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Abstract—In this work, we present a Real-Time, Multi-layer
cybEr–power TestbEd for the Resiliency analysis (RT-METER)
to support power grid operation and planning. Developed cyber-
power testbed provides a mechanism for end-to-end validation
of advanced tools for cyber-power grid monitoring, control, and
planning. By integrating a host of features across three core
layers—physical power system, communication network, and
monitoring/ control center with advanced tools,—the testbed
allows for the simulation of rich and varied cyber-power grid
scenarios and the generating realistic sensor, system, and network
data. Developing advanced tools to assist operators during
complex and challenging scenarios is essential for the successful
operation of the future grid. We detail a suite of algorithmic tools
validated using the developed testbed for the realistic grid data.

I. INTRODUCTION

THE growing complexity of electric power systems, along
with more frequent natural and human-made disrup-

tions, are challenging the operation of nation’s electric grid,
motivating the development of the ”smart grid” [1]. The
emerging smart grid is a cyber-physical system, incorporating
large numbers of networked devices for measurement and
control and encompassing many functions, participants, and
components [2], [3]. This complex system must be carefully
managed for resilience, defined in [4] as the system’s ability
to provide energy to critical loads even under adverse events
[5]. Developing and demonstrating advanced tools for decision
support as well as cyber-physical resilience assessment is
therefore critical to the resilient power grid. However, that
necessitates a cyber-physical testbed capable of capturing the
complex and multi-layered smart grid for validating these
tools.

The literature describes various electric grid testbeds [6].
The authors of [7] present a detailed comparison of various
testbeds developed by diverse research groups, describing
components, scalability, and foci. A cyber-physical testbed is
used for studies of wide-area situational awareness and cyber
security applications in transmission and operation [8]. The
PowerCyber tested with RTDS, and various communication
technologies is targeted towards voltage stability and cyber
security issues [9]. None of the testbeds integrate a real-time
power system simulator with a realistic control center model—
including industry-standard databases and the ability to run
advanced tools—connected via a communication network.
While [10] and [9] present testbeds that also allow users to
simulate device attacks on protection system components, they
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are narrow in their capabilities. Especially, the development
of comprehensive, flexible testbeds for resiliency analysis is
limited.

This paper presents the development of a multilayered
cyber-power testbed with three core layers: power, communi-
cation network, and control center. The control layer encom-
passes two primary, linked modules: algorithmic tools and data
storage & interface. This testbed enables the simulation of a
wide variety of cyber-power scenarios encompassing physical,
communication, and control events to validate tools for grid
planning, monitoring, control, and decision-support. Example
of tools presented in this work target a particular cyber-
power scenario and leverages data generated from the testbed
layers. Our purpose here is not to detail and demonstrate novel
algorithms but to illustrate how such tools’ development and
validation rely on an integrated cyber-power testbed. Our key
contribution is a testbed with the following features:
• A power layer with a real-time physical power systems

simulator and realistic emulation of grid sensors and
devices developed in HYPERSIM. It also has multiple
dynamic simulators to generate a massive amount of
event data used for advanced tool development.

• A highly detailed, flexible communication network layer
modeled in NS3 closely resembling a real communica-
tion network’s behavior, which enables the modeling of
various network events.

• A control layer with data storage, algorithmic tools and
interface elements. The interface provides an opportunity
to test the efficacy of algorithmic tools in assisting
human operators under challenging and unusual system
conditions.

• Example of algorithmic tools developed for inclusion in
the EMS in the control layer, which have undergone
preliminary validation with the testbed.

II. MULTI-LAYERED TESTBED ARCHITECTURE

Figure 1 shows developed hardware-in-the-loop, cyber-
power testbed, with the power, network, and control layers.
Some components span multiple layers or play a liminal
role between layers, but this multi-layer organization is an
effective mental model for understanding the testbed’s various
functionalities. This section describes each of the core layers’
components and features.

A. Power Layer
The power layer enables real-time simulation of an electric

power system. The simulation of the system utilizes HYPER-
SIM, a power system solver from Opal-RT technologies that
enjoys extensive use in academia and industry. HYPERSIM



Fig. 1: RT-METER: A Real-Time, Multi-Layer Cyber–Power Testbed Architecture

provides comprehensive solvers, toolboxes, and libraries to
model power grid infrastructure with a flexible, scalable,
parallelizable architecture, enables high-resolution simulations
on time steps of 5-200 µs [11]. In this work, the IEEE-14 bus
system model is used as the physical power grid model. This
relatively small, simple model is useful initial validation, but
other models can also be integrated into our testbed design.

Sensors that measure physical grid quantities are also part
of the power layer of the testbed. HYPERSIM supports
software versions of several sensors and processors, includ-
ing phasor measurement units (PMU) and remote terminal
units (RTUs) that can optionally be interfaced with external
hardware devices via dedicated interface cards. Measurements
made by sensors in the testbed’s power layer are encoded
and packed according to specific communication protocols
and then passed into the testbed’s network layer. HYPERSIM
supports several smart grid protocols such as DNP3.0, IEEE
C37.118, IEC61850. Our testbed also has the capability to
incorporate several different real-time power simulators, which
can be used for data generation for real-time monitoring and
control, along with planning and analysis tools. Currently, we
can integrate PSSE, RTDS, and MATPOWER in the power
layer.

B. Communication Network Layer
Communication networks in smart grids connect remote

substations with centralized and distributed control centers.
Sophisticated and advanced tools running in the control center
EMS need data input with acceptable latency and reliabil-
ity, which largely depends on the underlying communica-
tion network. The network layer we modeled reflects the
communication backbone in an operational electric system,
where data flows between a substation and control center.
Our communication model is not restricted to pure simulation.
Instead, it is built upon a combination of actual hardware, a
powerful and open-source network emulator NS3, and Linux
bridging technologies.

NS3’s core libraries support various communication net-
work types, with implementations of networking protocols
that closely match real-world performance. NS3 offers a TAP
bridge feature that enables any physical device to be connected
and communicate via the NS3 network without being installed
in the NS3 network itself. We leveraged the NS3 Tap-bridge
utilities to connect multiple external physical devices.

We leveraged the Ubuntu bridge-utils package to create a
virtual local area network to connect multiple devices in the
same network. As an added feature, our testbed employs a



defense-in-depth approach by which multiple layers of security
mechanisms are incorporated into a layered system like ours.
Data communication between each layer is separated by a
firewall and gateway router. The firewall and gateway router
functionalities are served by a single dedicated virtual machine
(VM) based on the Linux kernel. The firewall is managed
with a program called uncomplicated firewall (UFW) which
offers a simple command-line interface to configure firewall
access rules and uses iptables for configuration. We used Linux
Networking Subsystem to implement routing functionalities.

As shown in Fig 1, RTU’s and PMU’s modeled in HYPER-
SIM are connected via physical ports to a real NETGEAR
managed switch (Layer 2 Switch, X) which is also connected
to the VM (Firewall/Gateway, A) running firewall/gateway
functionalities. Our NS3 communication network, whose con-
nectivity structure mirrors the physical IEEE 14 bus sys-
tem structure, runs on a separate VM. For simplicity, we
only connect a single NS3 node (N9)—representing a sin-
gle substation—with the power layer via a firewall/gateway
(Firewall/Gateway, A), using the tap bridge and Linux bridge
technologies. To interface with the control center in the control
layer, NS3 connects to the master terminal unit (MTU) and
phasor data concentrator (PDC), implementing a defense-in-
depth approach by first connecting to (Firewall/Gateway, B)
and then connect to a Linux bridge (Layer 2 Switch, Y). In
NS3, each node other than the control center node represents a
substation. Additional substations can be integrated according
to the structure we have described. Our testbed uses the DNP3
protocol for SCADA applications between RTUs and the MTU
and IEEE C37.118 for synchrophasor applications between
PMUs and the PDC, enabling our testbed to be used for a
wide variety of power and cyber security analyses.

C. Control Layer

The MTU, PDC, and EMS all fall in the testbed’s control
layer as they engage in determining and executing control
actions and are usually situated in a centralized control center.
The real-time measurements obtained from PMUs and RTUs
in the power layer are used to estimate the power system’s real-
time operating state which is continuously monitored through a
Human Machine Interface (HMI) by the control room operator
who takes corrective actions if needed. The HMI is part
of the data storage & interface module within the control
layer. However, currently we don’t have an integrated HMI
to visualize the data.

As its name suggests, the components of the data storage &
interface module provide storage capabilities for generic sys-
tem data and/or act as the interface between human operators
and the system. This module includes many of the components
that would be found in a utility’s control center.

Databases are used to store sensors and communication
network data. One such database, included in this layer, is
the PingThings’ Berkeley Tree Database (BTrDB), a highly
performant database for time series data [12]. Another is a
log server from software firm Splunk, which stores cyber data
comprised of network traffic data and event logs. The varied
data in these databases is the input to advanced algorithmic
tools, which analyze the data to detect and diagnose anomalies
that could indicate network faults or cyberattacks. We have
included a good suite of advanced tools in the control layer,

which can serve the purpose of resiliency assessment in
different events. As shown in Fig 1, tools are divided into
two parts, real-time monitoring and control & planning and
analysis. We have also mentioned some tools as in Fig 1 to
include them in the future. Detailed descriptions of the tools
can be found in III.

III. VALIDATING ADVANCED TOOLS

The tools module within the control layer includes a port-
folio of algorithmic tools for grid monitoring and control. The
advanced tools are categorized into two broad areas, namely
(1) real-time monitoring and control and (2) Planning and
analysis. Our purpose here is not to propose and validate novel
tools but to illustrate more broadly how the testbed enables
tool development, validation, and interface.
A. Cyber-Power Resiliency Monitoring

Resiliency to natural disasters and cyber intrusions is criti-
cal, but there is no commonly accepted metric to quantify the
grid’s resilience. Various cyber-physical assessment metrics
are introduced to quantify the resiliency of cyber-power trans-
mission systems. This quantization is essential to minimize
the ramification of the unappealing events through appropriate
decisions and appliances. It adopted to study different cyber-
physical scenarios by analyzing the following components, as
shown in Fig. 2 concerning the physical side and the trans-
mission system’s cyber side. This established metric considers
network topology and changing real-time operating conditions
by utilizing graphical analysis and measuring the network’s
critical parameters to capture the power grid’s redundancy and
vulnerabilities.

Fig. 2: AHP methods to achieve resilience metrics.

We have developed several metrics for the cyber and power
layer for this analysis and monitoring of system performance.
The physical resiliency metric is defined based on several
primitive indexes such as the source-path-destination(SPD)
index, MW Availability Index, MVAr Availability Index, and
Loss of Load (LOL) Index. SPD index is calculated using
graph analysis of network topology, MW Availability In-
dex to characterize the availability of active power sources,
MVAr Availability Index that indicates the system’s ability
to maintain voltage in the acceptable limits, LOL Index that
quantify the percentage of critical loads served. These factors
are combined with Analytical Hierarchical Process (AHP)
method to obtain one intuitive metric for the operator to enable
fast decision making. For cyber resilience metrics, some base
metrics are defined. Quality of Service quantifies the com-
munication network performance based on latency, jitter, and
packet drop. Vulnerabilities in the Communication Network
use graph attack to abstract the available paths for attackers to
exploit vulnerabilities and provide attackability metrics. Next,



the Security metric index is developed based on deployed
security mechanisms. These metrics are combined to obtain
cyber resiliency metrics for fast decision-making. It is essential
to note here that the developed resiliency metric integrates
various factors that impact system resiliency performance.
Additional factors can be added to meet specific systems
requirements under study. The developed CP-TRAM method-
ology is validated on the IEEE 14-bus system with different
physical conditions and cyber scenarios to address the cyber-
physical resilience metrics. For physical system resilience, CP-
TRAM metrics are applied to the following five-event cases:
(1) normal operation of the system, (2) a single generator
outage, (3) outage of two separate transmission lines, (4)
introduced a supplementary reserve generator and (5) loss of
load. For each case scenario, the system load conditions are the
same and the metrics are computed based on the measurements
obtained from the simulator and contingencies summarized in
Table I, in which the vector of weight for physical system
resilience is defined as wPhysical = [0.55, 0.15, 0.10, 0.20]

T .

TABLE I: Computed CP-TRAM Metrics for Different
Operating Conditions of Transmission System

Events SPD MW MVAr LOL RIPhysical CP-TRAM ( Φ1) CP-TRAM(Φ2)
1 10.6867 0.4665 2.9973 1 1.000 0.3165 0.6665
2 8.7171 0.1455 2.3144 1 0.8153 0.2580 0.5434
3 7.7913 0.462 2.9191 1 0.7529 0.2383 0.5018
4 12.7552 0.8362 3.2077 1 1.1903 0.3767 0.7933
5 8.795 0.6645 3.0386 0.611 0.8332 0.2637 0.553

B. Resiliency Driven Planning and Analysis.

We can develop tools to plan/analyze different cyber secu-
rity mechanisms and cyber network topologies that use the
cyber-physical resiliency assessment metrics to select the best
configuration by improving the system performance based on
resiliency score in planning and analysis. For Example, cyber
resiliency is computed by considering two combinations of cy-
ber security strategies and finally calculating the cyber-power
resiliency score under various physical systems scenarios. As
shown in Table II, the combination Φ1 adopts a lower level of
security mechanisms compared to the combination Φ2, where
the security levels of different cyber mechanisms are selected
based on our previous work [13]. The cyber attackability

TABLE II: Comparing Different Combinations of Cyber
Security Strategies Adopted at Substation

Security
Mechanisms Combination Φ1 Combination Φ2

SM1
Low: Basic
Authentication High: MFA

SM2 Medium: NIDS High: SIEM

SM3
Medium: NIPS,
Configured Firewall

High: NIPS, Configured
Firewall, VLAN

SM4 Medium: Symmetric Key High: Asymmetric Key
SM5 Medium: Intermediate High: Advanced

SM6
Medium: Educational
programs

High: Periodic employee
training and scheduled
penetration tests

scores are the same for these two combinations since the
network topology is not changed, i.e. aΦ1

= aΦ2
= 0.3333.

And after normalizing the cyber security scores based on the
highest security combination, i.e. Φ2, the security scores are
sΦ1 = 0.2999 and sΦ2 = 1 respectively. By applying the

Fig. 3: Two clusters and outliers visualized over five rounds
of k-ShapeStream clustering. Gray and colored lines indicate

individual events and cluster centers respectively. Inset
numbers show number of events added to the cluster in each
round. The inset distribution visualizes the probability metric

associated with each cluster: notice the narrowing
distribution representing increasing certainty in the cluster.

same weights to attackablity and security, which is wCyber =

[0.5, 0.5]
T , we have calculated the CP-TRAM score for both

combination as shaown in Table I.

C. Event detection, Classification, and localization

The detection, classification, and localization of physical
events is an essential algorithmic tool to enable situational
awareness in the grid. In its broadest meaning, events can
include any change in the system. In this work, we highlight a
statistical approach for event detection, an unsupervised clus-
tering approach for event classification, and a straightforward,
physics-based approach for event localization, all using high-
resolution voltage phasor data from PMU devices.

Event Detection. Our event detection tool uses a statistical
approach—well-suited for generic anomaly detection [14].
Such an approach presumes that events result in a change in
the measurements’ statistics and, therefore, doesn’t assume a
specific event type or measurement signature. The tool can
flag both physical events and communication layer issues that
manifest in the measurement streams: bad or missing data
points. The approach associates a probability measure with
each detected event, capturing our certainty that it is a real
event. The algorithm, termed Bayesian event detection, tracks
and updates moment estimates and then used a Bayesian score
to identify events. Mathematically, it assumes that voltage
measurements arise from a Gaussian distribution, whose mean
and variance parameters follow a Normal-inverse-chi-squared
(NIX) prior. If a new measurement point is sufficiently un-
likely given current parameter values, it is classified as an
event. The Gaussian parameters are reset after an event is de-
tected, reflecting the renewed uncertainty in the measurement
statistics following an event. This algorithm is suited for event
detection in PMU stream.

Event Classification. Our event classification tool—termed
k-ShapeStream—uses a streaming clustering approach to iden-
tify recurring event signatures [15]. A window of measure-
ments capturing the event signature can be passed to k-
ShapeStream once an event is detected, which will either



be able to match the event to previous events with similar
signatures or flag the event as an outlier. There is no explicit
event labeling with k-ShapeStream. However, the evidence of
prior, similar events can enable classification and diagnosis.
k-ShapeStream not only identifies clusters of recurring events
but attaches a probability metric to the cluster membership,
enabling an intuitive understanding of the algorithm’s confi-
dence in the cluster membership.

This algorithm’s application to grid data is visualized in Fig.
3. This data is a distribution PMU data from an operational
feeder and demonstrates the algorithm’s efficacy in clustering
recurrent event signatures and separating outliers. The visu-
alization of clusters and their attached probability metrics is
intuitive and can be presented to a human operator through
the testbed HMI interface.
Event Localization Events are localized to the network node,
which witnessed the largest change in measured voltage mag-
nitude at the event time [14]. The physical justification for
this approach is based on two simplifying assumptions. First,
that an event consists of a change in the power injection at a
single bus. Second, that the following power flow linearization
holds: V ≈ RP where V ∈ RN is the set of bus voltage
magnitudes, P ∈ RN is the set of real power injections at
each bus, and R ∈ RN×N is the N × N system resistance
matrix. Under these assumptions, and using the fact that the
diagonal elements of R have the largest magnitude [16], our
algorithm will correctly localize the event to the source bus.

The tools described in this section rely on the testbed’s
ability to simulate physical and cyber system events, generate
realistic, synthetic PMU data, and store this data in the high-
performance time-series BTrDB. BTrDB’s structure enables
rapid access to large volumes of very high-resolution PMU
data [17], which is critical for these tools’ efficiency. The
results of these tools will eventually be communicated back
to the data storage & Interface Layer, where they can be
visualized for a human user. In the near future, we will
generate an extensive library of physical grid events in the
testbed, on which these algorithms can be extensively validated
from both a technical and human user perspective.

D. Model based diagnosis

We present a discrete model-based methodology, Temporal
Causal Diagrams (TCDs) [18], as part of this testbed to infer
missed and spurious detection problems of protection system
while correctly diagnosing faults in the physical system. The
two core components of any model-based diagnosis system
are 1) Fault model i.e., the representation of faults and their
effects on the system in terms of observable discrepancies or
alarms, 2) Reasoning algorithm that utilizes the fault model
to produce hypotheses that explain the observed alarms. For
TCD based diagnosis system, these components are defined as
follows:

1) Fault Model: A TCD fault model uses Temporal Fault
Propagation Graph (TFPG) [19] to relate the effects of faults
in physical equipment with the response of protection relays.
A TFPG is a directed graph where a node can be a fault or
discrepancy, and an edge between them implies fault affect
propagation. In the power transmission system, a fault node
can represent a grounding fault in a segment of a transmission
line, whereas the connected discrepancies denote the response

TABLE III: TFPG sub-model for IEEE 14 bus system
Segment
ID

Fault
Node

Discrepancies Time

TL11 10
1

(0-20%)
F 1 z1 DR11 10, z2 DR11 10, z3 DR11 10,

z2 DR10 11, z3 DR10 11, z2 DR6 11,
z3 DR6 11, z3 DR9 10

0-0.032
secs

TL11 10
2

(20-
50%)

F 2 z1 DR11 10, z2 DR11 10, z3 DR11 10,
z1 DR10 11, z2 DR10 11, z3 DR10 11,
z2 DR6 11, z3 DR6 11, z3 DR9 10

0-0.032
secs

TL11 10
3

(50-
80%)

F 3 z1 DR11 10, z2 DR11 10, z3 DR11 10,
z1 DR10 11, z2 DR10 11, z3 DR10 11,
z2 DR9 10, z3 DR9 10, z3 DR6 11

0-0.032
secs

TL11 10
4

(80-
100%)

F 4 z1 DR10 11, z2 DR10 11, z3 DR10 11,
z2 DR11 10, z3 DR11 10, z2 DR9 10,
z3 DR9 10, z3 DR6 11

0-0.032
secs

of different zone elements associated with the distance relays
in the vicinity. Table III shows a subset of the TFPG model for
IEEE 14 bus system that illustrates the relationship between
faults injected in the transmission line, TL11 10 (between
buses 11,10) and three forward-looking zone elements (z1,
z2, z3) of primary (DR11 10, DR10 11) and backup (DR6 11,
DR9 10) distance relays. The transmission line, TL11 10, is
divided into four segments such that for each segment, the
response of all zone elements in every distance relay is
consistent as indicated in Table III. For instance, if a fault
is injected anywhere in the segment, TL11 10

1 , then all three
zone elements of distance relay, DR11 10, should detect the
decrease in impedance. Consequently, time-stamped events,
labeled as z1 DR11 10, z2 DR11 10, z3 DR11 10 are logged
to signify detection. Similarly, detection events related to the
remaining relays’ zone elements are also logged as described
in Table III. A TFPG edge consists of an attribute to signify the
minimum or maximum time taken for fault effect to propagate
from source to destination node. The last column of the table
captures this range which is equal to fault detection time for
distance relays, i.e., ≤ 0.032 secs [20].

2) Reasoning Methodology: The reasoning algorithm is
based on the parent-child relationship between nodes in the
TFPG fault model. After receiving the first alarm, the reasoner
identifies the corresponding discrepancy in TFPG and traverses
backward to create one hypothesis for each reachable fault
node. A hypothesis, h is a tuple, < Fp,Fc, C, E ,M, I >,
where Fp is a set of physical faults that corresponds to fault
nodes in TFPG. Fc is a set of cyber faults (missed and spurious
detection) related to zone elements of distance relays. C is the
set of alarms consistent with the hypothesis. E is a collection
of alarms expected to be active in the future. An alarm can
remain in the expected set for a fixed amount of time, dictated
by the time attribute of the fault propagation edge between the
corresponding discrepancy and its parent node. If an alarm is
received within the appropriate time period, then it is moved
to a consistent set; otherwise, it is added to the missing set,
M. For every missing alarm, a ∈M, a missed detection fault,
famd, related to the zone element is added to Fc. Finally, I
contains a collection of alarms that cannot be explained by
the hypothesis h. For every alarm, a ∈ I, a spurious detection
fault, fasd associated with the zone element is added to Fc.
The reasoning algorithm ranks the hypothesis with minimum
number of fault nodes, |Fp ∪ Fc| first, following the law of
parsimony [21].

Table IV shows the best hypothesis generated by the



TABLE IV: TCD Reasoner Output
Scenario Alarms Reasoner Hypothesis

Missed detection in z1, z2, z3
elements DR10 11 at t = 0 sec,
Fault injected at 40% from bus
11 at t = 1 sec

z1 DR11 10, z2 DR11 10, z3 DR11 10,
z2 DR6 11, z3 DR6 11, z3 DR9 10 logged
at t = 1.016 secs

ID = H1, Rank = 2 Fp = F 2, at t = [0.84-1.048 secs], Fc = {fz1 DR10 11

md ,
fz2 DR10 11

md , fz3 DR10 11

md }, C = {z1 DR11 10, z2 DR11 10, z3 DR11 10,
z2 DR6 11, z3 DR6 11, z3 DR9 10}, E = ∅, M = {z1 DR10 11, z2 DR10 11,
z3 DR10 11}, I = ∅ ( Ground truth)
ID = H2, Rank = 1 Fp = F 1, at t = [0.84-1.048 secs], Fc = {fz2 DR10 11

md ,
fz3 DR10 11

md }, C = {z1 DR11 10, z2 DR11 10, z3 DR11 10, z2 DR6 11, z3 DR6 11,
z3 DR9 10}, E = ∅, M = {z2 DR10 11, z3 DR10 11}, I = ∅

Spurious detection in zone 3
element of DR11 10 at t = 1 sec

z3 DR11 10 logged at t = 1.016 secs ID = H0, Rank = 1, Fp = ∅, Fc = {fsd
z3 DR11 10}, C = ∅, E = ∅, M = ∅, I =

z3 DR11 10 (Ground truth)

reasoner for two scenarios, wherein first scenario a fault is
injected in line TL11 10 at a distance 40% from the bus 11
with a missed detection in all zone elements of relay DR10 11.
The second scenario shows a reasoner response when zone 3
element of relay DR11 10 incorrectly detects a fault condition.
As illustrated in the last column of Table IV, the highest-
ranked hypothesis of the TCD reasoner correctly identifies the
root cause(s) of the observed alarms in the second scenario.
However, the second-best hypothesis accurately diagnoses
physical fault and missed detection in all zone elements of
DR10 11 in the first scenario.

IV. SUMMARY

A flexible and integrated cyber-power testbed is needed
for the validation of advanced tools to enable resiliency. A
cyber-power testbed is also essential for training grid engineers
and researchers to adapt to new conditions and effectively
use new technologies. This work describes the design and
implementation of a multi-layer cyber-power testbed incor-
porating real-time simulation and realistic models of various
measurements, devices, and networks. Our testbed is capable
of storing the large volumes of data required by advanced
tools at the control center layer. The incorporation of firewalls
according to a defense-in-depth approach creates a realistic
cyber context, providing an opportunity to explore different
security mechanisms with rule-based access policies for un-
trusted and trusted traffic. This range of features also allows
the testbed to be used to understand and quantify cyber-
physical resilience.
In the future, we will continue to use this testbed to (i) model
cyberattack scenarios in different layers, capturing network
data under normal and attack scenarios for use in attack
detection tools, (ii) integrate a human-machine interface to
visualize, (iii) enable remote access to this testbed to be used
by a wide range of communities for learning and research
purposes, (iv) Develop and validate additional number of
advanced tools.
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