
On Decentralized Route Planning Using the Road
Side Units as Computing Resources

Jose Paolo Talusan1, Michael Wilbur2, Abhishek Dubey2, and Keiichi Yasumoto1

1Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
{talusan.jose paolo.tg3, yasumoto}@is.naist.jp

2Vanderbilt University, Nashville, TN 37240, USA
{michael.p.wilbur, abhishek.dubey}@vanderbilt.edu

Abstract—Residents in cities typically use third-party plat-
forms such as Google Maps for route planning services. While
providing near real-time processing, these state of the art cen-
tralized deployments are limited to multiprocessing environments
in data centers. This raises privacy concerns, increases risk for
critical data and causes vulnerability to network failure. In this
paper, we propose to use decentralized road side units (RSU)
(owned by the city) to perform route planning. We divide the
city road network into grids, each assigned an RSU where
traffic data is kept locally, increasing security and resiliency
such that the system can perform even if some RSUs fail. Route
generation is done in two steps. First, an optimal grid sequence is
generated, prioritizing shortest path calculation accuracy but not
RSU load. Second, we assign route planning tasks to the grids
in the sequence. Keeping in mind RSU load and constraints,
tasks can be allocated and executed in any non-optimal grid but
with lower accuracy. We evaluate this system using Metropolitan
Nashville road traffic data. We divided the area into 500 grids,
configuring load and neighborhood sizes to meet delay constraints
while maximizing model accuracy. The results show that there
is a 30% decrease in processing time with a decrease in model
accuracy of 99% to 92.3%, by simply increasing the search area
to the optimal grid’s immediate neighborhood.

I. INTRODUCTION

Half of the world’s population reside in urban areas. By
2020 that number is expected to increase to 70% [1]. This
rise of population also brings with it a rise in housing density
and traffic. These strain city services so much so that cities are
looking for more and more methods to meet growing demands.
One such method is to use data-intensive applications to
maximize the utility of the limited resources. Companies such
as Google offer a variety of platforms that leverage data and
offer cities and its citizens access to services. One service is
route planning which is used to avoid the increasing traffic
congestion. Cloud environments process millions of route
queries per day, guiding vehicles to and from their desired
destination.

While these are enough for user routing, future use cases
such as autonomous vehicles demand less latency. Such con-
straints expose the limitations of the centralized cloud-based
route planning models. There is also an increasing concern
regarding data privacy issues since cities typically leverage
third-party services from private cloud-based companies to
providing services such as emergency dispatch services. These
private companies often rely on centralized services in remote

data centers which are more exposed to data leakage attacks
and more susceptible to disruption and communication failure.
Cities risk service disruption during disaster scenarios, which
is when such emergency services are needed most.

In order to solve these issues, cities are already investing
in deploying RSU networks in part for the preparation of
autonomous and connected vehicles. These devices which are
low powered Raspberry Pi-like devices placed all along city
roads and highways. Since each RSU is capable of limited
amount of processing and storage, when multiple RSUs are
connected in a sub-network, they form a fog computer [2]
and can be used for route planning services. This sub-network
is a private, reliable and pervasive network that cities and its
citizens can use.

While route planning [3] is a well-studied topic, state-of-
the-art route planning algorithms [4], [5], [6] are developed
typically as centralized approaches for centralized architec-
tures such as cloud environments and data-servers. In these
scenarios, data is shared and parallelized, allowing for typical
search algorithms to access to a shared memory and direct
communication between multiple processors. These algorithms
are not suited for a distributed setting.

The major challenge is in designing route planning algo-
rithms that work well in a distributed setting such as with
RSUs. The idea behind our approach is to divide the city into
grids which we then assign RSUs to. Each RSU has its own
local data for the grid it covers as well as models for route
planning. The goal and contributions of this paper are:

1) We describe a route planning algorithm designed specif-
ically for RSUs at the network edge.

2) Our approach shows how various tasks related to this
algorithm can be optimally scheduled on the cluster of
road side units.

3) Evaluation shows that task allocation over neighbor grids
provide a trade-off between processing delay and accu-
racy. The greater the search area, the less the processing
delay but also the accuracy. When compared to central
approaches, ours is able to respond with less latency.

In this paper we show that routing algorithms designed
specifically for fog computing such as for the RSUs at the
edge, require more attention to task allocation given the
processing and memory constraints of each device. Due to

the distributed nature of the system, data is not stored in a
central location so there will be trade-offs between processing
delay and accuracy. Our approach has significant speed gain
compared to centralized approaches and offer system reliabil-
ity and data security.

Outline: Fundamental notation and related work is pre-
sented in Section II. The urban middleware platform is dis-
cussed in Section III which includes the system architecture
and deployment. Section IV outlines the task allocation algo-
rithm for decentralized networks. A simulated case study is
detailed in Section V and conclusions with future work are
provided in Section VI.

II. RELATED WORKS

A. IoT Middleware and Task Assignment Problem

Currently IoT computation is typically offloaded to a cen-
tralized cloud for processing [7]. Cloud computing offers near
unlimited processing and storage capacity for complex smart
city applications, however latency can become a bottleneck for
such applications. In this case, edge and fog networks offer the
potential to move processing and computation to the network
edge, thus reducing latency [8], [2]. These paradigms look to
assign delay sensitive tasks to resources closer to the end user.

The challenges associated with edge and fog computing
are primarily associated with usability, coordination and task
assignment. Task scheduling in fog computing with the goal
of optimizing resources to minimize tasks completion time [9]
and efficiently utilizing resources to improve the performance
of IoT services in terms of response time, energy, and cost
reduction [10] have been studied. Therefore much research
has been done on urban middleware designed to coordinate
large systems of heterogeneous edge or fog networks [11],
[12] and [13].

A primary goal of urban middleware is to formalize how
best to assign computation tasks to available resources. We
refer to this problem as the task allocation problem [14].
This problem has been extensively studied in the cloud [15],
[16], [17]. The main purpose of such research is to adaptively
provide the processing resources while meeting the deadline
for all jobs while taking into account running costs. The task
allocation problem in cloud computing therefore typically does
not take into account data transfer delay, as typically the
networking between virtual machines in a cloud environment
is negligible. A key component of urban middleware is re-
source discovery, which is the method by which edge and fog
networks are identified [18], [19].

Therefore, recent research in the provisioning of resources
in edge and fog networks has become increasingly important.
Skarlat et al. [20], [21] proposed a platform centered around
the idea of fog colonies (sets of fog nodes) with a centralized
cloud for additional resources when needed. Xu et al. [22]
proposed a platform for location-based and latency sensitive
applications which use micro data centers on the network
edge or large centralized cloud for processing. This research
includes a cloud component for additional processing and

TABLE I: List of symbols

Symbol Description
Gr Grids making up the target area
RSUi Road Side Unit i
R Road Side Unit assigned to a grid
N Network graph, N = (V,E)

V Road intersections
E Set of roads
di Local speed data generated by sensors in a grid
Qi Set of queries sent within in the same time period i

Query
s User source location
d User destination location
τs User desired travel time

Route Planning
SGq Sequence of grids (s to d) generated per query q
kq Dynamic modified based on q
Tq Sequence of tasks tq,i for each SGq

tq,i Route planning tasks assigned to each grid in SG
Task Allocation

T Set of all tasks Tq for all queries Qi

xt,r Assignment variable, 1 if task is assigned, 0 otherwise
ST (t), ET (t) Task execution start and end times

Dth Delay threshold for query responses
IT (q) Time when q was issued
ct(t, r) Computation time of task t executed at RSU r

MA Model accuracy of the route planning model
MD(g, g′) Manhattan Distance between the two different grids
MaxDist Maximum distance a route for q travels from s to d

storage. Research on in-situ edge IoT devices looks at task
assignment without relying on cloud resources [23] [24].

B. Centralized and Decentralized Routing

Dijkstra [3], Bellman [25] and Ford [26] proposed some of
the first routing planning algorithms. Routing algorithms such
as A* [27] use heuristics to guide the shortest path search
while contraction hierarchies [4] simplify the graph for faster
search.

Current state of the art route planning is typically deployed
in centralized cloud systems [4], [5], [6]. In this architecture
the routing algorithms are deployed in a central location from
which it serves user queries. Within this context QoS im-
provements (e.g., in terms of query response time) have been
made by parallelizing shortest path algorithms [28], [29], [30].
These parallelized algorithms split processing over multiple
nodes. These approaches provide high scalability, optimal for
cloud based services. However, these models assume a shared
memory and do not take into account network latency between
nodes, and therefore are not easily adaptable to edge or fog
centric architectures.

III. SYSTEM MODEL

This section describes assumptions on the target regional
area, decentralized route planning service, and the tasks gen-
erated by user queries. Table I summarizes the symbols used
throughout the paper.

Fig. 1: Target spatial area is divided into grids

A. Spatial Region

The target area is split into equidistant grids, as shown in
Fig. 1, which we denote as Gr = {g1, g2, · · · , gm}. RSUs are
then deployed on these grids, the typical distribution is one
RSU per one grid. Each RSU is connected to a regional area
network1.

Each RSU is assumed to have storage and computational
resources to store sensor data as well as execute tasks from a
task queue. The distributed network is denoted as a resource
graph with a set of vertices R = {r1, r2, · · · , rm}. Each vertex
represents an RSU over the subarea, while each edge is an
undirected link between any two RSUs. The physical area map
is represented by a network graph N = (V,E) where V are
road intersections and E are road segments.

RSUs are assumed to be both resource and memory con-
strained (e.g., Raspberry Pi-like computation power). As such,
each RSU can only accommodate a finite amount of simultane-
ous tasks and hold a finite amount of sensor data and machine
learning models.

B. Decentralized Routing Service

This service allows users to access to time-dependent and
privacy-preserved routing services for smart transportation,
even without the Internet. This does not limit the network only
to routing services. Other decentralized services that utilize
geo-spatial data can also take advantage of fog computing
using RSU network, however for this paper we focus on a
decentralized routing service.

Each RSU ri ∈ R receives data di from a set of sensors
(e.g., TMC) that gather speed data across roads within a
designated subarea (grid) gi. To add an additional layer of
resiliency in case of RSU failures, speed data is shared to
neighbor RSUs. We assume that data is compressed and
distributed during hours where queries are minimal. We also
assume that data shared to neighbors will not be as accurate

1We assume that RSUs are connected with wired links.

as data in the original RSU. This loss in accuracy relates to
the quality of the computation when tasks are executed in a
grid other than the most optimal one. If some RSUs fail or
cannot handle queries, the system can still perform their route
planning tasks by transferring tasks to its neighbors.

C. User and Query Tasks
Each RSU r ∈ R is able to receive some query q with

parameters (id, s, d, τs). id is used to differentiate the queries
while s and d are the route’s desired start and destination
points respectively, and τs is the user’s desired departure time.
Queries can be received asynchronously by multiple RSUs
at some time window i, we denote these sets of queries as
Qi = {qi,1, qi,2, · · · , qi,ni}, where i is the time window the
particular set of queries were received.

For each received query, we assume that a corresponding
sequence of grids where optimal travel path is likely included
will be generated2. We call this SGq = 〈gq,1, gq,2, · · · , gq,kq

〉
where q is the query while kq is a modifier that is dynamically
generated and is based on the query as well. This sequence
of grids corresponds to a grid level view of the route the
application serves the user.

For every SGq , a sequence of tasks Tq =
〈tq,1, tq,2, · · · , tq,kq

〉 where tq,i is the route planning
task in grid gq,i is also generated. These tasks include getting
the travel time from one vertex v ∈ V via a road segment
e ∈ E as well as creating the path through these using path
search algorithms such as Dijkstra’s.

IV. DISTRIBUTED TASK ALLOCATION

This section describes the assumptions on the decentralized
edge networks including the RSUs, Manhattan Distance and
sequence grid generation. Also we design and define the
distributed task allocation problem which breaks down queries
and assigns them as tasks to various nodes within the edge
network.

A. Definition of the problem
Given the resource graph with vertices R, a set of queries Qi

that generates task graph (sequence) Tq , the problem is defined
as identifying the most efficient and optimal task assignment
to various RSUs of R. For all tasks of T over R, optimal
assignments should satisfy the query response time (delay)
constraints and maximize the computation accuracy for all
queries.

1) Definitions of task assignment and delay: We set Eq. 1
as the first constraint. We define T as the set of all tasks Tq
of all queries Qi.

T ,
⋃

q∈Qi

Tq (1)

For every pair of task t ∈ T and RSU r ∈ R, we define
a variable xt,r which becomes 1 if t is assigned to r and 0
otherwise.

2We assume that each RSU has a model to compute the next grid toward
the destination point with inputs of the current grid, the source and destination
points and start time. By repeating this next grid computation, we can get the
sequence of grids from the source to the destination point.

Given this, we assume that every task from T is assigned
to one RSU, thus the following condition must hold.

∀t ∈ T,
∑
r∈R

xt,r = 1 (2)

In each task graph Tq , tasks must be sequentially executed.
Hence the following equation must hold. Here, ST (t) and
ET (t) represent task execution start and end times, respec-
tively.

∀Tq(q ∈ Qi)∀i(1 ≤ i ≤ kq − 1)ET (tq,i) < ST (tq,i+1) (3)

Upon assignment of all tasks in T , we define that the overall
service delay for queries Qi, should not exceed some delay
threshold Dth. Here, IT (q) is the time when the query is
issued.

∀q ∈ Qi, ET (tkq
)− IT (q) ≤ Dth (4)

Each RSU r executing task tq,i will also execute other tasks
assigned to it, so the time until finishing execution of tq,i will
be the sum of execution times of these tasks for the worst
case. Then, task execution start and end times of each task
tq,i can be defined as follows.

(5)

ST (tq,i)
def
= IT (q)+

i−1∑
j =1

∑
r ∈R

∑
t′ ∈T

ct(t′, r) ·xt′,r ·xtq,j ,r

+

i−1∑
j =1

∑
r ∈R

∑
r′ ∈R

delay(r, r′) · xtq,j ,r · xtq,j+1,r′

ET (tq,i)
def
= ST (tq,i) +

∑
r∈R

ct(tq,i, r) · xt,r (6)

where ct(t, r) represents the computation time of task t
executed at RSU r and delay(r, r′) is the communication
delay to transfer the computation result from RSU r to r′.
These are given in advance.

Equation 5 describes that the task tq,i can only be executed
after tasks preceding it (tq,1, ..., tq,i−1) are executed and the
data computed by the preceding grids, such as travel time and
shortest paths, has been received.

2) Accuracy and RSU Manhattan Distances: Given a set
of queries Qi, the most ideal assignment of tasks Tq to
RSUs R is one which matches the generated grid assignments
SG(q) perfectly. However due to the amount of queries and
computation capacity of RSU, tasks can be reassigned to other
RSUs. We compute these differences in the expected and
assigned grids as the following3: First, computation accuracy
denoted by MA is defined as follows.

MA(g, g′) , 1− dist(g, g′) (7)

3As described before, data of each grid is replicated in other grids (RSUs)
but the replication data updates will be less frequent in further grids.

Algorithm 1: Optimal Sequence Grid Generation
Input: Source s ∈ V , Destination d ∈ V , Time: τ
Output: Optimal sequence grid OG

1: Initialize SeqGrids list;
2: i← 0;
3: SeqGrids[i]← GetGrid(s);
4: gfinal ← GetGrid(d);
5: while SeqGrids[i] 6= gfinal do
6: currentGrid← SeqGrids[i];
7: SeqGrids[i+ 1]←

GetNextGrid(currentGrid, gfinal, τ);
8: i← i+ 1;
9: end while

10: SeqGrids[i] ← gfinal;
11: return SeqGrids

where dist(g, g′) is given by:

dist(g, g′) ,
MD(g, g′)

MaxDist
(8)

MD(g, g′) is the Manhattan Distance between the two
different grid assignments. While MaxDist is the maximum
distance a route needs to traverse to go from source to
destination and is based on the service area covered by the
application.

Eq. 7 shows the estimated model accuracy difference due
to utilizing an RSU that is assigned to a grid different from
the expected grid given by SGq .

3) Utility Function: In our target environment, the user’s
primary desire is to receive the response to their query within
a preferable delay time Dth given by Eq. 4 and a secondary
desire of achieving high accuracy of computed path given by
Eq. 7. Based on this we design the utility function U(q). For
every time window i, every task sequence Tq generated by q
should be assigned to RSUs such that it meets the constraints
given by Eqs. 1, 2 and 4, while maximizing the accuracy of
the generated route. Then, we define U(q) as follows:

U(q) =

kq∑
j=1

MA(gq,j , g(tq,j))

kq
(9)

where g(t) is the grid of the RSU to which task t is assigned.
4) Objective Function: The purpose of the distributed task

allocation is to find optimal assignments of tasks T to RSUs
R, in order to satisfy the given constraints and maximize
the model accuracy of the generated routes. We define the
objective function as:

Minimize :
∑
q∈Qi

U(q) subject to (2)− (4) (10)

B. Task Assignment Algorithm

Given a network map which has been divided into grids
(Fig. 1), and using Algorithm 1, we generate an optimal

Algorithm 2: Get Next Grid

Data: Equivalent Grid Routing model Ê
Input: Current Grid: gcurr, Destination: gdest, Time: τ
Output: Next Grid: gnext

1 begin
2 gnext ← Ê.predict(gcurr, gdest, τ);
3 return gnext

Algorithm 3: Sequence Grid Task Assignment
Input: Set of queries: Q;
Output: Modified Grid: MG

1 begin
2 foreach q ∈ Q do
3 OGq ← GenOptGSeq(q.s, q.d, q.τ);
4 if Delay(OGq) > Dth then
5 OGq ← ModGSeq(OGq);

6 AssignTasks(OGq);

sequence of grids based on the user’s desired source s,
destination d and time τ . Line 3 in Algo. 1 gets the equivalent
grid from coordinate s. It builds the optimal sequence grid by
appending the next best grid one at a time in Line 7. Algorithm
2 receives the current grid, d and τ from Algo. 1. It uses a
predefined routing model Ê, which is assumed to be trained
on trips over N , to predict the next best grid to use given the
inputs.

Algorithm 3 is the start point of the system, it generates
OG in line 3 using Algo. 1. If the OG does not satisfy the
delay constraint Dth, then it passes the OGq to Algorithm 4
which uses the set of constraints for processing, query and
delay in order to identify which RSU in each grid can handle
the routing tasks while satisfying the delay constraint Dth.

Algo. 4 modifies the SG by selecting the best possible
neighbor node for randomly selected g ∈ SG and repeats this
until the delay constraint Dth is met. We select the best grid
bg based on the grid’s RSU utilization from L level neighbors
of the selected grid by using GetLeastUtilized().

V. EXPERIMENTS AND RESULTS

In this section, we evaluate our task allocation algorithm
for decentralized architectures. We discuss the experimental
setup and data used in our simulation. We evaluate different
task allocation configurations used in our algorithm and finally
we evaluate our approach and compare it to a centralized task
allocation solution.

A. Experiment Setup

In this section we discuss the necessary setup for our
experiment.

1) Network Setup: We used HERE API [31] data which
includes speed data for each road segment within the
Nashville Metropolitan area with a bounding box of

Algorithm 4: Modified Sequence Grid Generation
Input: Sequence Grid: SG
Data: Neighbor Level: L;
Output: Modified Grid: MG

1 begin
2 MG← SG;
3 while Delay(MG) > Dth and |SG|6= ∅ do
4 g ← a grid randomly selected in SG;
5 ns← GetGridNeighbors(g, L);
6 bg ← GetLeastUtilized(ns);
7 MG← modified MG by replacing g with bg
8 SG← SG− {g};
9 return MG

(−87.04999, 35.97,−86.510, 36.42). A network graph is
generated from this data which consists of a total of 2623
nodes and 10880 edges. We partition this network graph
into equidistant grids using geohashing with a precision
of 5 shown in Fig.1. The grid area affects total number
of sensors which in turn affects the processing time for
each RSU. We may vary the area and number of grids in
order to identify the limitations and capabilities of RSUs
in maintaining a particular area or number of sensors. For
the simulation, we partitioned the Metropolitan area into
613 grids each with an area of 600m2.

2) RSUs: RSUs used in this are simulated in a central-
ized configuration. Each grid above, is assigned to a
corresponding RSU. RSUs are assumed to have infinite
memory and accept and execute tasks generated by the
task allocation algorithm. RSUs are assigned a grid’s
sub-graph which hold location and speed data for that
particular grid.

3) Speed Data and Accuracy: Speed data utilizes data
provided by the HERE API for the month of March 2018.
We assume that as the MD(g, g′) increases, the model
accuracy decreases by an equivalent factor.

4) Trip Data: To simulate routing queries, we syntheti-
cally generate up to 100 source and destination pairs
at random from the Nashville Metropolitan Area. A
time window was chosen randomly out of 24 hours. An
optimal sequence grid is generated from each pair and
we perform our task allocation algorithm based on this
optimal sequence grid.

B. RSU constraints

In order to set the value of the constraints, we run 100
queries through different neighbor levels in order to identify
the delay’s cumulative distribution function (CDF) shown in
Fig. 8. We then set different Dth as 200ms, 100ms and 60m for
0th, 1st and 2nd neighbor levels respectively. These constraints
limit the amount of tasks that can be assigned to a particular
RSU.

C. Processing time and Delay calculations

These delay take into account both processing times and
communication delay between grids. Processing times, de-
scribed as ct(t′, r), are computed based on the number of
nodes, Vg , in a sub-graph Ng = (Vg, Eg) of each grid. The
greater the number of Vg that longer the processing times for
routing within grid g. Delay times, delay(r, r′), are given by
MD(g, g′) between the optimal RSU in SGq and actual RSU
it was assigned to, as well as the distance from the actual
RSU to the next RSU which contains the task’s next step.
The values for ct(t′, r) range from 0.026ms to 0.570ms per
task (these values are based on actual measurement on Mac
mini). While delay(r, r′) ranges from 0 to 3 hops per task
that correspond to 0 to 3ms communication delay (we assume
1ms for 1 hop communication).

D. Grid Neighbor Levels

Neighbor levels vary how many other RSUs are taken into
account during task allocation. For this use case we attempt
up to 3 levels of neighbors. As the level of neighbors increase,
the larger the search area for task allocation is, similar to [23].
Fig. 2 shows the number of neighbor nodes (RSUs) for the 0th

and 1st levels. For the 0th level, only RSU (i, j) is selected,
1st increases this number to the surrounding 8 nodes, and a
further 24 nodes for 2nd.

Fig. 2: Neighboring Nodes of Node (i, j). The sequence with arrows
shows an example of an optimal grid sequence. The task for grid (i, j)
can be assigned to RSUs in its neighbors like (i, j+1), (i−1, j+1)
if the neighbor level is 1.

E. Evaluation of Neighboring Nodes on Task Allocation

In order to quantify the task allocation algorithm we use
100 random trips consisting of (source, destination, time)
that we assume will be queried almost simultaneously. These
100 trips will then be allocated to RSUs. Allocation will
depend on the neighbor levels. Trip data for all the neighbor
level configurations remain consistent, as such only the task
allocation varies between tests. For 0th level task allocation,
we force the task to be assigned to the optimal grids SGq

without considering any processing constraints. For the other
levels (1st and 2nd) we set constraint and distribute tasks to

neighbor nodes if the optimal RSU for use is already over-
utilized.

Fig. 3: 0th Neighbors Utilization

Fig. 4: 2nd Level Neighbors Utilization

Figure 3 shows the limited number of RSUs being used for
task allocation. In addition, the RSUs with the heaviest load
in the Downtown Nashville areas have much more utilization
compared to the surrounding RSUs. Comparing it to Fig. 4,
we can see that a larger number of RSUs across the map are
being utilized for task allocation. The downtown grids that
were over-utilized in Fig. 3 still see heavy usage, however the
neighboring RSUs allow the system to meet Dth by accepting
more tasks.

We can see in Fig. 5 that the addition of neighboring nodes
for task allocation has a direct effect on the average processing
time per RSU. As the number of neighbors increase RSU
count increases and in turn average processing time decreases
substantially.

However this decrease in processing time comes at a price.
The delay between the optimal and actual RSUs grids increase
as the neighbor level increases. Fig. 6 shows the decrease in
average processing time of RSU, but at the same time showing
the decrease in model accuracy. However, comparing 0th and
1st level neighbor cases, the 30% decrease in processing time

Fig. 5: Processing times and RSUs used vs
Neighbor Level Fig. 6: Accuracy and Delay trade-off Fig. 7: Processing time per task step

outweighs the decrease in accuracy from 99 to 92.3%. One
of the possible ways to limit the effect of this trade-off is to
add weights to the neighbor selection algorithm since right
now only the processing time constraint is being taken into
account after randomly selecting a neighbor.

Fig. 8: Query Delay Cumulative Distribution Function. As Dth,
200ms, 100ms and 60ms are used for 0th, 1st and 2nd neighbor
levels, respectively.

Finally breaking down every query into multiple tasks
each consisting of separate route steps, we can get a better
view of the effect of task allocation on meeting the delay
constraints. As we execute tasks steps in parallel through the
various RSUs, the increased number of RSUs allow for greater
parallelization which results in tasks being executed faster
when compared to a central approach. As shown in Fig. 7, 2nd

level neighbor allocation, RSUs process each task 17% faster
on average compared to 0th level allocation. This translates to
large speed benefits the greater the number of Q.

For a centralized approach, we perform route planning for
all queries in a sequential manner with only device and then
monitor the processing time. While a centralized approach
can produce lower delays and higher accuracy, it suffers
from slower processing times especially for higher number
of simultaneous queries as shown in Fig. 9.

Limitations of the current approach: Currently, the algo-
rithm for task allocation, Algorithm 3, is centralized and must

Fig. 9: Comparing with centralized approach

be run at one RSU after collecting all queries within each time
slot i. However, the computation time of the algorithm is not
big (93 ms for 100 queries) and the queries are transmitted
in parallel to the computation RSU, so the proposed approach
is still feasible. However, to treat more number of queries in
wider target area with more grids, this approach will induce
long query response time. In the future, we will develop
the decentralized version of the task allocation algorithm to
reduce the overall delay for computing the task allocation and
collecting the queries even for such a case.

VI. CONCLUSION AND FUTURE WORK

In this work we provided a task allocation algorithm for a
resilient, route planning service for edge networks. We utilize
decentralized road side units (RSU) as computing resources.
However these RSUs are resources (memory and computa-
tional) constrained. We investigated three possible constraints
on the network: processing time, communication delays and
model accuracy. We simulated using a real world data set
and found that our approach is able to provide a substantial
increase in processing speed and decrease in delay compared
to traditional centralized approaches. In addition, our approach
can be scaled at configured to meet various constraints of the
edge networks.

Experiments show that data driven services which are de-
ployed over decentralized edge networks will benefit from a
distributed task allocation algorithm. Our approach relies on
generating and distributing routing tasks to multiple neighbor-
ing nodes in an attempt to balance the speed and accuracy
of the response. The greater the search area, the less the
processing delay but also the accuracy. When compared to
central approaches, ours is able to respond with less latency.
Potential extension of this work include actual implementation
of the algorithm to existing edge devices and identify other
constraints such as memory and computational capacity. Ad-
ditionally this approach can be extended and applied to other
middleware dependent services.

Acknowledgements: This work was supported in part by
JSPS KAKENHI Grant Number 16H01721 & 19H05665 and
R&D for Trustworthy Networking for Smart and Connected
Communities, Commissioned Research of National Institute
of Information and Communications Technology (NICT) and
National Science Foundation through award number 1818901.

REFERENCES

[1] United Nations Department of Economic and Social Affairs,
“68% of the world population projected to live in urban
areas by 2050,” 2018, [Online; accessed 22-July-2019]. [Online].
Available: {https://www.un.org/development/desa/en/news/population/
2018-revision-of-world-urbanization-prospects.html}

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[4] P. Sanders and D. Schultes, “Engineering highway hierarchies,” in
European Symposium on Algorithms. Springer, 2006, pp. 804–816.

[5] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in International Workshop on Experimental and Efficient Algorithms.
Springer, 2008, pp. 319–333.

[6] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory,” in Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2005, pp. 156–165.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[8] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37–42, 2015.

[9] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint Optimization of
Task Scheduling and Image Placement in Fog Computing Supported
Software-Defined Embedded System,” IEEE Transactions on Comput-
ers, vol. 65, no. 12, pp. 3702–3712, 2016.

[10] M. Q. Tran, D. T. Nguyen, V. A. Le, D. H. Nguyen, and T. V. Pham,
“Task Placement on Fog Computing Made Efficient for IoT Application
Provision,” Wireless Communications and Mobile Computing, vol. 2019,
2019.

[11] A. Dubey, S. Pradhan, D. C. Schmidt, S. Rusitschka, and M. Sturm,
“The role of context and resilient middleware in next generation smart
grids.” in M4IoT@ Middleware, 2016, pp. 1–6.

[12] S. Pradhan, A. Dubey, S. Khare, S. Nannapaneni, A. Gokhale, S. Ma-
hadevan, D. C. Schmidt, and M. Lehofer, “Chariot: Goal-driven or-
chestration middleware for resilient iot systems,” ACM Transactions on
Cyber-Physical Systems, vol. 2, no. 3, p. 16, 2018.

[13] S. M. Pradhan, A. Dubey, A. Gokhale, and M. Lehofer, “Chariot: A
domain specific language for extensible cyber-physical systems,” in
Proceedings of the workshop on domain-specific modeling. ACM, 2015,
pp. 9–16.

[14] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimiza-
tion for task assignment problem,” Microprocessors and Microsystems,
vol. 26, no. 8, pp. 363–371, 2002.

[15] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints
for adaptive applications in cloud environments,” IEEE Transactions on
Services Computing, vol. 5, no. 4, pp. 497–511, 2012.

[16] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud workflows,” in SC’11: Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2011, pp. 1–12.

[17] D. Ardagna, M. Ciavotta, and M. Passacantando, “Generalized nash
equilibria for the service provisioning problem in multi-cloud systems,”
IEEE Transactions on Services Computing, vol. 10, no. 3, pp. 381–395,
2015.

[18] C. Catlett, W. E. Allcock, P. Andrews, R. Aydt, R. Bair, N. Balac,
B. Banister, T. Barker, M. Bartelt, P. Beckman et al., “Teragrid: Analysis
of organization, system architecture, and middleware enabling new types
of applications,” IOS press, Tech. Rep., 2008.

[19] D. Schafer, J. Edinger, J. M. Paluska, S. VanSyckel, and C. Becker,
“Tasklets:” better than best-effort” computing,” in 2016 25th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 2016, pp. 1–11.

[20] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource provi-
sioning for iot services in the fog,” in 2016 IEEE 9th international
conference on service-oriented computing and applications (SOCA).
IEEE, 2016, pp. 32–39.

[21] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware
fog service placement,” in 2017 IEEE 1st international conference on
Fog and Edge Computing (ICFEC). IEEE, 2017, pp. 89–96.

[22] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware
resource allocation for edge computing,” in 2017 IEEE International
Conference on Edge Computing (EDGE). IEEE, 2017, pp. 47–54.

[23] Y. Nakamura, T. Mizumoto, H. Suwa, Y. Arakawa, H. Yamaguchi,
and K. Yasumoto, “In-situ resource provisioning with adaptive scale-
out for regional iot services,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC), Oct 2018, pp. 203–213.

[24] J. P. Talusan, F. Tiausas, K. Yasumoto, M. Wilbur, G. Pettet, A. Dubey,
and S. Bhattacharjee, “Smart transportation delay and resiliency testbed
based on information flow of things middleware,” in 2019 IEEE Interna-
tional Conference on Smart Computing (SMARTCOMP). IEEE, 2019,
pp. 13–18.

[25] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[26] L. R. Ford Jr, “Network flow theory,” Rand Corp Santa Monica Ca,
Tech. Rep., 1956.

[27] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[28] G. Di Stefano, A. Petricola, and C. Zaroliagis, “On the implementation
of parallel shortest path algorithms on a supercomputer,” in International
Symposium on Parallel and Distributed Processing and Applications.
Springer, 2006, pp. 406–417.

[29] Y. Tang, Y. Zhang, and H. Chen, “A parallel shortest path algorithm
based on graph-partitioning and iterative correcting,” in 2008 10th
IEEE International Conference on High Performance Computing and
Communications. IEEE, 2008, pp. 155–161.

[30] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization
of dijkstra’s shortest path algorithm,” in International Symposium on
Mathematical Foundations of Computer Science. Springer, 1998, pp.
722–731.

[31] HERE Technology, “Here.” [Online]. Available: https://www.here.com

