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Modern smart cities need smart transportation solutions to quickly detect various traic emergencies and incidents in the

city to avoid cascading traic disruptions. To materialize this, roadside units and ambient transportation sensors are being

deployed to collect speed data that enables the monitoring of traic conditions on each road segment. In this paper, we irst

propose a scalable data-driven anomaly-based traic incident detection framework for a city-scale smart transportation system.

Speciically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of

road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly

correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly

stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust

manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. Second, using

cluster-level detection, we propose a folded Gaussian classiier to pinpoint the particular segment in a cluster where the

incident happened in an automated manner. We perform extensive experimental validation using mobility data collected from

four cities in Tennessee, compare with the state-of-the-art ML methods, to prove that our method can detect incidents within

each cluster in real-time and outperforms known ML methods.

CCS Concepts: · Computing methodologies→ Learning latent representations; · Applied computing→ Transporta-

tion.
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1 INTRODUCTION

Rapid urbanization has proliferated the number of vehicles in cities leading to increasing congestion and a higher
number of traic accidents. For any traic accident, delayed detection and response from irst responders or
emergency management agencies can worsen into heavy city-wide congestion and even in the loss of life. This
delay is one of the most important challenges faced by communities across the globe [17].
To monitor the transportation infrastructure, three approaches have emerged to increase the visibility of

real-time road conditions: (i) vehicular crowdsourcing, (ii) video-based anomaly detection; and (iii) sensor-based
data collection. Vehicular crowdsourcing involves cities leveraging commercial crowdsourcing platforms (such as
Waze), to gather content reported by citizen users on these platforms to get real-time observations on traic
events. However, traic incident detection is often unreliable and strong veriication of the human-reported data
cannot be guaranteed in real-time. Video anomaly detection[5] leverages cameras and sensors deployed by the
city to detect traic emergencies. This approach requires expensive edge devices, longer model training times,
and continuous maintenance. Many environmental and connectivity constraints also negatively inluence video
quality and real-time availability. The computational resources needed to monitor and identify traic incidents
are high and not community scalable.

To avoid the above problems in these two paradigms, smart cities are deploying traic sensors and Road Side
Units (RSU) along roads and highways that collect traic data from speed sensors or smart cars [11]. The RSU
infrastructure is a typical IoT network that is decentralized, low-powered, and resource-constrained in nature.
However, given the ubiquity and number of devices, the RSU infrastructure can be utilized to work together in a
distributed capacity, to design intelligent lightweight anomaly-based traic incident detection in real-time that
would otherwise be too computationally intensive, geographically impossible, or costly.

Challenges: We view traic incidents as anomalies that occur between otherwise normal traic patterns.

However, characterizing a normal traic pattern that works at a large city scale is not straightforward due to
(i) day-to-day variability of traic, (ii) local neighborhood dependencies, (iii) a large number of speed sensors
and road segments. Hence, the nature of the problem falls under smart living CPS, which, unlike industrial CPS,
is not just bound by tightly deined laws of physics. Therefore, the anomaly detection problem is much more
challenging and requires novel advances compared to existing theories of anomaly detection in CPS.

Furthermore, previous works on smart metering [1] have attempted to solve the anomaly detection challenge
in smart living CPS. However, such eforts used data collected from small experimental testbeds. Thus, the scale
of the problem was smaller, and training data was free from noise. In contrast, our transportation CPS setting
includes data collected from the wild, across a whole city. This needs to be accounted for in the design. Speciically,
geospatial factors need to be blended with causal factors of the underlying structure of the data that characterizes
benign situations.

While many prior works exist in this area, the efort in this paper takes the challenge for the whole city with a
dataset analyzed over one year to account for all seasonal and human behavioral efects. The validation and the
performance metrics reported are very robust compared to existing works in [10, 20, 21].

Paper Contributions: We propose an unsupervised time series-based anomaly detection framework for large-

scale smart transportation networks that detects traic incidents in real time while maintaining a low false alarm
rate. The framework automatically pinpoints the area of the incident.

Speciically, we irst show theoretical parallelism between the transportation problem and an existing anomaly
detection metric (Harmonic to Arithmetic Mean ratios) previously developed for anomaly detection in smart
energy systems. Second, we propose a region-growing approximation algorithm that allows the strategic partition
of smart transportation CPS into clusters where the data is highly positively correlated. The strategic partitioning
guarantees 1) high invariance of the anomaly detection metric and 2) decentralized cluster-wise implementation
of our detection framework which enables the framework to pinpoint the area of the incident. Third, we propose
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a data cleaning and augmentation technique to enable learning the underlying structure of benign conditions
from the data collected from the wild to reduce false alarms. Fourth, we give a technique to learn the bounds of
the anomaly detection metric in each of the strategic partitions under normal traic conditions to establish the
anomaly detection criterion. Finally, we validate our approach through extensive large-scale experiments on real
mobility datasets from four cities in Tennessee. Results show that our model is able to detect traic incidents in a
cluster, in real-time. We extend our work in [12] by identifying the segment within the cluster, where the incident
originated. Pinpointing the incident at this level lets responsible agencies make decisions faster. The performance
is measured by comparing our framework’s decisions with a separate ground truth dataset containing actual
incidents recorded by the Nashville Fire and Safety Department.
The rest of the paper is organized as follows: Section 2 discusses the related work. Section 3 introduces the

transportation system model. Section 4 discusses the proposed framework. Section 5 extends the framework for
segment-level detection. Experimental results are discussed in Section 6 followed by conclusions.

2 PREVIOUS WORK

Existing research on automatic incident detection for cyber-physical transportation systems broadly falls into
two classes. They can be classiied into model-based and data-driven approaches. Model-based approaches
[8, 14] include probabilistic models [24], fuzzy C-means clustering [23], and state-based methods which used
Kalman Filtering [13] to describe the state of monitored traic so that usual traic behaviors can be learned and
unusual incidents can be detected. However, these methods require realistic assumptions for the target area and
assume that their forecasting models are representative of true uncertainty in the data. Thus, requiring extensive
time-series validation.
Data-driven approaches, on the other hand, include classiication methods which typically include nearest

neighbors [18], neural networks, and support vector machines. These methods require labeled data to train and
introduce new challenges regarding user data privacy. Techniques such as convolutional-LSTMmodels and neural
networks [25], consume a lot of time comparing real-time data with historical data and have high computational
costs limiting their efectiveness in decentralized deployments.

3 SYSTEM MODEL DESCRIPTION

The smart transportation CPS monitors the physical world of road conditions via TMC sensors that are deployed
in each road segment. In our setting, there is one TMC sensor per road segment, so the number of TMC sensors
equals the number of road segments. The data collected from TMC is used for various operational decisions that
can control the appropriate volume of traic to reduce the disturbance in mobility and travel times.

The TMC sensors are small computational units with minimal memory. Hence, each captured information is
sent to a Road Side unit [22] (RSU). Each RSU receives data from multiple TMCs and has a larger computational
power and memory. The RSUs usually have a wired back-haul link to an edge or cloud server, where data from
all TMCs of an area of interest is accumulated. Depending on implementation variations, the RSU itself could
also serve as a decentralized edge server for edge analytics. However, the system-level implementation is out of
the scope of our paper. We provide a framework that can run on the edge or fog, based on the computational and
networking capabilities available to the smart city.

For this paper, a traic incident is an anomalous event such as vehicular accidents, crime, or man-made disaster

afecting traic low, ire, non-recurring high duration congestion to which the police, emergency, and ire safety
required a response. The ground truth information on incidents was collected from Nashville Fire and Safety
Department. This ground truth information contains the location, timestamp, and date of each incident responded
by the City of Nashville in 2019.

ACM Trans. Cyber-Phys. Syst.



4 • Md. J. Islam and J.P. Talusan, et al.

Our goal in this paper is to develop a framework and learn the parameters that automatically detect congestion
in real-time in the test/deployment stage. The ground truth information during the testing set is used to measure
the incident detection accuracy of our anomaly detection framework. The ground truth information during the
training phase is used to cross-reference for data augmentation and cleaning that enables eicient learning of the
underlying structure of data corresponding to benign conditions in the transportation CPS. Each TMC at the end
of a time window � sends the following information to the RSU: timestamp, road segment ID, mean speed over
the �-th time window). The TMC sensor is located at the center of each road segment. Therefore, the distance
between two road segments is the distance between the midpoint of any two road segments. The TMCs capture
ambient speeds as vehicles pass by over a particular road.

4 PROPOSED FRAMEWORK

Fig. 1. Information architecture of the framework and the control flow of interaction between components. Aside from the

region growing clustering, all components run in parallel. The cluster detection framework is generated in the detection

training phase and is used on real-world data upon deployment.

First, we provide a high-level overview of the framework, its architecture can be seen in Fig. 1, followed by a
summary of the notations used in this paper in Table 1. There are ive logical modules in which the contribution
is divided:
Theoretical Intuition: We discuss the choice of harmonic mean to arithmetic mean ratio metric [1] as an

anomaly detection metric, its relevance to the problem, and its advantages and modiications necessary to it the
transportation application.

Region Growing Approximation: For the metric to achieve invariance, we need spatial and temporal partitions
of the high dimensional data at which the positive correlation within each partition is maximized, which is
achieved through a region growing approximation algorithm.

Invariant Design: Involves metric derivation after the region growing approximation.
Pre-processing and Augmentation: Due to the characteristics of real-world traic data, the invariant contains

the efects of accidents. This poses a practical problem for unsupervised learning problems such as anomaly
detection. Therefore, our framework invokes a data cleaning and sanitization technique to augment synthetic
benign samples of the invariant.

Learning normal operating range of invariant: Once the cleaning has been done, we obtain a low dimen-
sional invariant that is a suitable candidate for pattern recognition of this invariant that remains stable when
there are no incidents.
Anomaly Detection Criterion: We identify the best hyperparameter inputs to the training algorithm that

gives the best output.
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Table 1. List of symbols.

Symbol Description

� Total clusters in the target area

�� ��ℎ cluster within the set of clusters�

� Set of segments in the target area

� Number of segments

��� Set of segments located in cluster ��

���� ��ℎ segment in the ��ℎ cluster

� Speed correlation

� (���) Correlation threshold

���� Cut of correlation value

� Time slot, based on temporal granularity

� Number of time slots

�
����
(� ) Mean speed � at segment � within ��� at time �

���� (� ) Harmonic Mean of cluster �� at time index �

���� (� ) Arithmetic Mean of cluster �� at time index �

��� (� ) Q-ratio metric of cluster �� at time index �

Γ
ℎ��ℎ
��

(� ), Γ�����
(� ) Upper and lower Safe margins for the ratio of cluster �� at time �

������
(ℎ), ������

(ℎ) Upper and lower standard limits of cluster �� over historical data ℎ

∇�� (� ) Residuals for the ratios of cluster �� , a non-zero residual indicates a possible anomaly

� Scalar Factor Hyperparameter

�� Sliding Frame Size Hyperparameter

4.1 Theoretical Intuition

For a large-scale CPS application such as smart transportation, the anomaly detection metric should have the
following properties:
(1) Invariance Under Benign Conditions: Under no incidents, the metric should show minimal change across

time and across history. This is important to reduce false alarms given the low base rate of incident occurrence.
(2) Deviation Under Incidents: Under incidents, the metric should have properties that cause quick and discernible
deviation in the metric. This is important to increase detection accuracy.

As a starting point, we leverage a recent result from [1] that showed that a collection of positively correlated
random variables sampled repeatedly over time can be represented as a time series of ratio between the harmonic

to the arithmetic mean of the aggregate data; and can be used as an anomaly detection metric. This is because
this the metric is stationary in its time series as long as a positive co-variance structure can be preserved. Any
unforeseen data falsiication attack that disturbs the space-time covariance structure will cause deviations in
the otherwise stationary time series of Harmonic Means to Arithmetic Means. In the following, we explain
the theoretical explanation of why the HM to AM ratio is a good starting point for our problem and examine
what novel theoretical and applied contributions are necessary to make it work for incident detection for a
transportation CPS.

4.1.1 Invariance Under Benign Conditions. We explain why the harmonic to the arithmetic mean ratio is a
candidate for an anomaly detection metric that is invariant under benign conditions. The basic premise is that
humans react with some shared driving behavior based on the time of the day, traic level on the road, road type
(highway or city lanes), and road width, etc. Such shared driving behavior in the absence of incidents causes
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Fig. 2. Comparison of (a) Raw speed data and (b) Harmonic to the arithmetic mean ratio within a cluster.

driving speeds to increase or decrease together, or remain similar that in turn manifests itself as having high
positive correlation among data points.

One of the achievements of [1] is that it proved that the upper bound on the absolute diference between the
arithmetic mean and harmonic mean of the data collected from a positively correlated system depends on two
things: (1) minimum possible value of the data (denoted by ����) and (2) the average diference in data observed
between any two arbitrary sensing end-points averaged over an appropriate time granularity (say, � ), (denoted
by � (� )).

As long as it can be guaranteed that ���� and � (� ) do not change with time, the invariance in the harmonic to
the arithmetic mean ratio is guaranteed. We identiied, however, that � (� ) does not change only under strategic

spatial and temporal partitions which is nontrivial to achieve for a transportation CPS. We show in Fig. 2a that relying
only on raw data from the sensors (harmonic mean) can lead to noisy data. However, the corresponding harmonic
to arithmetic mean ratio is still stable under such conditions, Fig.2b. Note that, the studies [1, 2] worked with a
small experimental micro-grid. Furthermore, weather afects all areas equally which implicitly preserves similar
city-wide power consumption patterns. For the above reasons, a positive correlation was implicitly guaranteed
in the advanced metering infrastructure (AMI) application. However, this is not the case with transportation
applications. In a transportation CPS, data is collected from the wild, and cities are a complex mix of narrower
lanes and highways. The data is also afected by the uniqueness of the neighborhoods (e.g. downtown vs uptown)
and thus a positive co-variance structure is not implicitly guaranteed. Therefore, a computationally tractable
clustering method is required to achieve invariance.

4.1.2 Deviation Under Incidents. Another key achievement of [1] and [2] is that it proved that any short-
lived disturbance on the covariance structure will lead to deviation in any metric that combines Harmonic and
Arithmetic Mean calculated from a highly positively correlated set of random variables. This is attributed to an
asymmetry in Schur Concavity properties. The Harmonic Mean is strictly Schur Concave while Arithmetic Mean
is Schur Convex. This imbalance causes deviations in the HM to AM ratio metric whenever any event triggers a
decrease in the correlation.

4.1.3 Domain-Speciic Challenges: We need the following domain-speciic adaptations: First, in [1], the
strength of the positive correlation was implicit in smart metering CPS. However, in transportation CPS, several
localized factors afect traic data patterns in sub-areas of the city. This requires intelligent clustering that
preserves a high space-time covariance structure strategically. Second, [1] was designed for power consumption
data from smart meters for a small experimental micro-grid. In such applications, geospatial factors play little role,
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which is not the case with city-wide smart transportation CPS. This requires bounding the clustering region size.
Third, AMI application had only one observation per hour and the framework proposed was suitable for attack
detection and not incident detection. The time for detection of attacks was in the order of hours. In our CPS use
case, incident detection needs to happen within minutes. This requires too many detection rounds, increases the
false alarm reduction challenge. Fourth, in [1] the data was free from anomalies due to a controlled environment
of an experimental micro-grid. Instead, this application contains data from the wild from a real city and therefore
framework adaptions are necessary to learn the underlying structure of the benign pattern of the CPS.

4.2 Region Growing Clustering Algorithm

This is the main theoretical core of the contribution which mainly addresses the irst two challenges. We need
to strategically group the road segments into spatial clusters such that the speed data has maximum positive
correlation which leads to the highest invariance. At the same time, the clustering needs to be geographically
proximate for disturbances in the co-variance structure to have a causal link to the traic incidents.
All the road segments exhibiting correlations above a threshold may be grouped together to form a cluster.

Thereafter, if � = {�1, ...�� , ...�� } is a candidate cluster set and �� and � � are any two road segments where � ≠ � ,
1 ≤ �, � ≤ � such that �� and � � are in the same cluster �� , we can formalize the problem as the following:

max
︁

�∈�

︁

{�� ,� � }∈�
��� (�� , � � )

s.t. ��� (�� , � � ) > � (���)
(1)

In the above optimization ��� (�� , � � ) represents the correlation between two road segments and � (���) is a
threshold. The above optimization problem is �� hard since with |� | number of road segments, there is an
exponential number of possible solutions which is computationally intractable. We need an approximation to the
exact solution. This is done by irst converting the clustering problem into a graph problem.

Fig. 3. Problem reformulation to graph problem.

Reformulation into a Graph Problem We convert our optimal clustering problem into a graph problem,

where we visualize each road segment as a vertex on the graph � ′ and the road segment connections as an edge.
The weight of an edge is equal to the correlation between the road segments (vertices) it connects. Fig. 3 shows
the remapped graph abstraction from the original road network to our reformulated graph mapping.
Theoretically, a correlation may exist between any pair of road segments. Therefore the initial graph � ′ is a

complete graph. However, since all road segments are not necessarily positively correlated (e.g. geographically
distant, city roads to highways in the same geographical area), there will be edges with negative or zero weights
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and relatively low weights. Let there be a bound on the minimum correlation value ���� > 0 necessary to be
considered a feasible edge of the graph. All edges whose weights are less than ���� are pruned from the complete
graph. A low ���� afects the level of invariance in the ratio invariant which is key to low false alarms and
improved detection.
Formally, this reduced graph is denoted as � = (� , �), where � is the set of vertices and � is the set of edges.

The set of vertices and edges are indexed by � ∈ � and � ∈ �. Each edge � is assigned a weight �� that is equal to
the speed correlation between the two road segments which are further can be denoted in the transformed graph
G as the two vertices, such as �� and � �≠� , where �� , � � ∈ � .
Edge Preference Hyper-parameter (���� ): From the feasible set, we introduce a notion of desirability to form the

strongest grouping of clusters. Note, only using Euclidean distance is not appropriate for causal link because a
narrow lane may have a highway road segment running over it. Geographically they are close, but even if one
incident is afecting a ramp connecting the two, the correlation will not be as strong due to inherent diferences
in their physical characteristics. Also, some roads are long and can see an incident’s efect quickly propagate, and
segments not geographically very close still become afected by that same incident when not geographically
close. Hence, we bring in a notion of edge preference hyper-parameter ���� < �

(���)
< 1. Using � (���) separates

all edges � into two subsets. We let the set ��
′
include all edges whose �� < �

(���) while the set �� include those
edges whose �� ≥ � (���) . This separation improves causal linkage.
Distance Weight Variable (�� ): As explained earlier, geographically closer road segments will be afected by the

same incident. Hence, the distance should be factored in the clustering too. Each edge � ∈ � can be visualized as
associated with a weight variable, �� ∈ (0, 1]. The weight �� equals the normalized distance between two vertices

(road segments) such that �� =
���
�����

, where ��� is the distances between two vertices of edge � and ����� is the

maximum distance among all distances between any pair of vertices.
Many optimization problems are formulated as error minimization problems where error is an unfavorable

outcome that needs to be minimized. In our setting, two kinds of errors happen for any candidate solution
(cluster). First, the two end vertices {�� , � � } of an edge � has correlation value �� > � (���) but they are in two
diferent candidate clusters (positive error). Second, the two end vertices {�� , � � } of an edge � has correlation value
�� < �

��� but they are in the same cluster negative error. By minimizing these two errors, the optimal clustering
can be achieved, maximizing the correlations in a cluster.
Transformed Optimization Problem: In the graph-theoretic mapping of the original network, the original

optimization can then be re-written as the following:

(a) (b) (c)

Fig. 4. (a) A region around the initial node. (b) Increased radius for the region based on the nearest segment whose one

connecting end is inside the previous region. (c) A region where the volume is greater than cut.
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argmin
�

[ ︁

�∈��
���� +

︁

�∈��′
�� (1 − �� )

]

s.t. �� ∈ (0, 1]
(2)

In the above optimization, the irst term includes all positive errors for a given candidate solution � , when
� ∈ �� (they have �� ≥ � (���) ) and {�� , � � } are not in the same candidate cluster � . Similarly, the second term

includes all negative errors for the same candidate solution � , when � ∈ ��
′
(they have �� < �

(���) ) and {�� , � � }
are in the same candidate solution � . We need to ind the solution � which jointly minimizes both errors.

In [4], a clustering problem for a weighted graph which has the same form as Eqn. 2, was solved. Their study
revealed that the relaxed form of the integer problem has an Ω(log�) integrality gap. Hence, the best-known
factor of the approximation can be � (log�). Hence, it ensures theoretical guarantees to our approach.
Approximation Algorithm: To understand the core idea of the approximation algorithm, which is based on

growing a region with radius � from some random starting point, we irst need to deine some key elements.
Region: A ������(����� , � ) is the set of road segments � ∈ � that are within the area with radius � from an initial
vertex ����� .
Cut: A ��� (�), where � ∈ � , is the sum of the weights of the edges � ∈ �� with �� > � (���) where each edge � has
one vertex �� , within � and the other � � , is outside.

��� (�) =
︁

{�� ,�� }∩�=1
�∈��

�� (3)

Volume: ��� (�) is also the total sum of the weights of the edges � ∈ �� , with �� > � (���) , where at least one
vertex �� or � � is inside the cluster.

��� (�) =
︁

{�� ,�� }∈�
�∈��

���� (4)

Algorithm 1: Approximation Algorithm

Input:� = (� , � )
Output:� = �1, ..., ��
Initialize: � = 1,� = {}

1 begin

2 while� �� ��� ∅ do
3 ������ ������ ����� ∈ �
4 � → �����

5 while ��� (������ (����� , � ) ) ≥ ��� (������ (����� , � ) ) do
6 � → � +min �∈�

�∉������ (����� ,� )
(������ ,� − � )

7 �� = ������ (����� , � )
8 ������ (�� ,� )
9 ������ (�� ,� )

10 � → � + 1
11 return� = �1, �2, ...��

The algorithm returns the set of diferent clusters. The formation of one cluster happens via the region growing
process. Algorithm 1 starts by checking if the graph � has more nodes to cluster in line 1. Nodes that are chosen
as part of a cluster are then removed from � . The core of the region growing approximation are lines 3-7 in
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Algorithm 1 which decides what is included in one cluster, while the rest of the algorithm repeats the process of
inding clusters for the whole graph. It starts at a random vertex ����� at line 3 with an initial radius �1 = ����� > 0
in line 4, that forms an initial region ������(����� , �1).

In line 5 the algorithm checks if a cluster has met the terminating conditions based on both cut and volume. In
Line 6 the algorithm grows the radius to include the nearest node outside of the cluster and repeats the process
until reaches the terminating criteria. In Line 7 it forms the cluster �� , and the formed cluster is added to the inal
cluster set � . The nodes in the cluster are then removed from the graph� . Then, the algorithm repeats the entire
process until all nodes are clustered. To illustrate the algorithm 1, Fig. 4a represents an initial region centered on a
random vertex (shaded in red) with radius �1. Next, it inds the nearest vertex � , in the neighborhood of the initial
region. To ind the nearest vertex, it lists all other vertices ����� such that each vertex in set ����� includes only
vertices that are directly connected to the region ������(����� , �1). The term łdirectly connected to the regionž
implies that an edge exists between a vertex in ����� and any vertex inside ������(����� , �1) (any vertex shaded
red). For illustration, in Fig. 4a, �1 and �2 are the only vertices directly connected to the ������(����� , �1).

It then calculates the euclidean distance from ����� to each vertex in ����� and selects the vertex � that is nearest
����� . Let this smallest distance (from ����� ) be denoted as � (����� ,�) . This distance is used as the radius of the new
region such that �2 = � (����� ,�) . Since �2 > �1, the region grows from the initial region, hence the term region
growing approximation. This is illustrated in Fig. 4b, where �2 is formed by the distance between the nearest
vertex �1 and ����� .

Note, that with the new region, the set ����� now includes �2 and �3. For simplicity, we drop the suix of the
radius parameter such that the radius at any iteration of region growth is simply � . Then, the above process of
region growing happens continuously The region then continuously grows until the stopping condition is met
and we have our irst cluster �� = �1 where � = 1. We insert this irst cluster into our inal cluster set denoted by
� (See line 8 in Algorithm 1).

All the vertices in cluster �1 are then removed from the graph � to avoid duplication while generating other
clusters. Finally, � is increased by 1 for the next iteration. The process starts again with a new initial region
centered around a new random vertex ����� . It generates the cluster �� = �2 by executing the lines 3 − 7 which is
added to the cluster set � before removing the vertices in cluster �2 from graph � . Algorithm 1 continues until
there are no vertices left to cluster. Once the graph� is empty, the set of clusters� is returned. The approximation
algorithm takes polynomial time to cluster all the segments. We proved the complexity in our previous work in
[12] which is � (�) where � is the number of road segments.

4.3 Ratio Invariant per Cluster

The clustering process ensures clusters that maximize the correlation strategically. Let any cluster �� have |��� |
number of road segments. Then, we calculate a ratio metric��� (�) for every cluster �� at each time index � , which
is the invariant. The ratio metric is deined as the ratio of the harmonic mean ���� (�) and arithmetic mean
���� (�) of data collected from all road segments within a cluster such that:

���� (�) =
���

∑ |��� |
�=0

1
�
����

���� (�) =
∑ |��� |
�=0

�����
���

(5)

where �����
is the aggregate speed reported by the �-th TMC for a time index � . Consequently, the ratio sample of

the cluster �� at any time index � is calculate by the following:

��� (�) =
���� (�)
���� (�)

(6)
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To illustrate the importance of the approximation algorithm for clustering to maximize positive correlation
strategically, we compare the plots of the time series of the ratio samples for the same time and area in Fig. 5.
Fig. 5a is a cluster with a high data correlation (0.87) and Fig. 5b is a cluster with a low data correlation (0.37).
Observe that the time series of ratio samples in Fig. 5a is highly stable under benign traic conditions (stationarity
and low variance) and shows a sharp deviation on the incident that happened at 13:00 hrs. In contrast, Fig. 5b
that did not maximize correlation has poor stability and does not show clear deviation in its time series when the
incident happens.
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Fig. 5. Efect of cluster level correlation on invariance: (a) High correlation (0.87). (b) Low correlation (0.35).

An important thing to note is that every incident is unique in its manifestation and the method has to generalize
for various clusters. Hence, we need to learn the underlying general structure of the ratio time series. However,
the training data collected from the wild have incidents, and the data collected from connected transportation
is very noisy due to human behavioral randomness. This is unlike traditional industrial CPS where the data
patterns are only governed by tightly modeled laws of physics. Hence, we cannot simply learn the ratio samples
themselves.

4.4 Data Pre-processing and Augmentation

Real-world mobility data pose a practical problem for unsupervised learning problems such as anomaly detection,
due to the presence of various incidents in the training phase. This prevents the learning of the underlying
structure of benign data patterns. We need a mechanism to bypass this problem which we discuss here.
The intuition is to use the time and location stamp of the ground truth incidents and superimpose them on

the ratio time series of the cluster which falls under the location of a particular incident. Then we identify the
neighborhood of the time series of ��� (�) around all incidents to learn the portions of the time series that were
disturbed. Unless these disturbances are cleaned out, it will prevent learning the structure of the benign behavior.
Note, ground truth incident recording itself is noisy due to human-in-the-loop issues. We observed in many

cases, they are recorded much after the physical world has been afected by the incident. In other cases, the
incident is reported and recorded instantly but it takes some time for the physical world to get really afected (e.g.
in sparse traic scenarios).
Temporal Disturbance Period Selection:We know that prominent incidents in the city cause large congestion

that gets captured in the congestion factor metric available with the dataset. Additionally, the moving average of
the invariant decreases near incidents. We utilize the decrease to diferentiate between benign and noisy ratios
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Fig. 6. (a) Distribution of temporal neighborhood of disturbances across all incidents (b) Data augmentation.

(invariant) which are then used to select a neighborhood around the incident ground truth timestamp �� (�).
This can be visualized through Fig. 6b where region � is such a neighborhood.

From the time stamp where the incident was recorded (minutes=0), we check how many incidents showed a
low moving average of ratio samples for a window before and after (minutes=0). One can ind ��% of the incidents
create a decrease in the ratio time series for less than Minutes =±� minutes. Hence, the temporal neighborhood
of ratio time series sample around the � (�) timestamp that needs to be cleaned and discarded is on average y
minutes before and after the �� (�) shown in Fig. 6a. In Fig. 6b, this region is marked as region B. In Fig. 6b, we
showed region markings assuming, �� = 60%, the � is around 30 minutes before and after any corresponding
ground truth time stamps. Similarly, any conidence interval can be used for cleaning.
Ratio Sample Cleaning and Augmentation: To clean the incident neighborhood, we discard the ratios of

region B from the training examples of ratio samples and replace them with the cumulative moving average
(CMA) of an equal length of time just before the start of region B (temporal disturbance window of a cluster).

As an illustration, the cumulative sliding moving average of the ratio samples from region A are copied into
the discarded ratio samples from region B, as demonstrated by Fig. 6b. The CMA for any cluster �� at time � , is
calculated by the following:

����� (�) =
(� − 1)����� (� − 1) +��� (�)

�
(7)

This process is executed for all ratio sample neighborhoods of ground truth incidents found in all clusters
during the training phase. The CMA of region A is then used to replace the signature in region B. Figure 6b shows
the incident signature being replaced by the cleaned data. This allows the model to learn the underlying structure
of the data without incidents.

4.5 Detection Framework Design

After cleaning efects of ground truth recorded incidents, there are other behavioral randomness and noise that
make lowering false alarms challenging without sacriicing the detection accuracy. Therefore, a two-tier approach
(NIST recommended [7]) to learning the thresholds and an appropriate anomaly detection criterion is essential.
The two-tier principal mandates short-term and long-term errors of any underlying detection metric. We adapt
this idea in our context in the following manner:

4.5.1 First Tier Stateless Residuals. The irst tier uses the time series distribution of the ratios ��� to set up
a varying threshold that follows the ratio distribution for each cluster �� where � ∈ {1, · · · , �}. A particular
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ratio ��� (�) can be greater than or less than the mean ratio �������
(�). The acceptable margin creates the upper

and lower side boundary using the mean ratio of a cluster �������
(�) and the standard deviation ��� . The upper

boundary is denoted as Γ
ℎ��ℎ
�� (�) and the lower boundary is denoted as Γ�����

(�). The boundaries are termed as safe
margins which can be calculated using the following equations:

Γ
ℎ��ℎ
�� (�) = �������

(�) + ���� (8)

Γ
���
��
(�) = �������

(�) − ���� (9)

4.5.2 Second Tier Stateful Residuals. The second tier consists of two thresholds. These thresholds are termed
as standard limits in [1]. The upper side standard limit is ������

(ℎ) and the lower side standard limit is ������
(ℎ).

Setting up these two thresholds is not as straightforward as tier 1. To calculate the thresholds, the irst step is to
get the residuals ∇�� (�) of each time index using the safe margin. This residual will be used to again calculate the
residual under curve ����� (�) over a sliding frame of size �� for each time index and the sub-region. Finally the
����� (�)’s are used to learn the standard limits by the given algorithm 2.

Residual is deined as the diference between the safe margin and the ratio. If a ratio is higher than Γ
ℎ��ℎ
�� (�), the

residual will be positive and if a ratio is less than Γ
���
��
(�), the residual will be negative. The following equation

calculates the residual:

∇�� (�) :



= ��� (�) − Γ
ℎ��ℎ
�� (�), if ��� (�) > Γ

ℎ��ℎ
�� (�);

= ��� (�) − Γ�����
(�), if ��� (�) < Γ

���
��
(�);

= 0, otherwise;




(10)

Residual Under Curve A non-zero residual indicates the possible presence of an anomaly. However, to conirm,
a sum of residuals is calculated over a ixed optimal time window size which can be called as sliding frame size.
The summation is termed as residuals under curve. It is calculated by:

����� (�) =
�︁

�=�−��
∇�� (�) (11)

Algorithm 2: Calculate ������
(ℎ)

1 for �� , �, � do

2 if (����� (� ) < � then
3 ����� :

|�−����� (� ) |
2

4 CC← �����

5 else

6 ����� = |����� (� ) − � |2
7 PP← �����

8 ������
(ℎ) = 1

�+ argmin�
�� ∑
CC
����� −

∑
PP �����

��

Learning Standard Limit The computed ����� is later used to learn the standard limit using Algo. 2. The
algorithm treats the interior and exterior RUC diferently by multiplying two diferent weights. An interior-point
contributes less to the overall loss and an exterior point contributes more. The algorithm minimizes the diference
between the loss of interior and exterior points to learn the optimal standard limit both for the higher and lower
sides. Eventually, both of the learned thresholds use the same algorithm, here we have shown only for the ������

(ℎ).
For ������

(ℎ) only the negative ����� (−) are used whereas for ������
only the positive ����� (+) are used.
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Fig. 7. Detection illustration: RUC of ��ℎ cluster.
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4.5.3 Anomaly Detection Criterion. Similarly, the RUC can be calculated at every time index in the test
set. Let ����� (�� ) is the RUC value for the cluster �� in the test set at the current time index �������� . Then, the
incident detection criterion is given

����� (�������� ) :
{
∈ [������

(ℎ), ������
(ℎ)] No Incident;

∉ [������
(ℎ), ������

(ℎ)], Incident Inferred;
(12)

Fig. 7 illustrates the incident detection where the vertical lines are the ground truth incidents and the horizontal
lines represent the standard limits. we can see that RUC(T) metric goes beyond the learned standard limit near
the growth truth time stamps.

Why do ratios and RUC deviate? As and when an accident occurs within a subarea of a city, the immediate

neighborhood of the location where the accident happened, experiences a decrease in vehicle speeds instantly.
However, this reduction in speed takes time to propagate beyond this immediate neighborhood until it afects the
whole cluster. This delay in propagation causes the deviation in the signature and can be detected by the metric
as an anomaly. Fig. 8, is an illustration that shows that the average diference between any two pairs of TMC
values within the identiied clusters over time � (� ) do not vary much, which is required for ratio stability.

4.6 Hyperparameter Tuning

There are four diferent hyperparameters. The irst set of hyperparameters is ���� and �
(���) which afect the

clustering process and the distribution of ratios. The second parameter set includes � and �� values which afect
the standard limits. The distribution will produce diferent standard limits for every combination of � and ��
the same ratio. To learn the ���� , we measure the deviation in invariance (ratios) ���� for diferent margins of
���� . The �

��� is used to select the ���� value since it directly afects the level of invariance in the ratiometric.
Since the lowest median absolute deviation in the series imply the most stability, it implies that the smallest ����
for which the minimum value of ���� stops decreasing across consecutive values of candidate ���� is desirable.
The smallest value of ���� , shown in Fig. 10, is recommended since too much positive correlation reduces the
sensitivity to smaller incidents.

As we increase ���� from 0.0 to 0.99, the mean absolute deviation of the ratios in a cluster decreases. This trend
continues until a certain point where the deviation stabilizes. Accounting this, we settle on ���� = 0.7 as a lower
bound. The hyper-parameter � (���) controls the area coverage and the performance of the cluster-wise incident
detection. We learn it by the following:

argmax
� (���)

(���� +��� − ���)
(13)
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where ���� is the coverage rate of road segments while clustering, ��� true positive rate of detection, ��� are
the false positive rate, for incident detection. The above equation ensures the maximization of performance by
reducing the false positives at the same time and increasing the coverage percentage. The approximate solution
cover a majority of the area which had a total of 6,928 road segments. As we increase the correlation threshold,
� (���) , the radius becomes smaller with fewer segments being included in each cluster. However, as a result, there
are now more clusters generated, resulting a larger coverage of the target area. The performance for diferent
values for � (���) are given in Table 2.

For the incident detection model we learn the optimal value for the hyper parameters � and �� . The parameter
� is a value in (0, 3) and �� is a sliding frame size which varies among the integer values in the set {3, 5, 7, 9} .
The optimal values of � and �� are learnt by

argmin
�,��

(��� + ���) (14)

where��� is the missed detection rate and ��� is the false positive rate. The � and �� from the above equation
are selected as the optimal hyperparameters for the considered cluster. Each cluster �� has its own optimal
selection of � and �� . Figure 9 shows the efect of the hyperparameter � on the detection performance of the ��ℎ

cluster. A detection model with large � reduces the total number of false alarms however, it increases the number
of missed incidents detected. The equation above ensures an acceptable performance.

Table 2. Cluster Information.

� (���)

Cluster Info 0.75 0.85 0.95

count 317 354 472
mean 16.06 14.54 11.81
min 4 4 4
max 161 132 112

ave. data correlation 0.863 0.862 0.867
ave. radius (m) 611.11 610.07 490.03
area coverage 73% 74% 80%

True Positive Rate 0.916092 0.924653 0.926340
False Positive Rate 0.010727 0.032051 0.030957

Table 3. ����� based rating levels.

Scenario Discrete Rating Level (rl)

�
����
��� �

≤ Δ��� 4

Δ��� < �
����
��� �

≤ 2Δ��� 3

2Δ��� < �
����
��� �

≤ 3Δ��� 2

otherwise 1

5 SEGMENT LEVEL DETECTION

The primary motivation of segment-level incident detection is to provide optimal resource dispatch for agents that
manage traic incidents. Though cluster-level detection [12] helps to identify the incidents in a city block, it can
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not provide the exact location. Without this information, the emergency response will be more time-consuming
since the department would need to manually locate the road afected or wait for citizens to call in. For example,
one cluster can have 15 road segments within 600 meter radius. The agents would have to allot resources to
locate the incident area before providing the service. In this context, our segment-level detection actually brings
locality which allows them to respond and dispatch optimally. Another motivation was to address the scalability
issue. A city or a region can have a vast number of road segments. For example, a region with 500 roads would
require 500 detection models introducing plenty of overhead. In contrast, the cluster level irst detects whether
there is a problem with only one detection model. Then, only if there is an anomaly at the segment level would
detection be initiated. Hence, the segment-level detection runs only when needed, it saves computation and
networking resources that support such computations.
The incident detection framework detects incidents at a cluster level where each cluster �� is made up of a

set of ��� segments. Any segment ���� (�
�ℎ in cluster �� ) can be the origin of an actual incident that cannot be

identiied in the current framework. This motivated us to propose an extended architecture that would locate
the origin of the incident after detecting the incident at a cluster level. The extended framework is a signiicant
amendment to the prior framework that can help commuters save time by identifying segments and generating
alternative routes.

For segment-level detection, irst a cluster �� under a detected incident at time � is considered to narrow down
the origin (segment ���� ) of the incident. Intuitively, in the cluster �� , only the afected segment will show a
change(decrease) in speed values. Therefore,the average speed ��� (�) at time � also changes(decreases) for the
cluster �� . However, an approximation of the unafected mean ��� (�) of the cluster �� can identify the afected
road segment(where (segment)the incident occurred) by comparing the road segment speed �����

(�) with the

mean. Therefore, we approximate the value of mean ��� (�) and denote it as corrected mean by ����� (�). Further,
depending on the distance of the speed of each segment �����

(�) with ����� (�) at time � , each road segment is

assigned a rating level between 1 to 4. We calculate the rating for a time window of length � for a segment. A
key point is that throughout the window � the approximation of mean ����� (�) is calculated only once at � . Using
the rating values, a trust score per segment is calculated which lets us apply binary classiication to identify
impacted and non-impacted road segments in cluster �� under the incident.
Overall, segment-level detection is divided into two major parts, the irst is approximating the cluster mean

and the second is the trust scoring model. The entire architecture is redeined to detect the road segments under
incident for smart transportation problems from [3], where a trust score-based framework was irst used to detect
individual smart meters under attack.

5.1 Mean Approximation at Incident Detection Time

It is proven in [3] that if the individual values are decreased due to a data poisoning attack or other means, the
means (arithmetic and harmonic) are also decreased. In such cases, the general mean � can be corrected by using
� = �� + (�� − ��). Similarly, due to incidents, we assume that the speed values are decreased in a smart
transportation system. Thereafter, the same mean correction can be utilized to get the approximation of the mean.
Therefore, the correction is done by ����� (�) = ���� (�) + (���� (�) − ���� (�)), and is calculated each time �

when an incident is detected. Further, to measure the distance of the speed values �����
(�) of each segments ���� (�)

the unbiased standard deviation is approximated. For corrected standard deviation, we simply take the standard
deviation in the window just before the occurrence of the incident. That means for standard deviation correction
we will take �����

(�) = ��� (� − 1). Again, both the approximated mean ����� (�) and standard deviation �����
(�) are

calculated only once for the window length � .
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5.2 Trust Scoring Model

Trust scores for each segment are computed in three steps. First, the corrected or approximated mean ����� (�)
and standard deviation �����

(�) are used to calculate ratings per segment for a ixed window of length � = 30
minutes. Second, each segment is assigned a weight based on the ratings received in the irst step. Lastly, the
weights are converted to a trust score using an inverse power law (IPL) based kernel function. In the following,
each of these three steps is presented in detail.

5.2.1 Segment Rating. A rating of a segment ���� at time � is an integer value that points out the closeness of the

speed value �����
(�) of the segment with the corrected mean value ����� (�) of a cluster �� . A segment can have a

diferent rating value based on time � within a window � . As mean value ����� (�) stays same for such window � ,

we remove the � from ����� (�) thus it becomes ����� . Now, we calculate the absolute diference between the �����
(�)

and ����� which is denoted as Δ��� = ��� for distance under one standard deviation. Thereafter, if the distance

for a segment ���� in cluster �� has absolute diference denoted by �
����
�� � �

= �����
(�) − ���

��
, the segment get the

rating according to the policy presented by Table 3. The Table 3 shows 4 diferent rating values where the highest
rating is 4 which is closest to ����� , and 1 is the lowest rating that denotes the furthest distance from the ����� . The

ratings for all segments in a cluster �� are represented by a rating vector ��
�
�� . This rating vector is sorted as �

����
����

in ascending order to assign weights to each segment depending on the rating value.

5.2.2 Segment Weight. Here each rating �
����
���� , for each segment ���� in cluster �� at time � gets a weight based on

the Gaussian rating distribution . The weight for each rating are denoted as� ���� The lower rating gets lower
weights and vice versa. After getting the rating, they are sorted which makes it easier to give lower weights to
smaller ratings through Eqn 15 by dividing the rating space over the considered time window. In the following, a
weight parameter � (�) distributed between 1 to 4 is calculated as:

� (�) = 1 + (�� − 1)�
� − 1 ∀ � = 0, 1, ...,� − 1 (15)

In Eqn 15, �� = 4 denotes the total number of discrete rating levels in the system and � is the length of the
window. Now, � (�) from Eqn 15 is used to calculate the distance from highest rating level ��� = 4. The larger the
distance, the smaller the density value on the shape of the Gaussian distribution. The following equation is used
to calculate the density as weights

������
(�) = 1

���
����

√
2�

exp− (� (�) − ���)
2

2
(
���
����

)2 (16)

In Eqn 16, ���
����

represents the standard deviation of discrete ratings of each segment from ��� = 4 in a window

length� . The ���
����

for each segment will be diferent based on diferent observations compared to commonmixture

data, which captures certain individual diferences in speed. The raw weights from Eqn. 16, are normalized using

�����
(�) =

��
����

(� )
∑� −1
�=0 ������

(� ) Thereafter through an indicator function which is denoted as � (��, �), all the weights

�����
(�) corresponding to each unique rating level �� (between 1 to 4) withing� are added up to get the cumulative

weight associated with each rating level. The cumulative weight is by�� (��) which is calculated by the following
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equation

�� (��) =
�−1︁

�=0

�� � (��, �) (17)

In Eqn 17, the indicator function � (��, �) indicates whether any particular rating level �� occurs in the time slot �
and It is written as below

� (��, �) =
{
1 if rl occurred in time slot t

0 otherwise
(18)

The cumulative weights for each rating level are considered together to get the inal weight for each segment
���� . The weight is presented by �����

of the ��ℎ segment of ��ℎ cluster which is a continuous value between 1 and

4 and is given by:

5.2.3 Trust Score. The weight ( �����
) is used to get the trust score by injecting into an inverse power law (IPL)

based kernel function. IPL transforms the weight value based on magnitude such as transforming larger weight
to increase it, and vice versa. If a weight �����

is 4, it means the highest trustworthiness which is followed by

an exponential ‘discounting’ of trust, as �����
decreases. The inal transformed value which is the trust score is

between 0 and 1. The following Eqn 19 is showing IPL based trust score calculation.

������
=

(����� )
�

(��)� , ������
∈ {0, 1} (19)

In Eqn 19, � is a scaling factor controlling the rate of discounting. The Eqn 19, gives exponentially less trust
to �����

as it decreases from the maximum value of 4, in adherence to the Folded Gaussian shape of the rating

distribution of road segments. The scaling factor � depends on the skewness of folded Gaussian in the benign
data set. The Eqn. 19 produces trust values such that impacted and non-impacted road segments by any incident
are linearly separable, which enables the calculation of an unsupervised threshold for classiication.

5.2.4 Hyper Parameter Learning. The segment-level detection performance depends on the parameter � which is
a scaling factor learned by maximizing the following objective

�∗ = argmax
∀�>0

(���) (20)

In Eq.20 we select � that maximizes TPR. Further, the optimal value of � is data speciic, hence we tune the
parameter for each separate data. Parameter tuning was done by searching through a range from 0.25 to 10.0
in steps of 0.25 with 5 cross-fold validation. We selected the � with the highest overall accuracy across the
cross-validation set for four cities.

5.3 Classification and Evaluation

Here, the trust scores are considered as input to an unsupervised binary classiier. The binary classiier learns a
threshold based on which it divides the input set into two classes. The threshold is learned through a binary
classiication algorithm, K-medoids [19], which is quick and suicient for the use case. The binary classiication
has two outputs either 0 or 1 where 0 refers to non-impacted and 1 denotes an impacted road segment. After
getting the classiication results of the road segments, the performance is evaluated utilizing ground truth
information. In the following neighborhood selection, validation, and performance evaluation are presented as
part of the evaluation.
Neighborhood Selection: The neighborhood area is identiied by locating the real road segment where the
incident occurred utilizing ground truth data. The neighborhood consists of several road segments depending on
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max hop distance ℎ� which is an integer denoting the distance from the origin. Here, the max ℎ� is set to 4 to get
a neighborhood around the incident. Each segment in the neighborhood has a level of ℎ� between 1 to 4 based
on the hop distance from the incident segment. The lowest hop distance is 0 which denotes the incident segment
itself. The highest hop distance is ℎ� = 4 denoting the furthest segments. In the following, the neighborhood
segments are, compared against the segments classiied as impacted by the binary classiier.
Validation: To validate, the segments with hop distances 0 and 1 are considered to keep it more realistic.
Intuitively, it requires signiicant time to propagate the incident impact up to ℎ� = 4. Therefore, considering
level>1 will unnecessarily create a bias in validation. The classiication of a road segment is considered as success
if it is classiied as impacted and the road segment in the neighborhood has a hop distance of either 0 or 1. On the
contrary, the classiication of a road segment is considered as failure if the road segment is classiied as impacted
but the road segment is either not found or has a hop distance greater than 1.
Performance Evaluation: For performance evaluation, we simply count the successful classiication while
validating.For example if a cluster �� has |��� | number of segment, the binary classiicationwill have ��� predictions.

Now, out of |��� |, if the number of successful classiication is ��������� , the success rate is deined as SR =
���������
|��� |

6 EXPERIMENTAL EVALUATION

In this section, we introduce the dataset and the performance of our framework in terms of incident detection rate,
false alarm rate, time to detection of incidents, and the impact of undetected incidents on the CPS application.

6.1 Details of Dataset

To evaluate our framework, we use one year-long traic data collected from the city of Nashville, Tennessee
by roadside sensors at ive-minute intervals. This dataset is bigger in duration and in terms of coverage area
compared to validation used in existing works [10, 21]. For ground truth incidents, we use another dataset
collected from Nashville’s Fire and Emergency Response Department during the same year. In all phases of the
experiment, we only consider weekdays of 2019, focusing on the period between 6:00 AM to 9:00 PM since during
the weekend and late night, the traic has discrete patterns. Details are shown in Table 4.

Table 4. Detail of datasets.

Data Sources Properties Nashville Memphis Knoxville Chattanooga

Road network
# intersections

# streets
6,928
19,493

12,075
27,144

5,513
11,786

5,121
11,532

Traic incidents # instances 8,116 12,113 4,745 3,470
Sensors # count 6,928 12,081 6,073 5,560

Collection period 2019 2021 2020

Experimental Setup: The twelve months of data is divided across training, cross-validation, and testing sets.
The training phase learns the model for a combination of hyperparameters The cross-validation set is used to
ind the best hyperparameters that give the best outcome. The best hyperparameters are itted to the model to
ind the inal learned model that is used for testing. The irst eight months (Jan. to Aug.) are used for training.
The next two months, (Sept. and Oct.), used for cross-validation. The inal two months (Nov. and Dec.) are used
to test the model itself.

6.1.1 Training Dataset Details. To train, we focus on Southwest(−87.0506, 35.9895) andNortheast (−86.5275, 36.4168).
Then, the segments inside the area are clustered following the clustering process discussed in Sect. 4.2. To cluster,
the road segments from the transformed graph problem where correlation �� is assigned as the weights for each
edge � in the graph. We consider a cutof correlation value ���� and a minimum level of correlation ���� which
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leads to more invariance. The clustering generated 354 clusters. However, we found that most incidents in the
ground truth were limited to fewer clusters that correspond to the busiest parts of the city. Hence, we selected
25 clusters with the most reported incidents from the ground truth and used it to evaluate the performance of
incident detection. Limiting the dataset gives us the opportunity to validate our framework quickly since testing
on clusters with little or no incidents would not prove whether our method can actually detect various kinds of
incidents in accident-prone areas. For the temporal disturbance due to the ground truth incidents, the �� = 60%
was used from the distribution of duration from �� (�) variable. This corresponds to � = ±30 minutes around
the neighborhood from all �� (�). Since � is slotted every 5 minutes, there are 12 ratio samples augmented per
incident.

6.1.2 Testing Dataset Details. This section evaluates our decentralized implementation of a lightweight anomaly
detection framework. We tested two months (Nov. and Dec.) from the dataset. In these two months, there were a
total of 851 incidents recorded in 580 active segments. We present how our technique enables us to detect these
incidents which can lead to actionable information.

6.2 Performance Results

This section shows a sensitivity analysis of our performance to changing hyperparameters instead of learned
hyperparameters. Then, we report the performance of the optimal learned model with hyperparameters using
the itness function described in Section 4.6.

6.2.1 Sensitivity Analysis of Performance. Here we give the sensitivity analysis of performance where the �����
is not learned but varied as a free parameter to check its efect on the changing performance. The performance
metrics include time to detection, true positive rate, false-positive rate, expected time between false alarms, and
impact of undetected incidents.
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Fig. 11. (a) Average ROC curve for 25 clusters (b) Mean time between false positives with diferent � for �� .

Detection Rate and False Alarms Fig. 11a shows the average ROC curve across the 25 clusters, underscoring
the performance of our framework. One can see that at 90% true positive detection rate, the false alarm/false
positive rate (FPR) is only 0.030. The low FPR is a signiicant achievement because: (1) anomaly detection methods
are prone to false alarms (2) due to lower rates of emergency/incidents, the cost of FPR is usually high for any
CPS. Each cluster has 16,560 detection attempts and the false positives are few. Fig. 11b shows the rarity of these
false positives even when using � = 0.25 which has the best overall detection rate. Speciically, Fig. 11b gives an
idea on the expected time between two false alarms for various �.
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Fig. 12. (a) Time to detect incidents (b) Impact on route travel times under diferent �.

Mean Time to Detection A key performance indicator of usability in a CPS application is time to detection.
Fig. 12a shows that 78% incidents were detected in the irst 5 minutes and 90% incidents were detected within 30
minutes. Quick time to detection is essential to warn commuters earlier and control the low of traic to prevent
congestion spread.

Impacts of Undetected Incidents By successfully detecting an incident, a traic congestion will be prevented

or mitigated and the commuters will be diverted to diferent routes, avoiding travel delays. We generated 200
routes that pass through segments with incidents and computed the travel time of each route with incidents.
Using the true positive rates, we calculated what percentage of incidents will be detected. Detected incidents
allow the system to notify commuters early and thus will experience less delay in their travel times. The time
saved per vehicle is given by the following:

△ � = �� ( 1
��
− 1

��
) (21)

where �� is the total distance in a given route, �� is the speed due to incidents and �� is the free-low speed
which is experienced when afected areas are avoided. Assuming on average that 10,000 vehicles pass by any
segment per year, we can identify the impact of our anomaly detector on the travel time saved over a year. Figure
12b show the amount of travel time saved on a macro level depending on the hyperparameter and granularity
used respectively.

6.2.2 Overall Performance with Learnt Hyperparameter. We applied the learnt values of �, �� , ���� and ���� for
each of the 25 clusters. The inal result is an average from all 25 clusters for all traic incidents over the 2 months.
The average true positive detection rate ��� = 0.90 and ��� = 0.03.

6.3 Comparative Analysis

We evaluate our framework further by comparing it with diferent baseline models and by using the additional
dataset from three of the largest cities in the state of Tennessee.
We compare our cluster-level incident detection against prediction-based (e.g., AR, DeepLog-LSTM) and

reconstruction-based (e.g., AE, VAE, EncDec-AD) anomaly detectors. The models are trained on harmonic speed
data instead of the ratio metric we previously derived. We identify incidents on the time series data per segment
per cluster and augment them following the method described in Section 4.4. Figures 13a and 13b compare the
true positive rates and false positive rates of cluster-level detection of the framework and baseline models. All
results are obtained using the optimal hyperparameters �� and � for each cluster. We used the same clustering
for all methods. Hence, clustering-wise there is no performance gap. Later, we show that our detection part of
the framework outperforms the other methods. And it is worth noting that the performance of our framework
depends entirely on the quality of the in-variance which is the end product of the clustering strategy. Our
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Fig. 13. Cluster level detection with various methods: (a) True positive rates and (b) False positive rates.

detection model blends with the clustering approach resulting in improved performance compared to other
methods. A summary for each model is as follows:

(1) AR [15] models use linear regression to calculate a sample’s deviance from its predicted value which is
then used to identify outliers. This model can handle multivariate time series data by training independent
linear regression models for each dimension and computes the anomaly score for each sample. The score
can be based on the mean, maximization, or median weighted deviance of each dimension.

(2) DeepLog-LSTM [6] is a deep neural network that uses LSTM to model a system log as a natural language
sequence. It learns the log patterns from normal executions to detect anomalies.

(3) AE [9] is an autoencoder model base on a multi-layer perceptron (MLP) that encodes data into a lower
dimensional latent space which is then reconstructed back to the original structure by a decoder. Anomalies
are identiied based on the reconstruction errors.

(4) VAE is similar to an AE. However, it outputs parameters of a pre-deined distribution in the latent space for
every input.

(5) EncDec-AD [16] replaces the MLP layers in the AE with LSTM layers.

We extend our framework to Memphis, Knoxville, and Chattanooga. These three cities, along with Nashville
are the four largest cities in Tennessee by population. We use one year of long traic data for each city in our
training and experimental evaluation. The data provider is the same as the Nashville dataset. Each contains
"real-time" harmonic mean low speeds. We perform the same division of data for training, cross-validation,
and testing. Each city generated varying numbers of clusters, however, we only select 25 clusters with the most
number of incidents for each city.

In contrast to the Nashville dataset, incidents for these three cities were gathered from crowd-sourced incident
reports through Waze. Incidents were limited to only include accident reports. Data collection periods were
also varied across three years, to show the ability of our framework to handle spatially and temporally diferent
data. Fig. 14a and 14b show the ability of the framework to adapt and scale to other areas with minimal to no
customization.
Overall, the results show the advantage of our framework against baseline models and when used in other

cities and during diferent periods. Our framework ofers higher TPRs and lower FPRs across the board. Proving
that it can be efective in the irst step to not only detect incidents but to identify the extent of its efects both
temporally and spatially.
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Fig. 14. Cluster level detection in various cities, TN: (a) True positive rates and (b) False positive rates.
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Fig. 15. (a) Cluster and segment level mapping. (b) Segment level detection accuracy cities in TN.

6.4 Segment Level Incident Detection

After an incident is detected in any cluster, the framework must then be able to detect incidents at the segment
level. However, incident reports are inherently noisy, not always aligning perfectly with segment information
(harmonic speed data) which in contrast, is gathered in real-time. Reported incidents may be incomplete or
incorrectly logged, they may also be reported late. Thus, to be able to correctly evaluate the framework, we
have to specify a region around the reported incident origin to search. Detections are considered successful if
the framework can detect segments located at or one hop away from the ground truth as discussed in Sec. 5.3.
The left side of Fig. 15a shows an incident detected in one cluster within Nashville and on the right a group of
segments in that cluster, we highlight the reported point of origin and its adjacent segments in red. We use the
results from the cluster-level detection and select 100 successful incident detections from 25 clusters uniformly at
random. We set the time window as the duration of time from the start of detection to the end, deined as the
duration when the ratio decreased and then returned to normal. We do the same for each of the four cities and
then calculate the rating levels of each segment for each incident window in each ofending cluster. Figure 15b
shows the accuracy of the proposed framework at detecting the afected segments given a successful detection
at the cluster level. Detection at the segment level is only considered successful when it can detect both the
origin and the adjacent segments. Given these requirements and the scale of the problem, where each dataset has
100 incidents across 1000s segments, the framework can identify the afected segments >75% of the time. The
framework is lightweight and quick, and detection time is less than a second per incident, which enables it to be
placed even on resource-constrained devices.

ACM Trans. Cyber-Phys. Syst.



24 • Md. J. Islam and J.P. Talusan, et al.

7 CONCLUSION

We proposed an unsupervised time series-based anomaly detection framework for city-scale smart transportation
CPS. We discuss how an existing anomaly detection metric (Harmonic to Arithmetic Mean ratios) can be applied
to a transportation problem, by using a strategic partitioning of city area into positively correlated clusters that
guarantee high invariance in detection metric. We utilize a data augmentation technique to enable unsupervised
learning of the anomaly detection technique and learn the bounds of the technique under sanitized, normal
traic conditions to establish anomaly detection criteria. Results show that our proposed unsupervised anomaly
detection framework allows strategic partitions to independently generate, sanitize, learn and detect anomalies
with high accuracy and low false-positive rates. Further, we extend our incident detection framework to enable
individual road segment detection under incident by trust score assignment. These enable our approach to
be deployed in a decentralized manner while maintaining high-performance incident detection in a real-time
manner.
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