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Online Decision-Making Under Uncertainty for
Vehicle-to-Building Systems

Abstract

Vehicle-to-building (V2B) systems combine physical infrastructure
such as smart buildings and electric vehicles (EVs) connected to
chargers at the building, with digital control mechanisms to manage
energy use. By utilizing EVs as flexible energy reservoirs, buildings
can dynamically charge and discharge EVs to effectively manage
energy usage, and reduce costs under time-variable pricing and
demand charge policies. This setup leads to the V2B optimization
problem, where buildings coordinate EV charging and discharging
to minimize total electricity costs while meeting users’ charging
requirements. However, the V2B optimization problem is difficult
due to: 1) fluctuating electricity pricing, which includes both en-
ergy charges ($/kWh) and demand charges ($/kW); 2) long planning
horizons (usually over 30 days); 3) heterogeneous chargers with
differing charging rates, controllability, and directionality (unidi-
rectional or bidirectional); and 4) user-specific battery levels at
departure to ensure user requirements are met. While existing ap-
proaches often model this setting as a single-shot combinatorial
optimization problem, we highlight critical limitations in prior work
and instead model the V2B optimization problem as a Markov deci-
sion process, i.e., a stochastic control process. Solving the resulting
MDP is challenging due to the large state and action spaces. To
address the challenges of the large state space, we leverage online
search, and we counter the action space by using domain-specific
heuristics to prune unpromising actions. We validate our approach
in collaboration with an EV manufacturer and a smart building
operator in California, United States, showing that the proposed
framework significantly outperforms state-of-the-art methods.
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1 Introduction

Electric vehicles (EVs) are at the frontier of the global energy land-
scape’s shift towards more sustainable energy solutions [17]. The
management of the EVs’ energy requirements presents interesting
opportunities and challenges; we focus on one such opportunity—
vehicle-to-building charging (V2B)—that involves co-optimizing
the energy management of EVs and smart buildings. The key idea
behind V2B charging exploits the ability to control the rates of
charging and leverages the use of bidirectional EVs as energy stor-
age facilities to add resilience and demand-response capabilities to
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smart buildings [31]. For example, EVs can be charged when en-
ergy is available at lower costs and discharged to supply energy to
buildings when energy costs are high, thereby promoting optimal
energy use, and reducing peak power demands (highest instanta-
neous power usage in the billing period), substantially decreasing
energy and demand costs for the building [26]. A part of the sav-
ings can then be shared with EV owners, either directly or through
discounted charging, thereby producing a win-win framework for
both the building and the EV owners.

Despite the apparent simplicity of the V2B framework, opera-
tionalizing it presents several challenges. While EV owners can be
incentivized to participate in such programs by offering charges at
low (or zero) cost, strategies that solely optimize energy costs can re-
sult in arbitrarily low EV charges when the owner leaves the smart
building, thereby causing inconvenience to the building owners.
Therefore, a V2B optimization framework must ensure that EV own-
ers depart with a pre-specified level of charge at their departure time
while dealing with the exogenous uncertainties of fluctuating build-
ing load, EV arrivals (and departures), and energy prices. Given that
many EVs arrive throughout the day, the underlying optimization
problem is extremely challenging—charging configurations vary
across EVs, and modern buildings have heterogeneous EV chargers
(of different makes, models, rates of charging, and directionality),
thereby presenting a complex sequential decision-making problem
under uncertainty. Additionally, the V2B framework must be able
to accommodate complex pricing policies of power companies, e.g.,
time-of-use energy charges (dollar per kilowatt-hours (kWh)) and
demand charges (dollar per kilowatts (kW)); crucially, the demand
cost is computed over a relatively longer temporal horizon, e.g.,
for most American power companies, this involves computing the
maximum instantaneous power utilization over a month.

The underlying optimization problem for the V2B problem has
been explored in prior work; e.g., Tanguy et al. [29] present one of
the most comprehensive optimization frameworks for this problem
setting. Their model is elegant and extremely tractable—the deci-
sion problem (i.e., deciding when and by how much each vehicle
is charged or discharged) is modeled as a linear program that can
be efficiently solved in polynomial time, providing scalability by
design. However, the inherent scalability comes at the cost of sev-
eral assumptions that are not valid in practice: 1) the single-shot
optimization approach assumes that car arrivals and departures are
known apriori, and computing all vehicle-to-charger assignments
at once prohibits adaptability to dynamic changes, e.g., varying
energy prices or building loads; 2) the linearity of the formula-
tion implicitly relies on homogeneous charger configurations; and
3) the formulation captures only energy cost but cannot accom-
modate demand cost, which is an important determinant of V2B
policies in practice. We address these limitations by formulating
the V2B problem as a stochastic control process and modeling it as
a Markov decision process (MDP). Our formulation is motivated
by the observation that, in practice, decisions about charging and
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discharging vehicles (and by how much) must be taken sequentially
under exogenous sources of uncertainty.

However, computing an optimal policy for the MDP is very chal-
lenging in our problem setting, particularly due to complex credit
assignment and the curse of dimensionality [28]. Specifically, given
that the decisions must be computed at a relatively high frequency
(e.g., every 15 minutes) and the demand cost is only observed at
the end of a billing period (usually a month), the decision maker’s
actions have long-term consequences, but the rewards or feedback
may only be received much later. Moreover, as the planning horizon
increases, the number of possible states and actions grow expo-
nentially. This growth leads to a combinatorial explosion, making
it computationally infeasible to consider all possible sequences of
actions and states. To tackle these challenges, we propose an online
approach that focuses on computing near-optimal actions for the
current state of the system instead of seeking to learn a policy.
Our approach is based on Monte Carlo tree search (MCTS) [9], a
general-purpose online algorithm for stochastic control processes.

While MCTS tackles some of the challenges of the V2B setting by
using a bandit-based strategy for exploring promising trajectories
in the decision space, it suffers from the curse of dimensionality
from the action space, making it infeasible for our problem setting
(as we show later). To address these challenges, we present DG-
MCTS (domain-knowledge guided MCTS), which uses an action-
generation framework that exploits domain knowledge and the
underlying structure of the V2B optimization problem. This action-
generation framework massively truncates the decision space. We
draw from well-established heuristics and augment the set with
randomly generated actions to ensure that the search tree is not
limited to this truncated set. Collaborating with a major EV man-
ufacturer, we conduct extensive simulations on real-world data,
showing that our approach outperforms existing approaches. To
further ensure that our approach can scale to extremely large prob-
lem instances, we also propose a decentralized search algorithm
that sacrifices performance (by a small degree) to save computation
time. In summary, our contributions are:

e We present a decision-theoretic formulation for the V2B
problem that models the interaction between electric vehi-
cles and smart buildings as a stochastic control process.

e We show how MCTS, augmented with an action-generator
module based on domain-specific heuristics and a random-
ized augmentation step, can compute near-optimal actions
for the MDP.

e We also present a decentralized version of the algorithm
that is significantly faster, albeit at the cost of a small dete-
rioration in performance.

e We use real-world data in collaboration with a large EV
manufacturer and show that the proposed approach out-
performs competitive baselines.

2 Related Work

We highlight four major challenges of solving the V2B problem,
namely: 1) the uncertainty due to EVs’ arrival and departure times;
2) the dynamic energy costs, building loads under Time-of-Use
(TOU) pricing; 3) demand charges and long-term rewards; and 4)
the heterogeneity of chargers;

Inherent uncertainty: Traditional optimization methods like Lin-
ear Programming (LP) and Mixed Integer Linear Programming
(MILP) are widely used in V2B systems to minimize costs while
meeting constraints [11, 29]. However, they assume precise knowl-
edge of power usage and EV schedules, which is unrealistic in
real-world applications. To handle this uncertainty, research has
explored stochastic optimization [20] and robust control methods
[16]. Probabilistic forecasting using models like Recurrent Neural
Networks (RNN) can capture temporal dependencies [34]. Rein-
forcement Learning (RL) has also been applied to learn adaptive
charging strategies [2, 25]. Despite these advances, managing long-
term uncertainty remains challenging. Deep learning models strug-
gle with long-term dependencies, and RL algorithms face sample
inefficiency and convergence issues in complex environments [1].
Limited exposure to rare events like extreme weather, sudden rate
changes, or shifts in EV behavior can further reduce adaptability,
leading to suboptimal solutions.

Time-Of-Use (TOU) rates: The variability of energy prices under
TOU rates introduces additional complexity to the V2B optimization,
requiring charging schedules that adapt to dynamic electricity costs,
to minimize expenses [6]. The use of heuristics and machine learn-
ing algorithms, along with Deep Reinforcement Learning (DRL)
has been useful in learning optimal charging policies responsive to
fluctuating TOU rates [13]. However, these methods face challenges
due to difficulties in credit assignment and non-stationary patterns
in energy usage, by both the smart building and the EV users [12].
Demand charges and long-term rewards: Optimizing V2B is
hard due to the mismatch between the prediction horizon and
billing period. Existing work on demand charge prediction using
model predictive control (MPC) is limited by the computational
complexity of the long billing period. Thus, they resort to using
shorter prediction horizons of a single day, resulting in suboptimal
decisions, especially when the peak demand occurs outside the
prediction horizon [15, 19].

Charger heterogeneity: Smart buildings typically implement EV
charging infrastructure incrementally, resulting in a diverse array
of chargers with varying power ratings and directionality. This
further complicates the action space for optimization. Some prior
work addresses heterogeneity [7]. However, they sacrifice long-
term rewards by limiting planning to a single day or disregarding
the presence of demand charges altogether.

Role of Monte Carlo Tree Search (MCTS): Search-based algo-
rithms like Monte Carlo Tree Search (MCTS) offer a promising
alternative to handle inherent uncertainty in V2B systems. MCTS
can manage stochastic environments by simulating numerous pos-
sible future scenarios, making it well-suited for planning under
uncertainty [3, 18]. Unlike traditional RL methods, MCTS can ef-
fectively plan over long horizons by building a search tree that
considers future states and rewards [21]. This capability allows it
to handle long-term dependencies and adapt to sudden changes in
EV behavior by continuously updating the search tree with new
information [14].

3 Problem Description

We begin by describing our problem setting. Recall that in our
setting, the EV owners follow a regular pattern of arrivals and



departures with a predictable battery usage profile. While the build-
ing’s energy usage is typically not known ahead of time, we assume
access to a predictive model that uses historical data to predict the
building’s energy usage, which can be done very reliably [30, 33].

3.1 Specifications

Time slots: The total time under consideration (billing period) is
divided into a finite set of discrete time slots. A time slot t € 7~
begins at 5% and ends at ", The duration of each time slot
is 8; = t" — 1t measured in hour. Depending on the pricing
policy of the power utility company, the hours of the day can be
divided into peak and off-peak hours. The power utility usually
computes the demand cost (explained later) during the peak hours
7Pk c T based on an aggregate of time slots of length z, i.e.,
t]? = {ti, ti+1, ..., ti+r } for the jth aggregate slot, and i is an index to
the corresponding time slot. The duration of each aggregate time
slotis 84 = ;- 7. The peak hours are then divided into Q aggregated
time slots {7, tZT, cee té}. We define all such sets of t; € t]T. using
the notation 7-7. For example, if the peak hours are from 12 am
to 1 am, each time slot is 5 minutes, and 7 is 15 minutes, then the
1st aggregate time slot (j = 0), which is from 12 am to 12:15 am, is
represented as tg = {to, t1, 12}, then ‘76’ =10,1,2}.

Time-of-Use Price: Power companies usually compute cost based
on two components or charges—an energy charge and a demand
charge. Some companies have variable energy charge rates, where
a time-of-use pricing model is used. The energy charge ($/kWh)
can vary between the peak and off-peak hours and is denoted by
the set ‘W where wy is the time of use price for time slot t € 7.
Demand Charge: The other part of cost computation is the de-
mand charge w¥ ($/kW). This is a fee based on the highest rate
of electricity usage during a specific time period within a billing
period. Often only usage during peak hours is considered.
Vehicles: We denote the set of EVs by V. We assume that a vehicle
v € V has a battery capacity of [e?, . €D, |, with its SoC at time ¢
denoted as ef. Each vehicle is available to charge between their ar-

rival and departure time slots [tsz’t arts t:n d] ; where t:n d is unknown

to the solver, due to our stochastic problem formulation. Instead,
the EV user provides a window of departure, ‘7;2 4 A user arrives
with a state of charge (SoC) of ey,  and requires a SoC of e, at

start

° is known at the time of arrival.

t;)tart
The SoC a user departs with may differ from their requested value,

€req> and is denoted as e}, r We later show how we compensate the
users if their requiremeggs are not met. Our EV partner’s vehicles
support bidirectional operations (charging and discharging), and
the problem can be modified to serve only unidirectional (charging
only) settings as well. The charging rate of an EV is represented as
c7. The power used to charge the EV over an aggregate time slot is

U _ T [
represented as Ctj’? =21 ¢

Building’s power consumption: We denote the building’s energy
consumption using B¢ = {b¢, bg, S ,br,]_l} in kWh. It is used to

departure, out of which only e

compute the energy charge by the power company. The power
draw during peak hours is represented by 8 = {bp, bf, e bg 1,
at each aggregate time slot t;, which covers tj, - - - , tjzr time slots,

b‘;’ =1/7- X7, (b{/5;) and is used to compute the demand cost.

Charging: Chargers vary in control mode (controlled or uncon-
trolled), directionality (unidirectional or bidirectional), and maxi-
mum rate (e.g., 10 kWh, 20 kWh). Controlled chargers can start and
stop charging as needed, while uncontrolled chargers charge con-
tinuously until full. Unidirectional chargers only supply power to
vehicles, while bidirectional chargers also discharge, enabling V2B
charging. Each charger type is defined by a combination of these
attributes (e.g., a 20 kWh controlled unidirectional charger).
The set of all charger types is represented as K, with a total of N
chargers. Each type k € K has |k| chargers available, such that
>, |k] = N. Chargers follow a linear charging profile, uniformly
charging an EV at each time step, which has minimal impact on op-
timization [27]. We later compare this with a piecewise charging
curve in an ablation study.

Charging rate: We define charging rate as the amount of power
delivered to the EVs at each time slot, measured in kWh. We as-
sume that the EVs can charge and discharge at the maximum rate
supported by the charger, which ranges from [ql’C"i”, q]'C”“x 1 Vk e K,
where q/’:’i" can be negative if the charger is bidirectional, denoting
the discharging of a connected EV. A charger’s efficiency is denoted
by n, which is applicable to both charging and discharging. We also
maintain an EV to charger type occupancy function { : VX7 — C,
where {?(t) = kj, representing the connection of EV v to a charger
of type k; at time ¢. Once a charger is assigned to an EV, it cannot
switch chargers until departure.

Peak power use: We denote the peak power use over an aggre-
gate time slot t7 by ;. Recall that an aggregated slot tj? consists
of smaller slots {t;, tj+1, ..., ti+r }; the peak power is computed by
averaging the power draw (sum of power used by the building and
the chargers) across each aggregate time slot tj?, i = bf + Zfi 1 c;’J,_,.

Thus, peak (maximum) power used during the peak hours is P =

max(7j).

Demand Cost: Demand cost is levied by electricity suppliers based
on a customer’s peak rate of electricity consumption (power), typ-
ically measured in kilowatts (kW), over a specific period, usually
a month. This charge is separate from the energy cost, which is
based on the total amount of energy used (kWh). It is the product
of the peak power in an aggregate time slot and the demand charge,
and is computed as w? - P™X Tt is difficult for models to optimize
and plan for demand costs over longer billing periods due to the
uncertainty and inflexibility of its assessment. Thus, demand costs
need to be calculated non-myopically.

Energy cost: The total energy used in time slot s is the sum of the
energy used in recharging the vehicles and meeting the building’s
energy requirement. We denote the energy cost for the time slot
using gr = wy - Ypeq(cf + bf). By summing this across all slots
over the billing period, we get the total energy usage cost. During
time slots with high electricity prices, we can effectively reduce
the overall bill while meeting the building’s energy needs by dis-
charging connected EVs. These EVs are then charged at a later time
when the electricity price is lower.

Missing SoC cost: The energy shortfall between required and
actual SoC at departure for each EV is a key metric in the V2B prob-
lem. In our setting, since the departure of each EV is unknown, this
metric is important to understand how well the user’s requirements



are met. We assign a monetary value to the missing energy, at the
rate of w¥, in $/missing kWh.

Total Bill: The total bill over the billing period is the sum of de-
mand cost and energy cost. The intuitive strategy is to minimize
the peak power over the billing period, which reduces the demand
cost and ensures that the energy cost during peak hours remains
the minimum required to meet the constraints of charging the EVs
to the required SoC level. It is represented as:

E we - (b +cY) +w? . Par 4 g W' lepn  —efegl (1)
end
teT veV

Solution Space: We define a solution with an assignment of charg-
ers to cars and the corresponding charging/discharging schedule.
Let H be the set of solutions, where for each charging assignment
(k, t), exactly one EV, v € V is assigned, such that (v, k,t) € H,
as is the case in practical usage, where one EV is attached to only
charger and not switched around. For each assignment h, ;. , € H,
we assign a charging rate c; € C. We consistently use the assump-
tion that the EV remains at the charger for the entire duration of its
stay. We assign cars on a first-come first-serve basis, where we pri-
oritize assigning cars based on their time of arrival and chargers by
their rate of charging, directionality, and controllability. For exam-
ple, one priority list could be assigning cars to 20kWh bidirectional,
20kWh unidirectional (all controlled), and then the uncontrolled
chargers. We can accommodate only as many cars as available
chargers. Excess cars that arrive when there are no vacant chargers,
will not charge for the remainder of their stay.

3.2 Markov Decision Process (MDP)

We model the V2B problem as a Markov Decision Process (MDP),
building on prior work by Shi and Wong [22]. An MDP is charac-
terized by a 4-tuple {S, A, P, p}, where S is a set of states, A is
a set of possible actions, # is a state-action transition model, and
p is areward function which captures the agent’s utility (or cost) [8].

Decision Epoch: A decision epoch occurs at every discrete decision-
making event, t € 7. Between events, the environment moves in
continuous time where chargers charge or discharge EVs. At each
decision epoch, the decision-maker takes an action that moves the
state from a pre-decision state to a post-decision state and is then
given an immediate reward.

State: We denote the set of states as S € {{bf}, pmax, {q]’:’i", q’k"“x}

Vk € K e}, teare 10 onds €} in €max V0 € V} and a state at time
slot ¢ is represented as s; at pre-decision time. It includes the cur-
rent buildiflg load (by), all charger r:'ites (q]'C”i”, qp'**), EV details
(€7 torares tend> €oyins €max)s Where t%, 4 is the estimated depar-
ture time from user’s departure time window 7;’1 4 We also include
an estimate of the peak power P™X to assist in making better de-
cisions.

Actions: We denote the set of all feasible actions at time slot ¢ by
Apr. An action in A; corresponds to a combination of charging
rates for all chargers K. Charging rates are limited by the total
power consumed by the building, including the power provided for
charging the vehicles, i.e., the EVs cannot be discharged more than
the building’s current power usage. They are limited to discrete val-
ues between the maximum and minimum allowed charging rates.

State Transitions: At time slot ¢, the decision-maker can take

an action that results in a transition from a state s to s’. In this
transition, the system evolves through many different stochastic
processes. First, EVs can arrive or depart out of their regular arrival
and departure times, and are governed by some duration of stay
distribution. Second, electricity prices may change with minimal
warning, as may happen during emergency load reduction programs
(ELRP) events wherein consumers receive financial incentives for
reducing their energy consumption. Finally, the building’s power
draw may change depending on the time of day, month of year,
or even weather. While these follow a predicted distribution, they
still introduce stochasticity in state transitions. We omit detailed
discussion of the mathematical model and expressions for tempo-
ral transitions and state transition probabilities, as our framework
relies solely on a generative world model rather than explicit esti-
mates of these transitions.

Rewards: Rewards in an MDP often have two components: a lump
sum immediate reward for taking actions and a continuous time
reward as the process evolves, and are highly domain-dependent.
For charger optimization, we are concerned about minimizing the
overall energy usage cost while meeting a certain quality of service
for users. We denote the reward function by p(s, a), for taking
action a at state s. The reward is both intermediate ri and episodic
r{. We use episodic rewards during the rollouts. The intermediate

reward is rl = g; + w* - Yyeq e L ep|ift =17 .. else, rl=g;.
en

The episodic reward r; is calculated according to equation (1), with

a minor modification to the demand cost calculation which uses an

estimate of the peak power, P™* It is as follows:

rE= Y e (b Hed) +wd PP NS el —el| ()
teT veV end

4 Online Approach

We propose an online approach for managing charging controls.
First, we use a heuristic EV assignment policy, such as first-come,
first-serve and bidirectional-first policies, to assign EVs to charg-
ers while considering fairness and the peak shaving capability of
bidirectional chargers. To address uncertainty in EV arrival and
departure, we estimate future system states by sampling data and
utilizing an offline solver to derive optimal actions and establish
upper bounds on performance metrics.

To adapt to environmental uncertainty, we employ an online
MCTS search for dynamic and robust decision-making. Recogniz-
ing the challenge of MCTS runtime in real-time scenarios, we
incorporate domain-knowledge guidance (DG-MCTS) to shrink
and adjust the action space using heuristic actions and demand
charge predictions, improving exploration efficiency. Our online
DG-MCTS solver constructs a forward-looking search tree using
episodic data provided by our EV partner partners. To reduce com-
putational complexity, we decompose long billing periods (monthly)
into shorter, manageable daily planning horizons. Algorithm 1 pro-
vides an overview of the workflow of our DG-MCTS approach. In
the following section, we detail each component of the approach, in-
cluding EV assignment, future state estimation, and the integration
of domain-knowledge-guided exploration into MCTS.



4.1 Episode Sampling and Handling Uncertainty

Episode samples: We modeled a Poisson distribution using real-
world data from EV partner’s research lab.

Car to charger assignment: We assign EVs to chargers based on
a first-come-first-serve policy based on the arrival time. If multiple
cars arrive in the same time slot, we break ties by ordering them ac-
cording to efeq. EVs are assigned to chargers based on the charger’s
directionality, maximum rate, and controllability.

Uncertainty in departure times: Given that each user only pro-
vides a departure window ‘7;;’! > our goal is to estimate the departure
time within this interval. Since 7] ; represents a range of possible
departure times rather than a fixed point, we model this uncertainty
by treating the departure time as a random variable within 7.7 .
We draw samples from a uniform distribution over the interval
‘7;’1 4 to approximate a representative departure time.

Let f:n d
realization of a uniformly distributed random variable over 7, ’r’l e
We sample E:nd ~ (L{(min(‘czd), max('czd)) where min(‘7;’ld) and
max (7, ) are the lower and upper bounds of the departure window
7;2 > respectively. Sampling in this manner allows us to select a
feasible departure time that is unbiased with respect to any specific
point within the interval, ensuring a fair estimation across the
entire window. This serves as a proxy for user departure behavior.
Estimating peak power threshold:

For a fixed EV arrival and departure trajectory, we determine
optimal charging decisions by solving a MILP, minimizing costs
while meeting charging requirements. This process also estimates
the monthly peak power threshold. We solve sampled episodes, dis-
tinct from evaluation data, and compute peak power from optimal
actions. The 99% confidence level of peak power across samples
provides a robust monthly estimate. This confidence-based thresh-
old integrates demand charges into the sampling process, aligning
with optimal charging outcomes from the MILP solutions.

denote the estimated departure time for user v as a

4.2 Handling Exponential Action Space

A feasible action in our problem corresponds to a set of charger
rates for all chargers, given that chargers can be heterogeneous with
the possibility of turning off, charging, and discharging a connected
EV. Additionally, the sum of charger rates must be constrained to
the current building load at that time. As a result, for a building
with a large number of chargers with varying configurations, the
possible actions for a given state are combinatorially large, N? if we
consider p discrete actions for each charger. Such an action space is
infeasible to explore in an online setting. To address this challenge,
we introduce a heuristic that enables us to identify promising ac-
tions from the set of feasible actions.

Least Laxity First heuristic: One of our goals is to charge EVs
such that they leave with their desired SoC level. To guide the charg-
ing decisions, we utilize the least laxity first (LLF) heuristic [32].
This heuristic prioritizes EVs with the least remaining time until
departure, ensuring that vehicles close to their departure window
receive priority in charging allocation. At each decision epoch, we
compute the available power gap at the current state s and time ¢ as
power gap = Pmax _ bf , where P2 jg the estimated peak power
threshold and bf is the current building load. The trickle charging

rate for each EV v is defined as trickle rate = (efeq - ef)/(f:nd -1,

where efq is the required energy, e} is the current energy, and f:n d
is the estimated departure time. We then calculate the sum of trickle
rates for all EVs at the current time slot. If this sum is less than the
available power gap, we have the capacity for overcharging. In such
cases, we set each EV’s charging rate to its trickle rate and assign
additional charging to EVs with bidirectional chargers, following a
reverse order of laxity (least laxity first) until the power gap is fully
utilized. If trickle rates exceed the power gap, we discharge EVs on
bidirectional chargers, prioritizing those with the most time before
departure, to fill the gap before resuming trickle charging.

We improve the promising actions by introducing intuitive ac-
tions based on two parameters, the power gap and the bounds of
feasible actions. If the available power gap is positive, indicating
surplus capacity, we add discrete incremental charging actions to
explore overcharging options. Otherwise, if the power gap is nega-
tive (where the building load exceeds the estimated peak power),
additional discharging actions are included to mitigate the excess
demand, we refer to these additional actions as f. Finally, we add
an action between the minimum chosen action and the minimum
feasible charging rate, g™, ensuring that it does not go below

k
e? ., the minimum state of charge required by the EV. Similarly,

wnelzlr;dd another action between the maximum chosen action, and
the maximum feasible charging rate, g;"**, ensuring that it does
not exceed e3,, the EV’s maximum allowable state of charge, we
refer to this change in action-space as “offset”.

This LLF-guided action serves a dual purpose: it enhances trace-
ability by narrowing the search space and accelerating decision-
making. This keeps the search process computational fast. By pri-
oritizing actions based on current states, including the urgency
of each EV, the LLF heuristic enables us to adapt charging rates
quickly, focusing exploration on the most relevant actions.
Temporal decomposition: We decompose the long billing pe-
riod (typically a month) into shorter, computationally manageable
planning horizons, such as a day. However, this decomposition
poses a significant challenge: the demand charge can only be accu-
rately calculated at the end of the full billing period, i.e., over the
longer planning horizon. To address this, we leverage two essential
properties of the V2B Markov Decision Process (MDP).

First, note that the arrival and departure times of EVs are inde-
pendent of the agents’ charging actions—EVs arrive and depart from
the building regardless of how existing vehicles are charged. This
independence allows us to pre-sample trajectories of EV arrivals
and departures using a generative model based on historical data,
without conditioning the sampling on the actions taken within the
search tree.

Second, we leverage the estimated peak power threshold, as
described earlier. Equipped with this peak power estimate, we in-
troduce the core concept enabling temporal decomposition: divide
the full planning horizon into smaller periods, with the added con-
straint that the total power consumed in each period remains below
the estimated demand charge for a fixed sampled trajectory.

At the beginning of each day (the smaller decomposed planning
horizon), we sample multiple trajectories of EV arrivals and depar-
tures from the generative model. For each trajectory, the trained
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Algorithm 1 Domain-knowledge Guided MCTS (DG-MCTS)
Input: Current State Sy, iterations 7, exploration range f
Output: Best action [ A} for k € K],
D « EstimateDemandCharge(S;) // Estimate demand charge
[A; for k € K] « LLFHeuristic(S;, D) // Get heuristic actions
// Action Pruning
if BuildingLoad < D then
foreach k € K do // Encourage Charging
Space(Ay) «
\\ GetNeighbors ([ A; — B, A} +p+offset] UNearBoundaryActions)

else
foreach k € K do // Encourage Discharging
L Space(Ax) « GetNeighbors([ A, — f — offset, A + ] U
NearBoundaryActions)

ActionSpace «— [Space(ﬂK).Clip[qZ””,qk’"“x] for k € K|
forn < 1to I do // Establish tree

Sample «— GenerateSample (EVDep, EVArr, BuildingLoad)
S;H « SelectFrom(S;, ActionSpace, Sample)

S;,, « Expand(S;,,Sample) // Add new child node

v « Simulate(S7,,, Sample, TrickleRate) // Rollout

1420
Backpropagate(S,,,, v) // Update tree stats

’
t+2°

A* «— BestAction(S;) // Select action with highest value

model f estimates the demand charge over the longer planning
horizon (e.g., a month). This estimated charge is then integrated
and used as part of the episodic reward, within the search tree,
which operates on the shorter daily planning horizon.

4.3 Monte Carlo Tree Search (MCTS) Evaluation

Offline approaches to solving the V2B problem such as MILP, fail to
consider the stochasticisity present in the real world. Instead, they
rely on complete knowledge of the system to optimally select the
best actions. This motivates us to use MCTS, an anytime algorithm
that has been widely used in game-playing scenarios [23].

MCTS models planning as a tree with states as nodes and actions
as edges. It explores the tree asymmetrically, favoring promising
actions with the Upper Confidence bounds applied to Trees (UCT)
algorithm [9] by balancing exploitation and exploration. Node val-
ues are estimated through rollouts using a simple default policy,
often random action selection. As the search progresses, node value
estimates improve. This approach enables efficient exploration of
large action spaces. MCTS requires a generative environment model,
a tree policy for navigation, and a default policy for node value
estimation.

We use the collected historical data to sample new episodes as
the tree is built into the future. We use the standard Upper Confi-
dence bound for Trees (UCT) [10] to navigate the search tree and
decide which nodes to expand. When expanding a node we sample
promising actions for the given state. When working outside the
MCTS tree to estimate the value of an action during rollout, we rely
on a default policy. This policy is simulated up to a time horizon and
the utility is propagated up the tree. Our default policy is a trickle
charging rate policy — which charges each car with the required
energy to meet the required SoC by the estimated departure time.
Root parallelization: Given that EV arrivals and departures and

building power draw, even when following a known distribution,
are highly uncertain in time, sampling one episode may not repre-
sent actual future EV behavior. We handle this using root paralleliza-
tion, which involves sampling many episodes, and instantiating a
new MCTS tree for each with their EV arrivals/departures and
building power draw as the root node. Each tree is explored in
parallel, and after execution, the score for each of the actions from
the common root node is averaged across the trees. The action with
the highest average score across all trees is then the selected action.

4.3.1 Centralized MCTS. In a centralized multi-agent approach, a
single search tree represents the combined decision-making space
of all agents in the V2B system. Rather than each agent operating
independently, this unified tree integrates the actions of all agents,
allowing for joint optimization. Such an approach is advantageous
in V2B settings, where decisions made by individual EVs impact
overall building load and demand charges, requiring coordination
to minimize costs. However, the centralized MCTS also faces com-
putational challenges due to the high dimensionality of the action
space and the extended planning horizon, as it must simultaneously
consider all agents’ actions at each decision point. We show the
process in Algorithm 1.

Centralized MCTS explicitly considers the interactions among
agents at each step, which is particularly advantageous in scenar-
ios where joint coordination is necessary. For example, centralized
MCTS can directly incorporate the influence of one EV’s charging
actions on the demand charge for all EVs and the building. How-
ever, centralized MCTS must address two primary challenges: (1)
efficiently navigating the large action space within a single tree
structure and (2) managing the long temporal horizon associated
with the V2B optimization problem. We tackle these challenges by
leveraging domain-specific heuristics, which streamline the explo-
ration of the action space and introduce strategic planning over
shorter horizons within the MCTS framework, and name it Domain-
knowledge Guided MCTS (DG-MCTS).

4.3.2 Decentralized MCTS. While the MCTS algorithm can directly
tackle the large state space, it still suffers from the dimensional-
ity of the action space and long time horizon. Thus, a standard
MCTS-based approach may not always be suitable, especially as
the number of cars grow. This, we also introduce a decentralized
approach to multi-agent MCTS [4, 18]. The key idea of decentral-
ization in multi-agent MCTS is simple—instead of developing a
monolithic tree for all the agents, each agent develops its own
search tree to compute a near-optimal action for itself. Decentral-
ization massively reduces the search space within the tree, thereby
providing scalability. We present the Algorithm 2 in the Appendix.

Operationalizing decentralized multi-agent MCTS (AMCTS) poses
two main challenges: (1) As an agent explores its decision space, it
must account for the actions of other agents. Certain approaches
learn a computationally cheap proxy for the behavior of other
agents and invoke the proxy repeatedly within the search tree [18].
The search tree for each agent can then be generated in parallel.
However, this approach does not work for our setting as using a
proxy for other agents’ actions can lead to potentially very high
demand costs. (2) Decentralization of the action space does not
inherently solve the long horizon problem. Thus, we propose a



second heuristic that leverages the structure of the V2B problem to
tackle these challenges:

Criticality score: We order the agents by computing the criticality
of the decision faced by each agent. Consider a fixed amount of
energy that the cars can draw collectively to minimize energy costs
in the long run; we argue that it is natural to prioritize agents that
must meet higher charge requirements within the least amount
of time. Specifically, we compute a criticality score using Least
Laxity First [32], cscore = (t:nd —t)— (efeq - e;’)/qé’ﬂu“(’;) for each
connected EVo € V, where, {°(t) is the maximum charging rate of
the charger v is connected to. The EV parameters are the required
soc e7,4, the current soc ef, the expected time slot to leave ¢? . and
the current time slot ¢. Once the most critical agent’s (EV) action is
computed, the consumed power is simply added to the total power
usage, and this process continues for all the agents in the order of
priority.

5 Experiments and Analysis
5.1 Setting

Data Collection To assess the effectiveness of our proposed method,
we utilize data from our EV partner research laboratory. Optimiza-
tion is limited to weekdays, as few employees work on weekends,
and demand charges typically exclude them. Silicon Valley Power
does not count Sundays in demand charge calculations. Our setup
includes 10 unidirectional (20 kWh) chargers and 5 bidirectional
chargers supporting +20 kWh (charging at 20 kWh and discharging
at 20 kWh). All EVs have bidirectional charging capability.
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Figure 1: (Top) EV arrival and departure hours vs. arrival and
required SoC over 8 months. (Bottom) Peak building power
draw vs. time of day and TOU rates.

We collected real-world data from EV partner’s research lab-
oratory in Santa Clara, California, covering building power con-
sumption, EV charger usage, and EV telemetry over a nine-month
period from May 2023 to January 2024. Building load fluctuations
are reliably predicted using standard models [33], while EV behav-
ior (arrivals, departures, and SoC requirements) are modeled using
a Poisson distribution based on historical data. This approach cap-
tures variations in EV arrival rates and SoC demands, using hourly
mean values to reflect realistic usage patterns. The number of EVs
arriving on weekdays fluctuates daily, introducing inherent uncer-
tainty. Vehicle arrivals and departures are user-specific behaviors,

largely governed by work hours, and independent of building load
or charging actions. In collaboration with the building operator,
we confirmed that arrival and departure patterns are shaped by
user decisions rather than system-level controls. This independence
allows arrival and departure times to be pre-sampled without im-
pacting optimization. Additionally, since charging actions do not
affect future arrivals or departures, the optimization must handle
uncertain user behavior while ensuring effective charging strategies
within these constraints. Figure 1 displays the arrival and depar-
ture times in relation to SoC, along with the distribution of peak
power demand and corresponding hours. We sampled 110 monthly
billing episodes for each month from May 2023 to December 2023
to construct a representative dataset.

Electricity prices follow Silicon Valley Power rates in Santa Clara:
peak hours are $0.147/kWh (6 am—-10 pm, except Sunday) and off-
peak hours at $0.113/kWh, with a $9.62/kW demand charge during
the peak hours.

Estimated Peak Power. To improve action effectiveness, we ac-
count for varying weekday conditions by incorporating a monthly
peak power estimate for each episode, based on optimal action
sequences generated by the MILP solver. We use the lower bound
of the 99% confidence interval from the MILP data as a conserva-
tive estimate of the demand charge. This input feature is further
optimized during RL training.

Hyperparameter Tuning To optimize the performance of our
DG-MCTS framework, we utilized a state-of-the-art hyperparame-
ter optimization library, Optuna, which employs efficient sampling
strategies to explore the hyperparameter space. Optuna’s objective
was to minimize a custom-defined score, calculated according to
equation (1). The hyperparameter search space included key param-
eters such as the number of iterations, maximum depth, penalties
for unmet SoC requirements and exceeding power gaps, and re-
wards for achieving specific SoC targets. Additionally, we explored
regularization parameters like C and reward discounting factor y,
and a tolerance parameter for estimated peak power (€). Optuna’s
trial-based approach generated a hyperparameter importance graph
as shown in Appendix in Figure 2, revealing the most influential
factors affecting performance, and guiding subsequent model refine-
ment. We set the parameters as shown in Table 10 in the Appendix.

Hardware used. All the experiments were performed and timed
on a 32-core 4.5 GHz machine with 128 GB of RAM.

Baseline approaches. We evaluate the performance of our online
approach by comparing it against various methods including real-
world charging procedures, several smart heuristic approaches, and
a reinforcement learning-based policy. We provide a brief descrip-
tion of the baselines here.

e MaxCharge: This approach simulates current real-world charg-
ing, where all connected EVs at the fastest rate to e5, .

e ReqCharge: Similar to MaxCharge, however only charges all
connected EVs as quickly as possible to efeq.

e Least Laxity First (LLF): Uses the same heuristic policy used in
Section 4.2. It charges beyond eﬁ’eq if possible and then leverages
excess energy to reduce peak power demand. Otherwise, it uses

trickle charging to charge EVs to €7,



Table 1: Monthly Total Cost (lower is better).

Policy MAY JUN JUL AUG SEP OCT NOV DEC
DG-MCTS | 5466.96 + 24.4 | 6032.16 + 88.8 | 6021.98 + 42.8 |{8512.24 + 81.4|6357.79 + 36.8(6744.54 + 75.7|5806.73 + 79.4|5195.53 + 127.1
dMCTS | 5534.54 + 84.2 | 6050.26 + 60.0 | 6123.93 + 73.1 | 8550.6 + 53.3 | 6467.52 + 75.9 | 6819.85 + 62.6 | 5849.69 + 56.9 | 5317.49 + 157.0
RL 5416.3 + 32.8 | 6067.6 + 152.1 |5913.83 + 21.4| 8571.87 + 87.9 |6403.82 £ 105.3|6852.93 + 129.3| 5898.55 + 71.9 | 5432.92 + 135.0
LLF 5515.86 £ 30.7 | 6068.35 +£45.0 | 6045.75 = 37.1 | 8637.07 + 44.9 | 6364.37 + 37.0 | 6802.74 £ 48.8 | 5831.15 + 33.1 | 5245.1 + 140.6
EDF 5521.67 + 38.32| 6076.35 + 58.8 | 6047.83 + 37.6 | 8637.67 £ 45.2 | 6369.2 + 41.1 | 6810.84 + 51.8 | 5831.53 + 33.4 | 5292.71 + 152.6
ReqCharge | 5577.22 + 43.8 | 6147.51 +47.1 | 6123.04 + 35.0 | 8743.39 + 53.7 | 6465.7 £ 46.0 | 6852.65 = 56.9 | 5939.52 + 42.2 | 5254.94 + 65.5
MaxCharge| 6827.5 + 188.6 |7710.79 + 228.91|7577.06 + 207.89402.73 + 144.4|8259.19 + 249.7 |8348.78 + 204.7|7081.51 + 184.7| 7888.98 + 291.8
Table 2: Missing SoC by Policy (lower is better).
Policy DG-MCTS dMCTS RL LLF EDF ReqCharge MaxCharge
Mean + Std  113.62 £ 83.86 164.6 + 174.24  141.92 £ 58.17 59.66 + 84.13 58.86 + 82.29 84.87 + 80.73 27.56 * 60.55
Table 3: Count of Cars with Missing SoC by Policy (lower is better).
Policy DG-MCTS dMCTS RL LLF EDF ReqCharge = MaxCharge
Mean + Std  43.82 +30.98 73.16 £ 52.88 207.34 + 60.29 40.47 £ 30.67 41.04 +31.36 80.57 £37.85 4.61 + 10.22

e Early Deadline First (EDF): EDF prioritizes EVs with the near-
est departure, following the Early Deadline First scheduling ap-
proach [24]. Like LLF, it may charge in excess if high building
demand is expected and discharge before departure. Otherwise,
it uses trickle charging to reach ef,.

e Reinforcement Learning (RL): We use the Deep Deterministic
Policy Gradient (DDPG) algorithm to manage charging actions.
The state includes time, building load, charging status, EV SoC,
and expected departure times. The reward function combines de-
mand cost, energy cost, and SoC deviation penalties. The DDPG
model employs a two-layer Multi-Layer Perceptron (MLP) for
actor and critic networks, each with 96 neurons. Action mask-
ing prevents charging when no EV is connected, ensures SoC
targets are met before departure, and discharges excess energy.
Policy guidance integrates MILP-generated optimal actions into
training to improve performance. A separate model is trained for
each month using 60 simulated samples. Table 8 in the appendix
details the hyperparameters.

5.2 Results

We evaluate all approaches using four metrics:

(1) Total cost: The sum of electricity cost, demand charge, and
missing SoC cost for the billing period, according to Eq. (1).
Missing SoC: This is the energy shortfall of departing cars
relative to their required SoC, and results in a penalty of
20 cents per kWh, 42% higher than the grid’s maximum
energy cost. This discourages the building from relying on
EVs to reduce grid energy purchases.

Cars under required SoC: The number of cars with miss-
ing SoC shows if the model meets all required SoC targets
or prioritizes some cars over others.

(2)

(4) Peak Shaving: It is the difference in demand charge be-
tween (i) the building’s power usage (without any charging)
and (ii) by adding charging the EVs under the respective
policies. Positive values indicate the policy reduced the
demand charge by controlling the charging actions.

We evaluated the performance of our online approach using data
from May 2023 to December 2023. From the dataset, 10 episodes
were randomly selected as the test set, while the remaining 100
episodes were used as exploration samples during root paralleliza-
tion. None of the policies had access to the actual departure times of
vehicles, relying instead on a window of potential departure times
provided by users.

Table 1 presents a comparison of monthly bills across eight
months for different policies. The Domain-knowledge-guided MCTS
(DG-MCTS) consistently outperformed all other heuristics in six
of the eight months. It demonstrated significant cost-effectiveness
compared to the widely used real-world baseline policies, Max-
Charge and ReqCharge, and even smart heuristics like LLF and
EDFE.

DG-MCTS lowered monthly costs by improving peak shaving
while maintaining missed SoC values similar to heuristics. In terms
of execution time, DG-MCTS required an average of 23.75 seconds
per decision. By contrast, dMCTS was faster, with an average deci-
sion time of 15.38 seconds.

RL-based policies outperformed DG-MCTS in two of eight months,
but this was due to many EV SoC requirements being unsatisfied
(Table 2). Table 3 shows RL fails to meet SoC targets for an aver-
age of 207 cars due to uncertainty in action selection. While our
approach results in more missed SoC in some episodes, it performs
similarly to smart heuristics in the number of EVs falling short of
their required SoC.



Table 4: Peak Shaving across all months (lower is better)

Policy DG-MCTS dMCTS RL

LLF EDF ReqCharge = MaxCharge

Mean + Std  -5.17 + 13.67 3.14 + 11.80

18.16 £ 22.81 1.77 £ 9.02

277 £10.52 11.22 £6.15 94.02 + 46.60

Table 5: Ablation study | Sensitivity analysis, on 10 test episodes of August 2023 (lower is better)

Month DG-MCTS MCTS/P MCTS/H

MCTS/C |

MCTS(ME) MCTS(LE) MCTS(BLF)

AUG 8512.24 + 81.42 8690.19 + 86.53 8705.76 + 63.60 8521.80 + 85.13 | 8601.91 £ 52.99 8625.59 £ 41.88 8670.58 + 76.77

Table 6: Total cost by policy under a larger departure window (3 hours) (lower is better)

Month DG-MCTS LLF

EDF ReqCharge

MaxCharge

AUG 8632.47 + 73.45 8682.06 + 49.67

8682.98 £ 50.74 8742.56 = 55.19 9402.73 + 144.43

Table 7: Total Cost of policies under unexpected increases in daily vehicle arrivals (lower is better)

Month DG-MCTS

dMCTS LLF

EDF ReqCharge MaxCharge

AUG 8589.0 + 74.19  8650.75 + 64.98 8691.76 + 53.1

8696.32 £ 57.44 10345+ 100 11395.53 + 432.54

The results show our approach outperforms heuristics by opti-

mizing actions under uncertainty. While the smart heuristics show
improvement over MaxCharge and ReqCharge, they cannot an-
ticipate future events, limiting performance. Even with maximum
charging (MaxCharge), some cars still miss their SoC targets if their
stay is too short.
Robustness to uncertainty. Finally, we show that our approach
outperforms all heuristics when we further increase the degree of
uncertainty by: 1) Increasing the potential departure window as
shown in Table 6 and 2) Handling an unexpected increase in the
number of daily EV arrivals, by increasing the number of daily cars
to be around 25 per day, as shown in Table 7. DG-MCTS tackles
changes in the environment better than the rest of the policies,
taking 48.97 seconds per decision while dMCTS takes an average of
25.46 seconds per decision. This highlights the capability of dMCTS
to scale much better than DG-MCTS in terms of computation time.
Table 7 also shows that dMCTS outperforms the rest of the baseline
methods during this scale up.

5.3 Ablation Study

The impact of key techniques in our approach is evaluated through
ablation. We select August 2023, the month with the highest build-
ing peak, and assess its effect on the total bill. The ablations tested
are: 1) MCTS/P, which replaces predicted peak demand with only
the current peak demand. 2) MCTS/H, which removes heuristics
for narrowing the action space. 3) MCTS/C, which uses a piecewise-
linear battery profile instead of a simplified linear model. Table 5
presents the results, followed by a discussion of each feature’s
impact.

Peak demand prediction. We examine MCTS/P, where peak
demand prediction is removed in lieu of using the current power
demand as the threshold, and the performance drops drastically.

This shows the importance of having an accurate model for pre-
dicting peak demand for any length of the planning horizon.
Heuristics for action pruning. The MCTS/H approach removes
the use of action pruning via heuristics, resulting in decreased per-
formance. This shows the dependency of MCTS on the quality of
the generated trees. Removing action pruning increases the action
space, making it difficult to choose “good” actions. Increasing itera-
tions can improve solutions but may increase computation time.
Piecewise linear charging profiles. Using piecewise linear charg-
ing profiles, MCTS/C instead of linear charging profiles offers sim-
ilar solutions but adds complexity. Most EV manufacturers do not
disclose charging profiles, complicating SoC curve analysis. While
piecewise linear profiles may improve accuracy, their absence does
not affect the validity of the approach, as also noted by Sundstrém
and Binding [27].

5.4 Sensitivity Analysis

This section explores the effects of changing the accuracy of the
EV behavior and building load predictions by perturbing the MCTS
exploration samples. We evaluate three scenarios with modified
exploration samples: (1) more EVs (ME), (2) fewer EVs (FE), and (3)
higher building load fluctuations (BLF). The policy’s performance is
tested on the 10 unchanged test episodes previously used in Table 1
in August. These tests, shown in the right half of Table 5, assess
the policy’s response to increased uncertainty and its impact on
total cost.

When DG-MCTS is combined with exploration samples that include
more EVs, denoted as MCTS(ME), the exploration samples contain
25% more cars on average than the test episodes. In contrast, when
using fewer EVs, represented as MCTS(FE), the exploration sam-
ples have 25% fewer cars on average. While both scenarios result



in a higher total bill than DG-MCTS, they still achieve a lower
overall cost compared to the best domain-specific heuristic, LLF.
In the MCTS(BLF) scenario, DG-MCTS is tested with exploration
samples that have greater building load fluctuations, introduced
by adding a fixed perturbation of +10% to the predicted load. This
accounts for potential errors in the building load prediction model
and assesses the planner’s ability to handle such variability. As
Table 5 shows, the total bill is higher than DG-MCTS and LLF. As
prediction errors increase, DG-MCTS loses its performance edge
over the best heuristic. This effect is stronger for building load
predictions—when accuracy drops, performance declines quickly.
This may be attributed to the decision tree within MCTS relying
heavily on the predicted building load to estimate rewards.

6 Conclusion

This paper proposes a Domain-Knowledge Guided Monte Carlo
Tree Search (DG-MCTS) approach to address V2B challenges in
smart buildings by optimizing charging control. In online decision-
making scenarios, we encounter challenges such as the stochastic
nature of EV arrivals and departures and limited decision-making
time. To address these challenges, DG-MCTS leverages domain-
specific heuristics to guide action selection and prune the action
space, enabling it to outperform traditional heuristic algorithms in
terms of cost reduction and demand charge optimization within
a reasonable computation time. While DG-MCTS demonstrates
superior performance, we acknowledge that decentralized MCTS
(dMCTS) scales more efficiently in scenarios with a larger number
of chargers. We evaluate both approaches using simulated V2B
scenarios with real-world data from an EV manufacturer and smart
building with 15 chargers. Results show that DG-MCTS effectively
handles the uncertainty in EV departure times while achieving the
lowest monthly total costs and meeting SoC requirements, demon-
strating its capability in managing online EV charging under dy-
namic conditions. Meanwhile, dMCTS provides a scalable alterna-
tive that performs well in high-dimensional multi-agent settings.
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A Offline Approach

For any given episode, which is a trajectory of EV arrivals and
departures, along with the building load for a single billing period,
we can use an offline optimization program to solve the V2B prob-
lem and obtain an exact demand cost for that period. Thus, we
formulate a mixed integer linear program (MILP) that can compute
the optimal demand cost for any episode.

A.1 Exact Solution

The objective of the MILP is minimizing the multi-objective weighted
sum of the total rewards in Equation 1, while meeting the con-
straints and requirements of the V2B problem. These include ensur-
ing each EV is assigned to a single charger throughout its stay and
keeping the action within the charger’s limits. We use CPLEX [5]
to solve the MILP.
Decision Variables: We use the same set of variables defined in
Section 3.1. Additionally, z, is used to represent the gap between
the car’s required SoC and its SoC at departure.
Constraints: To match the car to the charger assignment policy
of MCTS (which follows a first-come first-serve assignment policy),
we pre-compute the car to charger assignments. When h, ;. , = 1, it
denotes that the assignment of vehicle v to charger k at time ¢, the
vehicle stays assigned for the duration of its stay.

We couple the assignment and the charging variables as follows.

VoeVVEET :cf < 3 g™ - hyk, €)
k
0 min
VoeVVEET ) 2 ) gy by @
k

We keep track of the EV’s SoC before it leaves the charging
station, and track if there is any gap to the required SoC.
0

[
e — €.
req tend

YoeV:iz,= (5)

Furthermore, for the ith time slot t;, for an EV, we can find the
amount of energy remaining using elf’ml:

YoeV,teT,ifi=0: e;’izeg+c§’i, (6)
otherwise: ey, = e, | +c}, 7)
where ef is the initial charge the EV arrives with.
The demand cost can be computed as (recall that Q is the number
of aggregate time slots):
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We need to ensure that a vehicle retains the same charger through-
out its stay and do so by maintaining continuous assignment of the
car to its charger for its duration of stay:

Yo e V,Vke KNt € T \ topa : Ayk,t — Aok,e41 = 0 (10)

Objective We want to find the minimum energy cost and demand
cost, while reducing the gap between the SoC required at departure

Table 8: RL Hyperparameters and selected values.

Parameter Description Range

Actor network | Number of units at each layer [96, 96]

Critic network | Number of units at each layer [96, 96]

r Discount factor for future reward 1

Actor&Critic Learning rate for updating actor | 107>, 1073

learning rate and critic networks

bufferSize Batch size for fetching transitions | 64
from replay buffer

batchSize Size of the replay buffer 10°

actionNoise Noise added during action explo- | normal(0,0.2)
ration

policyGuideRate| Probability to introduce policy guid- | 0.5 or 0.7
ance

As, A, Ap Penalty coefficients for SoC require- | 1,1, 3
ment, bill cost, and demand charge

Random seed Random seed for actor and critic | 0-5
network initialization

trainStep, Training steps and steps per update | 5,5

updateStep of target networks

and the actual departure SoC, given the TOU electricity prices.

minz wp - Z (c? +b7) + Prmax cwd WS Z Zy (11)

teT veV veV

B Decentralized MCTS Algorithms

In this section, we discuss the algorithm designed for decentralized
Monte Carlo Tree Search (MCTS) in the context of our V2B frame-
work. As described earlier, decentralized MCTS (dMCTS) enables
individual chargers to make decisions independently by construct-
ing their own search trees, rather than relying on a single central-
ized decision-making process. This approach significantly reduces
the computational complexity, allowing each agent to explore its
action space in parallel, which enhances scalability and responsive-
ness in multi-agent settings. We also show in Algorithm 3 how we
implement sorting the cars based on criticality score.

We detail the algorithmic steps involved in dMCTS, including
each charger’s process for action selection, rollout, and backpropa-
gation, while considering the impact of other agents’ actions. Al-
gorithm 2 provides the pseudocode and procedural breakdown for
implementing dMCTS, along with action space modifications to aid
in the large action space exploration.

C Hyperparameter search for MCTS

Optuna is a modern hyperparameter optimization framework that
uses an efficient sampling-based approach to identify the best com-
bination of hyperparameters for a given objective function. It sup-
ports algorithms such as Tree-structured Parzen Estimators (TPE) to
adaptively sample promising regions of the hyperparameter space
while discarding less effective configurations. Each trial in Optuna
represents a unique combination of hyperparameters, which is eval-
uated based on the objective function, and results are stored in a
study database for further analysis. Optuna also provides visualiza-
tion tools, such as hyperparameter importance graphs, to highlight
which parameters have the most significant impact on performance.
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Table 9: Total cost and execution time per decision when varying the number of exploration samples (lower is better)

Parameter DG-MCTS (10ES) MCTS-5ES MCTS-15ES MCTS-20ES
Total cost (§)  8512.24 £79.98  8537.95+ 96.19 8511.85 +77.3 8511.53.13 + 75.65
Time 23.75 22.37 24.39 25.01

In our work, we utilized Optuna to optimize the performance of
DG-MCTS by minimizing the objective (equation (1)). The search
space included critical MCTS parameters like the number of iter-
ations, tree depth, exploration coefficient, and discount factor. It
also included other domain-specific parameters, such as penalties
for unmet SoC, rewards for SoC milestones, and tolerance for esti-
mated peak power. Optuna’s trial-based optimization revealed key
insights into hyperparameter importance (Figure 2), guiding the
selection of optimal values for our final implementation.

C.1 Effect of exploration samples

We include Table 9 to illustrate how performance changes with
different numbers of exploration samples. We gradually increase
the number of exploration samples from 5 to 20 in steps of 5. MCTS-
5ES uses 5 samples, MCTS-15ES uses 15, and MCTS-20ES uses 20,
where ES stands for exploration steps. The version of DG-MCTS
we use for the other experiments have 10 exploration samples and
is represented as DG-MCTS (10ES). The table shows that varying
the number of exploration samples has minimal impact on overall
performance, as the results remain consistent with little deviation.
This suggests the chosen exploration samples are sufficient for
stable outcomes.

Algorithm 2 Decentralized Monte Carlo Tree Search (AMCTS)
Input: Current State S, iteration number N, exploration range
Output: Best actions [ﬂz for k € K] for all chargers
D « EstimateDemandCharge(S;) // Estimate demand charge
foreach k € K sorted by least laxity first do
ﬂl’c — LLFPolicy(Sk,D) // Get heuristic action
Space(Ay) «—

GetNeighbors([-f + .?[]’C + Noise, f + ?l,’c + Noise]) for

n « 1to N do // Establish tree for each charger
Sample «— GenSample(EVDep, EVArr, BLoad).
Skes,
Sk SelectFrom; (Sk, Space(Ay), Sample)

t+1
S;ﬁrz — EXpand(Sk Sample) // Add new child nod

1+1°
f+2,5ample, LLFPolicy) // Rollout

k
t+2°

« BestAction(S;) // Select the best action for k

v « Simulate(S

Backpropagate(SK ,v%) // Update tree state for k

x
ﬂk
S; « Update(S;, 7(;:) // Update state for the next charger

return [.?IZ for k € K]

Table 10: Hyperparameters for MCTS Configuration

Hyperparameter Limits  Value
Iterations (Simulation Steps) [50,500] 200
Maximum Tree Depth [10,80] 70
Exploration Coefficient (C) [0.5,2] 1.414
Discount Factor (y) [0.9,1] 1
Penalty for Missing SOC [0.1,5] 0.5
Penalty for Exceeding Power Gap [0, 20] 5
Reward for Meeting Required SOC [0.01,1] 0.1
Reward for Maximizing SOC [0.001,1] 0.01
Estimated Peak Power Adjustment (¢) [-10, 10] 0
Exploration Samples (parallel trees) [5,20] 10

Algorithm 3 Sort Cars by Criticality

Input: Set of cars V

Output: Sorted list of cars V'’ based on criticality
1 rvcritical

« () // Initialize list of critical scores

2 foreach v € V do

3 ¢y < ComputeCriticality(v) // Compute critical score

4 (vcritical — (Vcritical U {(Z), CU)} // Append car v and its

criticality score

5 V'« Sort(Veritical py ¢ descending) // Sort cars by
criticality score

6 return V’ // Return sorted list of cars
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Figure 2: Importance of each factor in hyperparameter ex-
ploration



