sequence itself. HPRoP already achieves the latter via hierarchical
execution which can somewhat obfuscate the actual query sequence, but does not necessarily
strengthen the former. To address this, the algorithm is extended to pad the query sequence with
dummy queries. Rev#1,

Comm.
#7

The basic idea is to query multiple other partitions instead of just 𝑝𝑠 and 𝑝𝑑
to ensure that the actual origin and destination partitions are “hidden’ among them. In theory,
querying more partitions would mean better route privacy at the cost of longer route completion
times. Achieving full route privacy, however, would require querying all level partitions at every
iteration of the algorithm at least once, which would require prohibitively long route completion
times. For example, a service region with a total of 463 partitions would require roughly 810 seconds
(13.5 minutes) on average to complete a single route. However, simply querying a small random
subset of the aforementioned partitions will not be enough to ensure a certain level of route privacy,
since an adversary can simply use the hierarchy of partitions to check for inconsistencies in the
set of queried partitions and easily identify the dummy ones. Instead, we chose to limit HPRoP
to querying all other partitions under the same parent as the highest level partitions containing 𝑠
and 𝑑 . This selection method is straightforward and ensures that none of the queried partitions
can easily be identified as dummy partitions. Additionally, this ensures that route privacy will be
around Φ(𝑄∗) ≈ 1 − 1/ 𝑗𝑘 where 𝑗 and 𝑘 are the total number of partitions under the same parent
partitions as 𝑝𝑠 and 𝑝𝑑 , respectively.

This is implemented through the Subroute End Connection steps (lines 10-12 in Algo. 1), while the
procedure itself is presented in Algo. 3. Instead of stopping when the subroute and basis route first
intersect, this algorithm continues until all other partitions sharing the same parent 𝑝𝑙𝑐−1𝑥 as the
basis partition have been queried. This is done by repeatedly drawing a partition 𝑝𝑠𝑢𝑏 from a queue
of these same-parent sub-partitions 𝑆𝑃𝑙𝑐 (line 10). If 𝑝𝑠𝑢𝑏 is the same as the current partition 𝑝𝑐 ,
then a part of the subroute is retrieved as normal (lines 11-18). If it is a route partition, it is instead
pushed back to the subpartition queue (lines 19-22). If both prior conditions are not satisfied, then
a dummy query is simply sent to 𝑝𝑠𝑢𝑏 (line 24). This ensures that important queries are mixed in
with dummy queries, making it more difficult to determine which ones are relevant.

6.5 Shortcut Connections
A simple strategy for improving algorithm performance is through pre-computing and storing
shortest path data to partitions beyond just the adjacent ones. This reduces the number of queries

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:17

Algorithm 3: Subroute End Connection with Dummies
Input: Source or Destination node 𝑥 , Current level 𝑙𝑐 , Basis route 𝑟∗
Output: Source or Destination subroute at the current level 𝑟 𝑙𝑐𝑥

1 begin
2 Initialize 𝑟 𝑙𝑐𝑥 ← [];
3 𝑝𝑐 ← 𝑝

𝑙𝑐
𝑥 ;

4 𝑅𝑃𝑙𝑐 ← 𝐹𝑖𝑛𝑑𝑅𝑜𝑢𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝑟∗, 𝑙𝑐)
5 if 𝔇 is “from destination” then
6 𝑅𝑒𝑣𝑒𝑟𝑠𝑒 (𝑅𝑃𝑙𝑐) ;

7 𝑆𝑃𝑙𝑐 ← 𝐹𝑖𝑛𝑑𝑆𝑢𝑏𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝑝𝑙𝑐−1𝑥) as𝑄𝑢𝑒𝑢𝑒

8 𝑗 ← 0;
9 while |𝑆𝑃𝑙𝑐 −1𝑥 | > 0 do
10 𝑝𝑠𝑢𝑏 ← 𝑃𝑜𝑝 (𝑆𝑃𝑙𝑐) ;
11 if 𝑝𝑠𝑢𝑏 = 𝑝𝑐 and 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑟 𝑙𝑐

𝑑
, 𝑟∗) then

12 𝑟𝑝𝑎𝑟𝑡 ← 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑃𝑎𝑡ℎ (𝑝𝑠𝑢𝑏 , 𝑅𝑃𝑙𝑐 [𝑗]) ;
13 if 𝔇 is “from source” then
14 𝑟

𝑙𝑐
𝑥 ← 𝑟

𝑙𝑐
𝑥 + 𝑟𝑝𝑎𝑟𝑡 ;

15 else if 𝔇 is “from destination” then
16 𝑟

𝑙𝑐
𝑥 ← 𝑟𝑝𝑎𝑟𝑡 + 𝑟 𝑙𝑐𝑥 ;

17 𝑝𝑐 ← 𝑅𝑃𝑙𝑐 [𝑗];
18 𝑗 ← 𝑗 + 1;

19 else if 𝑝𝑠𝑢𝑏 ∈ 𝑅𝑃𝑙𝑐 and 𝐷𝑜𝑒𝑠𝑁𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑟 𝑙𝑐
𝑑
, 𝑟∗) then

20 if 𝐼𝑛𝑑𝑒𝑥 (𝑝𝑠𝑢𝑏 , 𝑅𝑃𝑙𝑐) > 𝑗 then
21 𝑃𝑢𝑠ℎ (𝑝𝑠𝑢𝑏 , 𝑆𝑃𝑙𝑐)
22 𝑆ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑆𝑃𝑙𝑐)

23 else
24 𝑆𝑒𝑛𝑑𝐷𝑢𝑚𝑚𝑦𝑄𝑢𝑒𝑟𝑦 (𝑝𝑠𝑢𝑏) ;

25 return 𝑟
𝑙𝑐
𝑥 ;

Fig. 10. Demonstration of different shortcut connection strategies for improving the heuristic algorithm’s
performance against the base case (Left), where the dark red shape represents the starting partition, and the
lighter red shapes represent the partitions it connects to. The black outline represents the starting partition’s
parent. (Middle) uses Same Parent Shortcuts, while (Right) uses 1-hop Neighbor Shortcuts.

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:18 Tiausas, et al.

to complete a route while also improving optimal route approximation for paths to further away
partitions. These paths to non-adjacent partitions were therefore denoted as Shortcut Connections,
represented as additional edges in the partition graph.

These shortcut connections, however, also increase the pre-computation time for each partition
relative to how many of them need to be made. In addition, the extent of the road network graph
needed for pre-computation also increases based on the distance to the partitions being connected. It
is therefore more useful to limit the number of partitions to connect to and how far those partitions
can be. HPRoP considers two methods for determining shortcut connections: (1) the Same Parent
Shortcuts method, and (2) the 𝑁 -hop Neighbor Shortcuts method. Same Parent Shortcuts simply
connects each partition to all other partitions under the same parent partition as shown in Fig.
10 (Middle). 𝑁 -hop Neighbor Shortcuts pre-computes shortcuts to other 𝑁 -hop away partitions as
shown in Fig. 10 (Right). Both would theoretically improve the optimal route approximation when
calculating subroutes between non-adjacent partitions and greatly reduce the possibility of broken
routes. Rev#2,

Comm.
#4

HPRoP currently has no mechanisms to handle these other than deferring to the user’s
device to perform local route calculation to bridge the final gap. The usefulness of these methods
are shown through the results in Sec. 7.3.1.

7 EVALUATION
In this section, the details of the evaluation framework for HPRoP are first presented prior to
showing the actual evaluation results and their subsequent analysis.

7.1 Environment
HPRoP was implemented in Python on a Jupyter notebook for ease of testing and visualization,
with the notebook itself encapsulated in a Docker container for portability. The execution envi-
ronment was a dedicated Linux server running Ubuntu 20.04.1 SMP equipped with a AMD Ryzen
Threadripper 3970X 32-Core processor and 256 GB RAM in total.

The service region was a rectangular geographical area of roughly 546 𝑘𝑚2 (i.e. 26 km in width,
21 km in height) encompassing the entire road network of Osaka City, Japan and a portion of
the immediately outlying areas. Its road network graph consists of |𝑉 | = 99, 734 vertices and
|𝐸 | = 269, 614 edges. The region is hierarchically partitioned using the Inertial Flow algorithm as
shown in Fig. 3 based on the parameters in Sec. 6.2.

7.2 Methodology
Evaluation was done through several metrics under the following categories: (1) Utility, (2) Privacy,
and (3) Performance. The Utility category pertains to the usefulness of the service, with the Optimal
Route Approximation metric falling under this category. Since the base algorithm in Sec. 6.4 cannot
guarantee complete routes, Route Errors are also included here as a metric. Route errors are then
defined as the occurrence count of broken routes during testing. Rev#2,

Comm.
#4

In turn, a broken route is defined as
a route where a subroute connection cannot be established to the highest level partition containing
either 𝑠 or 𝑑 , and thereby results in a route that cannot be completed by HPRoP’s algorithm. The
Privacy category is comprised of the Endpoint Location Privacy, and Route Privacy metrics described
in Sec. 5. The Performance category pertains to how well the service can deal with higher client
demand, dynamic road conditions, etc. without service quality degradation. The Memory Usage,
Route Completion Time, and Pre-processing Time metrics fall under this category.

Evaluation was done by comparing HPRoP to the two baseline PIR-based approaches — EPR-D
and APR-D — previously presented in Sec. 4. For the Utility category, Privacy category, and Route
Completion Time metrics, all three approaches were evaluated by calculating routes for randomly-
generated 𝑠, 𝑑 pairs until 4,000 successful routes have been completed. This termination threshold

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:19

Fig. 11. Distribution of Optimal Route Approximation
results for different Shortcut Connection methods

Fig. 12. Comparison of total Route Errors for differ-
ent Shortcut Connection methods

Fig. 13. Distribution of Pre-Computation Times for
different Shortcut Connection methods

Fig. 14. Distribution of Optimal Route Approxima-
tion results using APR-D, EPR-D, and HPRoP

was chosen to be sufficiently high enough to capture any route errors that might occur for HPRoP.
Note that both APR-D and EPR-D are guaranteed to produce complete routes so this metric is no
longer evaluated for them. Memory Usage was evaluated by calculating the projected size of the
per-partition databases for the highest-level partitions. Finally, Pre-processing Time was evaluated
by measuring the time to build each partition’s database.

7.3 Results
7.3.1 Effect of Shortcut Connections. The base performance of HPRoP under different shortcut
connection methods in Sec. 6.5 is first characterized with the goal of finding the method that
maximizes optimal route approximation while minimizing both route completion time and route
errors. Fig. 11 shows the resulting distribution of optimal route approximation values for 4,000
successful test routes under different methods. Rev#2,

Comm.
#4

Surprisingly, Same Parent Shortcuts have an almost
negligible effect on optimal route approximation, with N-hop Neighbor Shortcuts being a more
effective way to increase the said metric. However, Same Parent Shortcuts were highly effective in
preventing the occurrence of broken routes, reducing the error count to 21. Further investigation
of these remaining errors showed that they were caused by choosing the same vertex as 𝑠 and 𝑑
which results in failure as no routing can be done by the algorithm. In short, for all 4,000 test routes,
Same Parent Shortcuts seem to eliminate all occurrences of true broken routes — i.e., where the
highest level partitions containing 𝑠 or 𝑑 could not be reached. This also validates the hypothesis

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:20 Tiausas, et al.

that broken routes are caused by a lack of reachability at the final partition level that can contain
more than 4 child partitions due to the deliberate choice to set ℓ𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 3 mentioned in Sec. 6.2.

Meanwhile, using 1-hop Neighbor Shortcuts drastically improves the results of the 75-th percentile
from 𝛼 (𝑟∗) ≈ 1.54 to 𝛼 (𝑟∗) ≈ 1.28, but anything beyond 2-hop Neighbor Shortcuts is seen to have
gradually diminishing returns. Finally, the overhead caused by the additional shortcut connections
is evaluated based on the pre-processing time metric in Sec. 7.2. Fig. 13 shows that both methods
increase the per partition pre-processing time to about ∼ 1.5 seconds once 1-Hop Neighbor Shortcuts
are introduced but stabilizes around this value even as the number of hops are further increased. In
contrast, the effect of Same Parent Shortcuts on pre-processing time is minimal, amounting to an
increase of ∼ 0.1 seconds on average. Thus, both methods are equally viable in terms of this metric.

Table 5. Summary of Results for different Shortcut Connection Configurations

Normal With Same Parent Shortcuts
0-hop 1-hop 2-hop 3-hop 0-hop 1-hop 2-hop 3-hop

Optimal Route Approximation
Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
25% 1.160 1.062 1.018 1.003 1.133 1.060 1.017 1.003
50% 1.314 1.141 1.080 1.052 1.270 1.138 1.079 1.052
75% 1.590 1.287 1.202 1.156 1.510 1.288 1.202 1.156
Max 16.256 5.210 5.371 5.371 15.424 5.210 5.371 5.371

Per-Partition Routes Calculation Time (in seconds)
Min 0.04 0.11 0.19 0.19 0.08 0.11 0.19 0.19
25% 0.16 0.58 1.88 3.33 0.24 0.75 1.92 3.48
50% 0.20 1.43 2.49 4.41 0.47 1.51 2.90 4.75
75% 0.28 1.60 3.36 5.70 1.30 1.74 3.47 6.03
Max 1.27 3.17 5.78 10.55 3.15 3.37 6.75 11.44

Route Errors (per 4,000 successful routes)
Total 231.0 52.0 30.0 24.0 21.0 21.0 21.0 21.0

Table 5 summarizes the results discussed so far. Based on these, it was decided to use 2-hop
Neighbor Shortcuts with Same Parent Shortcuts as the representative configuration for HPRoP as it
offers good optimal route approximation and short pre-computation times with minimal errors.

7.3.2 Optimal Route Approximation. The performance of HPRoP, APR-D, and EPR-D in terms of
optimal route approximation is shown in Fig. 14. As expected, EPR-D achieves a constant optimal
route approximation value of 𝛼 (𝑟∗) = 1.0 since it always produces exact shortest paths. APR-D
produced routes with 𝛼 (𝑟∗) ≈ 1.44 for the 75-th percentile despite operating only over the partition
graph. HPRoP produced even better routes with 𝛼 (𝑟∗) ≈ 1.20 for the 75-th percentile, whereas
APR-D was only able to achieve this for the 25-th percentile of all results. Additionally, HPRoP
achieves much better worst-case routes than APR-D.

7.3.3 Endpoint Location Privacy. Endpoint Location Privacy Ω(𝑠, 𝑑) describes how well the exact
𝑠, 𝑑 is kept private as described in Sec. 5.1. Since Inertial Flow partitioning was used, evaluation
results showed that all three approaches were able to achieve an average endpoint location privacy
of Ω(𝑠, 𝑑) = 0.999982. Thus, each route is indistinguishable from approximately 99% of all other
routes between the same partitions, making all three approaches equally viable.

7.3.4 Route Privacy. Route Privacy Φ(𝑄∗) describes how well a route is kept private based on how
many other routes share a query sequence similar to its own as described in Sec. 5.2. To evaluate

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:21

Fig. 15. Distribution of Route Privacy Φ(𝑄∗) results for APR-D, EPR-D, and HPRoP

Fig. 16. Visualization of Queried Partitions for APR-Dijkstra (Center), EPR-Dijkstra (Right) and HPRoP (Left)
for the same route. Numbers indicate partitions that were queried multiple times.

this, a lookup table for the routes between each 𝑠, 𝑑 ∈ 𝑉𝑥 such that 𝑠 ≠ 𝑑 was done separately for
EPR-D, APR-D, and HPRoP to account for their unique querying behaviors as shown in Fig. 16.

Fig. 15 shows a comparison of the route privacy distributions across all three approaches. EPR-D
showed the worst route privacy, achieving Φ(𝑄∗) > 0 only for the 25-th percentile of all results.
APR-D performed only slightly better with Φ(𝑄∗) > 0 for about 50% of all results, while achieving
Φ(𝑄∗) ≥ 0.5 for only 25% of them. This is expected since both have no inherent privacy mechanisms,
yet this does illustrate that APR-D is still better than EPR-D in terms of route privacy. HPRoP,
in contrast, has route privacy of Φ(𝑄∗) ≥ 0.80 for the 50-th percentile of all results, while also
achieving Φ(𝑄∗) ≥ 0.50 for the 75-th percentile, surpassing both EPR-D and APR-D. However,
further analysis of the routes showed that the worst-case route privacy (i.e. Φ(𝑄∗) = 0.0) still
happens for ∼ 12.2% of all test routes. This suggests that HPRoP does not fully guarantee route
privacy for all cases although this can be increased further by adding more dummy queries.
Additionally, the relationship between optimal route approximation 𝛼 (𝑟∗) and route privacy

metric Φ(𝑄∗) was also analyzed for HPRoP. This was done to determine whether some trade-
off exists between the two metrics. The results in Fig. 17 show that majority of the routes have
𝛼 (𝑟𝑠,𝑑) < 1.2 across widely-varying levels of route privacy. This suggests that the two metrics have
little effect on one another, and performing a simple Pearson correlation confirms that there is only
a weak positive correlation (𝜌 ≈ 0.104) between the two.

7.3.5 Route Completion Time. Obtaining a route using any of the three algorithms (APR-D, EPR-D,
and HPRoP) requires the client to make multiple PIR queries to the RPS. Thus, route completion
time is highly dependent on how many such queries need to be made, and is equivalent to the

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:22 Tiausas, et al.

Fig. 17. Distribution of Optimal Route Approximation and Route Privacy results using HPRoP for 4,000 test
routes. Note that both axes were reoriented to show the best results on the lower left.

Fig. 18. Distribution of the required number of
queries for route completion

Fig. 19. Distribution of total PIR retrieval times in
seconds

total processing overhead for an RPS. Rev#2,
Comm.
#2

In this work, it is calculated based on projections derived
from the preliminary experiments on SealPIR database retrieval times mentioned at the end of Sec.
5.1. The empirically derived value of roughly 1

45000 ≈ 2.22 × 10−5 seconds per record is then used
to calculate the route completion times which are shown in Fig. 19. Note that we opted to use
projections here instead of simulating the actual results as the latter would take a prohibitively long
time to conclude in the case of EPR-D (and, to a lesser extent, APR-D). For instance, APR-D requires
∼ 214 queries on average which is expected to take 5.55 minutes (333.26 seconds) per route. EPR-D
is even worse, requiring ∼ 4, 958 queries on average which would take at least 2.15 hours (7,731.47
seconds) just to complete a single route. Both are clearly impractical from the perspective of any
modern RPS. This is in contrast to HPRoP which requires significantly less queries on average (at
∼ 25 queries) and takes only 23.55 seconds per route. This is because HPRoP’s algorithm bypasses
the need to explore large sections of the partition and road network graph as it already starts with
a very coarse route between the origin and destination partitions at the lowest level to guide its
route search. APR-D and EPR-D, in contrast, explore outwards from the origin, checking every
unexplored partition or vertex on the way as per Dijkstra’s algorithm.

7.3.6 Memory Usage. Memory usage depends on the size of the route databases maintained by
each partition, which is very important in a distributed environment with resource-constrained

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:23

Fig. 20. Distribution of Per-Partition Memory Usage
(in MB) for the different approaches

Fig. 21. Distribution of Per-Partition Pre-processing
Time results (in seconds) for the different approaches

devices. Fig. 20 shows the distribution of per partition memory usage across the three approaches.
APR-D and HPRoP calculate and store a similar number of routes, thus requiring an allocation of
around 20-160 MB per partition. EPR-D has a significantly smaller memory footprint at around
0.5-4 MB per partition because it essentially stores a next-hop matrix instead. In practice, however,
the memory usage of all three approaches are well within the capabilities of standard edge servers.

7.3.7 Pre-processing Time. The pre-processing time metric is total time needed to build each
partition’s database during the pre-processing phase, which determines how often it can be updated
during operation. As shown in Fig. 21, EPR-D require less than ≤ 0.5 seconds per partition on
average since it only needs to calculate the routes inside each partition, while APR-D requires ≤ 1.5
seconds since it also needs to calculate routes to immediately neighboring partitions in addition.
Meanwhile, HPRoP needs to calculate routes inside each partition, routes to neighboring partitions,
and routes to other partitions under the same parent. This results in slightly longer pre-processing
times at 1-5 seconds per partition. Regardless, the pre-processing time for all three approaches are
clearly fast enough to accommodate frequent updates even in under dynamic road conditions.

8 CONCLUSION
In this work, the Hierarchical Privacy-Preserving Route Planning (HPRoP) approach was proposed
which combines Inertial Flow partitioning, Private Information Retrieval (PIR), and Edge Computing
techniques along with a novel hierarchical route planning heuristic algorithm to produce routes
that can adequately approximate the actual shortest paths while also providing endpoint location
privacy and route privacy. HPRoP reliably produced routes with an optimal route approximation
of 𝛼 (𝑟∗) ≤ 1.2, while also achieving near-optimal endpoint location privacy at Ω(𝑠, 𝑑) ≈ 1.0 and
good route privacy at Φ(𝑄∗) ≥ 0.5. In terms of performance, HPRoP has a route completion time of
around 23.55 seconds on average which is reasonable for a privacy-preserving RPS. It’s viability for
deployment in a distributed/edge-based smart city context were also shown through its relatively
small memory footprint (20-160 MB for each partition’s database), and short pre-processing times
(2-5 seconds per partition) which are well within the capabilities of conventional edge servers.

Rev#2,
Comm.
#1

In addition, although most modern route planning algorithms can also use PIR, we didn’t use
them as the basis of our approach due to several reasons. For instance, bounded-hop techniques
such as two-hop labelling [9] are the fastest known class of routing algorithms but they require
computing and storing prohibitively large indices for city-sized road networks which becomes even
worse in combination with PIR. Separator-based techniques such as Customizable Route Planning
(CRP) [11] and goal-directed techniques such as ALT (based on A*) [18] and Arc Flags [20] have very
long precomputation times, making them infeasible to use with dynamic road networks having

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

111:24 Tiausas, et al.

edge weights that need to be updated frequently. The hierarchical technique called Contraction
Hierarchies (CH) [16] has none of the aforementioned problems but still presents a potential route
privacy risk since it must explicitly query the partitions along the actual shortest path multiple
times to obtain the final path. Nevertheless, it is a good routing algorithm to consider for future
PIR-based RPS work.

Rev#3,
Comm.
#1b

Aside from the experiments presented in Sec. 7, we also conducted tests on how well HPRoP
generalizes to other road networks, but the results are omitted for conciseness. In particular, it was
tested on three other large cities — New York, Shanghai, and Tokyo — by obtaining 4,000 test routes
and examining the optimal route approximation distribution. For 75% of all routes, the optimal
route approximation was at 𝛼 (𝑟∗) ≤ 1.20 for New York, 𝛼 (𝑟∗) ≤ 1.23 for Shanghai, and 𝛼 (𝑟∗) ≤ 1.24
for Tokyo. This indicates that HPRoP generalizes somewhat, but further research is still required.

In the future, we also plan to refine HPRoP’s route planning algorithm to further improve optimal
route approximation and reduce route completion times by exploring more efficient data structures
for route information, and improve route privacy by considering out-of-order query execution.

ACKNOWLEDGMENTS
This work was supported by R&D for Trustworthy Networking for Smart and Connected Communi-
ties, Commissioned Research of National Institute of Information and Communications Technology
(NICT), JSPS KAKENHI Grant Numbers JP21H03431 and JP19H05665, and National Science Foun-
dation through award numbers 1647015, 1818901, CNS-1818942, SaTC-2030624, SaTC-2030611.

REFERENCES
[1] Gaurav Aggarwal, Sreenivas Gollapudi, and Ali Kemal Sinop. 2021. Sketch-based Algorithms for Approximate Shortest

Paths in Road Networks. In Proceedings of the Web Conference 2021. 3918–3929.
[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with compressed queries and amortized query

processing. In 2018 IEEE symposium on security and privacy (SP). IEEE, 962–979.
[3] Ugur Ilker Atmaca, Carsten Maple, Gregory Epiphaniou, and Mehrdad Dianati. 2021. A privacy-preserving route

planning scheme for the Internet of Vehicles. Ad Hoc Networks 123 (2021), 102680.
[4] Barnana Baruah and Subhasish Dhal. 2022. A security and privacy preserved intelligent vehicle navigation system.

IEEE Transactions on Dependable and Secure Computing (2022).
[5] Amos Beimel, Yuval Ishai, and Tal Malkin. 2000. Reducing the servers computation in private information retrieval:

PIR with preprocessing. In Advances in Cryptology—CRYPTO 2000: 20th Annual International Cryptology Conference
Santa Barbara, California, USA, August 20–24, 2000 Proceedings 20. Springer, 55–73.

[6] Melissa Chase and Seny Kamara. 2010. Structured encryption and controlled disclosure. In Advances in Cryptology-
ASIACRYPT 2010: 16th International Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16. Springer, 577–594.

[7] Benny Chor and Niv Gilboa. 1997. Computationally private information retrieval. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing. 304–313.

[8] Yu-Li Chou, H Edwin Romeijn, and Robert L Smith. 1998. Approximating shortest paths in large-scale networks with
an application to intelligent transportation systems. INFORMS journal on Computing 10, 2 (1998), 163–179.

[9] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and distance queries via 2-hop labels.
SIAM J. Comput. 32, 5 (2003), 1338–1355.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009. Introduction to algorithms. MIT
press.

[11] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. 2017. Customizable route planning in road
networks. Transportation Science 51, 2 (2017), 566–591.

[12] Daniel Delling, Andrew V Goldberg, Ilya Razenshteyn, and Renato F Werneck. 2011. Graph partitioning with natural
cuts. In 2011 IEEE International Parallel & Distributed Processing Symposium. IEEE, 1135–1146.

[13] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive (2012).

[14] Farhad Farokhi, Iman Shames, and Karl H Johansson. 2020. Private routing and ride-sharing using homomorphic
encryption. IET Cyber-Physical Systems: Theory & Applications 5, 4 (2020), 311–320.

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities 111:25

[15] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. 2010. Show me how you move and I will
tell you who you are. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS
and LBS. 34–41.

[16] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. 2012. Exact routing in large road networks
using contraction hierarchies. Transportation Science 46, 3 (2012), 388–404.

[17] Esha Ghosh, Seny Kamara, and Roberto Tamassia. 2021. Efficient graph encryption scheme for shortest path queries.
In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security. 516–525.

[18] Andrew V Goldberg and Chris Harrelson. 2005. Computing the shortest path: A search meets graph theory.. In SODA,
Vol. 5. Citeseer, 156–165.

[19] Alexandra Henzinger, Matthew M Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikuntanathan. 2022.
One server for the price of two: Simple and fast single-server private information retrieval. Cryptology ePrint Archive
(2022).

[20] Moritz Hilger, Ekkehard Köhler, Rolf H Möhring, and Heiko Schilling. 2009. Fast point-to-point shortest path
computations with arc-flags. The Shortest Path Problem: Ninth DIMACS Implementation Challenge 74 (2009), 41–72.

[21] Takahiro Ikeda, Min-Yao Hsu, Hiroshi Imai, Shigeki Nishimura, Hiroshi Shimoura, Takeo Hashimoto, Kenji Tenmoku,
and Kunihiko Mitoh. 1994. A fast algorithm for finding better routes by AI search techniques. In Proceedings of
VNIS’94-1994 Vehicle Navigation and Information Systems Conference. IEEE, 291–296.

[22] George Rosario Jagadeesh, Thambipillai Srikanthan, and KH Quek. 2002. Heuristic techniques for accelerating
hierarchical routing on road networks. IEEE Transactions on intelligent transportation systems 3, 4 (2002), 301–309.

[23] Sungwon Jung and Sakti Pramanik. 2002. An efficient path computation model for hierarchically structured topo-
graphical road maps. IEEE Transactions on Knowledge and Data Engineering 14, 5 (2002), 1029–1046.

[24] Meng Li, Yifei Chen, Shuli Zheng, Donghui Hu, Chhagan Lal, and Mauro Conti. 2020. Privacy-preserving navigation
supporting similar queries in vehicular networks. IEEE Transactions on Dependable and Secure Computing 19, 2 (2020),
1133–1148.

[25] Yangfan Liang, Yining Liu, and Brij B Gupta. 2022. PPRP: preserving-privacy route planning scheme in VANETs. ACM
Transactions on Internet Technology 22, 4 (2022), 1–18.

[26] Chang Liu, Liehuang Zhu, Xiangjian He, and Jinjun Chen. 2018. Enabling privacy-preserving shortest distance queries
on encrypted graph data. IEEE Transactions on Dependable and Secure Computing 18, 1 (2018), 192–204.

[27] Samir Jordan Menon and David J Wu. 2022. Spiral: Fast, high-rate single-server PIR via FHE composition. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 930–947.

[28] KyriakosMouratidis. 2013. Strong location privacy: A case study on shortest path queries. In 2013 IEEE 29th International
Conference on Data Engineering Workshops (ICDEW). IEEE, 136–143.

[29] Muhammad Haris Mughees, Hao Chen, and Ling Ren. 2021. OnionPIR: Response efficient single-server PIR. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2292–2306.

[30] Vincent Primault, Antoine Boutet, Sonia Ben Mokhtar, and Lionel Brunie. 2018. The long road to computational
location privacy: A survey. IEEE Communications Surveys & Tutorials 21, 3 (2018), 2772–2793.

[31] Michael O Rabin. 2005. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive (2005).
[32] Peter Sanders and Christian Schulz. 2012. Distributed evolutionary graph partitioning. In 2012 Proceedings of the

fourteenth workshop on algorithm engineering and experiments (ALENEX). SIAM, 16–29.
[33] Aaron Schild and Christian Sommer. 2015. On balanced separators in road networks. In International Symposium on

Experimental Algorithms. Springer, 286–297.
[34] Christian Sommer. 2016. All-pairs approximate shortest paths and distance oracle preprocessing. In 43rd Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

[35] David J Wu, Joe Zimmerman, Jérémy Planul, and John C Mitchell. 2016. Privacy-preserving shortest path computation.
arXiv preprint arXiv:1601.02281 (2016).

[36] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th annual symposium on foundations of
computer science (Sfcs 1986). IEEE, 162–167.

[37] Can Zhang, Liehuang Zhu, Chang Xu, Kashif Sharif, Chuan Zhang, and Ximeng Liu. 2020. PGAS: Privacy-preserving
graph encryption for accurate constrained shortest distance queries. Information Sciences 506 (2020), 325–345.

[38] Lei Zhang, Jing Li, Songtao Yang, and Bin Wang. 2017. Privacy preserving in cloud environment for obstructed shortest
path query. Wireless Personal Communications 96, 2 (2017), 2305–2322.

[39] Jun Zhou, Shiying Chen, Kim-Kwang Raymond Choo, Zhenfu Cao, and Xiaolei Dong. 2021. EPNS: Efficient privacy
preserving intelligent traffic navigation from multiparty delegated computation in cloud-assisted VANETs. IEEE
Transactions on Mobile Computing (2021).

Received XX January XXXX; revised XX XXXX XXXX; accepted XX XXXX XXXX

ACM Trans. Cyber-Phys. Syst., Vol. 6, No. 4, Article 111. Publication date: October 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Models and Assumptions
	3.1 Road Network Partitioning Model
	3.2 Approximate Shortest Path Model
	3.3 Assumptions

	4 Route Planning with PIR
	4.1 Exact Partial Region Dijkstra's Algorithm (EPR-D)
	4.2 Approximate Partial Region Dijkstra's Algorithm (APR-D)

	5 Proposed Privacy Metrics
	5.1 Endpoint Location Privacy Model
	5.2 Route Privacy Model

	6 Hierarchical Privacy-Preserving Route Planning
	6.1 Private Information Retrieval (PIR)
	6.2 Inertial Flow Partitioning
	6.3 Distributed Architecture
	6.4 Heuristic Algorithm
	6.5 Shortcut Connections

	7 Evaluation
	7.1 Environment
	7.2 Methodology
	7.3 Results

	8 Conclusion
	Acknowledgments
	References

