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Abstract—Autonomous vehicles (AVs) are becoming integral
to on-demand micro transit, offering the potential for safer,
efficient, and sustainable transportation. However, AV deploy-
ment faces several challenges, including the lack of suitable
roadways, varying travel conditions. Traditional routers prioritize
speed and not reliability, leading to unpredictable operations
and complications in planning. To address these, we introduce
AVATAR, an autonomy-aware routing framework that prioritizes
dependable, low-variance routes. Our approach encodes mul-
tiple objectives including road speed, speed variability, zoning
areas, pedestrian encounters, and operator preferred roadways
into edge-level routing engines. Objective optimized routes are
generated, then scored using a multi-criteria decision-making
process. User-configurable preference profiles, allow operators to
define a balance between reliability and speed. AVATAR is a data-
driven framework that supports both real-time AV operations
and offline analysis, enabling transit operators to assess and refine
routing strategies. Our experiments using real-world data from
Silicon Valley, California, and Yokohama, Japan show that our
approach significantly improves AV reliability and performance
and advances the sustainable and scalable integration of AVs into
future transportation networks.

Index Terms—Autonomous Vehicles, Path Planning, Optimiza-
tion

I. INTRODUCTION

Autonomous vehicles (AVs) are increasingly becoming a

cornerstone of on-demand micro-transit systems, promising

to revolutionize urban transportation by offering safer, more

efficient, and sustainable travel options [1]. The integration

of AVs into these systems is driven by their potential to re-

duce traffic accidents, optimize fuel consumption, and provide

consistent service [2, 3]. Despite these promising benefits, the

deployment of AVs faces significant challenges that hinder

their widespread adoption.

One of the primary challenges is the limited number of

roadways suitable for AV operations. Unlike human drivers,

AVs require highly reliable and predictable environments to

function optimally. The current road infrastructure, with its

varying conditions and frequent changes, poses a substantial

obstacle [4]. For instance, roadways with high variance in

travel conditions, such as fluctuating traffic patterns, con-

struction zones, and unpredictable pedestrian encounters, can

severely impact AV performance [5]. As shown in fig. 1,

these factors create bottlenecks where AVs face low speeds,

Fig. 1. AV Partner observed lanes showing areas of low speed, high
construction severity and high pedestrian encounters. Speed data for these
observed lanes can vary between different times of the day and days of the
week, resulting in fluctuating patterns.

heavy construction, and frequent pedestrians, complicating

route planning.

Traditional routing algorithms, which are designed primarily

for human drivers, prioritize travel time and often neglect

the reliability and consistency required for AV operations [6].

This focus on speed can lead to unpredictable and inefficient

routes, complicating the planning and execution of AV-based

transit services. For example, a route that is fastest under

ideal conditions might become highly unreliable during peak

hours or in the presence of construction activities [7]. This

unpredictability undermines the potential benefits of AVs

and poses a significant barrier to their effective deployment.

Additionally, the data needed to convey the reliability of

a roadway at an adequate resolution is often difficult or

expensive to obtain. For example, gathering detailed traffic

patterns and construction reports necessitates extensive data

collection efforts and continuous monitoring, making it cost-

prohibitive for many transit operators [8].

To address these challenges, we propose an autonomy-aware

routing framework, called AVATAR, that is tailored to AVs,

prioritizing dependable, low-variance roadways by considering

factors like road speed, speed variability, construction zones,

pedestrian encounters, school zones, operator-preferred routes,

and legally restricted roadways. Considering the limitations of

existing work, this paper aims to address gaps by developing

an autonomy-aware routing framework.

The summary of contributions are as follows:

• We design a multi-criteria decision-making process for

holistic route evaluation based on user-configurable pref-



TABLE I
DESCRIPTION OF SYMBOLS

Symbol Description

A Start location
B End Location
RAB Set of Routes from A to B
r A single route ∈ RAB

r∗ Optimal route
C Set of criteria to evaluate a route
c A single criteria ∈ C
w Weights for a criteria
S Summary statistic function
α,β Coefficients
σ Standard deviation
E Evaluation function

erences, balancing reliability and speed. AVATAR priori-

tizes dependable routes. Thus, is robust to environmental

dynamics.

• Our approach incorporates a bootstrapping methodology

using real-time General Transit Feed Specification (RT-

GTFS) data from transit buses, providing insight into

initial roadway conditions [9].

• AVATAR supports both real-time AV operations and

offline analysis, it allows continuous assessment and

refinement of routing strategies, significantly improving

AV reliability and performance.

• Finally, we validate our approach with real-world data

from Nashville, TN, Silicon Valley, California, and Yoko-

hama, Japan.

Organization: This paper is divided into the following

sections: We formulate the problem statement in Section II.

Section III reviews the relevant literature. Section IV outlines

the data collection and processing steps. Section V explains

the proposed approach used in this paper. Section VI sets up

the experiments and presents the key findings. Finally, Sec-

tion VII discusses the implications of this work and potential

future research directions.

II. PROBLEM STATEMENT

The deployment of autonomous vehicles (AVs) in on-

demand microtransit systems presents a unique set of chal-

lenges that must be addressed to realize their full potential.

One of the most pressing issues is the inadequacy of current

routing methods, which do not account for the specific needs

and constraints of AV operations. Traditional routing algo-

rithms, designed primarily for human drivers, prioritize speed

and often overlook the reliability and consistency required

for AVs. This oversight leads to unpredictable and inefficient

routes, complicating the planning and execution of AV-based

transit services.

The core problem lies in the inability of existing routing

methods to provide reliable and predictable routes for AVs.

Unlike human drivers, AVs require highly reliable environ-

ments to function optimally. The current road infrastructure,

characterized by varying conditions and frequent changes,

poses a significant obstacle. Routes that are optimal in terms

of speed under ideal conditions can become highly unreliable

during peak hours or in the presence of other dynamic urban

factors, leading to inconsistent AV performance and undermin-

ing the potential benefits of AVs.

To address these issues, it is crucial to contextualize the var-

ious factors affecting AV operations in the planning process.

This involves integrating multiple operational objectives, such

as road speed, speed variability, construction zones, pedestrian

encounters, school zones, and operator-preferred routes, into

the routing framework.

In the context of autonomous vehicle (AV) routing for on-

demand micro transit, the goal is to generate, evaluate, and

choose the most suitable route between two points, while

considering multiple operational objectives. This problem can

be formulated as a multi-objective optimization problem where

a route is generated and evaluated based on a set of criteria

that reflect the specific needs and constraints of AV operations.

Table I summarizes all symbols used in the problem statement.

Let A and B be the starting and ending points, respectively.

The objective is to find an optimal route from A to B that

minimizes a weighted sum of various operational factors. The

set of all possible routes from A to B is represented as RAB .

We evaluate each route r based on multiple criteria, such as

road speed, speed variability, construction zones, pedestrian

encounters, school zones, and routes preferred by the operator.

Let C = {c1, c2, . . . , cn} be the set of criteria used to evaluate

each route. We formulate a naive evaluation of a route r ∈
RAB in eq. (1), where ci(r) denotes the value of the i-th

criterion for the route r and wi represents the weight assigned

to the i-th criterion.

E(r) =

n∑

i=1

wi · ci(r) (1)

However, this formulation does not account for multiple rep-

resentations of a distribution of a criterion, such as free-flow

speed and constrained speed. The revised evaluation in eq. (2)

addresses this limitation by incorporating a summary statis-

tic Si(ci(r)), coefficients αi and βi, and standard deviation

denoted by σ(ci(r)) to balance tendency and variability.

E(r) =

n∑

i=1

wi · (αi · Si(ci(r)) + βi · σ(ci(r))) (2)

As described in eq. (3), our goal is to find the optimal route

r∗ that minimizes the weighted sum, taking into account both

the performance and the consistency of each criterion.

r∗ = argmin
r∈RAB

E(r) (3)

III. RELATED WORK

Routing is a critical issue in traffic estimation systems

and Intelligent Transportation Systems (ITS) in general. The

challenge lies in developing routing algorithms that can adapt

to real-world conditions and provide reliable, efficient routes

for autonomous vehicles (AVs).



TABLE II
DATA FEATURES AND SOURCES

Dataset Features Frequency Type Description

OpenStreetMap
OSM Node N/A Spatial Data point that represents a location on the map

OSM Edge N/A Spatial Road segment between two OSM nodes

AV Observations

Lane Speed N/A Spatio-Temporal Observed lane speeds at the 25th, 50th, and 75th percentiles

Construction Observation N/A Spatio-Temporal Detected construction zones along a lane segment

Pedestrian Observation N/A Spatio-Temporal Detected pedestrian activity along a lane segment

INRIX Traffic Speed 15 minutes Spatio-temporal Median speed observed on a specific road segment

RT-GTFS

Bus ID 15-60 seconds Temporal Unique identifier for each bus

Bus Location 15-60 seconds Spatial Current latitude and longitude of the bus

Bus Speed 15-60 seconds Spatio-Temporal Current speed of the bus (if available)

Bus Bearing 15-60 seconds Spatio-Temporal Current bearing of the bus (if available)

Hu et al. [10] proposed an optimal route planning system

for logistics vehicles based on artificial intelligence. Their

approach leverages machine learning algorithms to predict

traffic conditions and optimize routes for logistics operations.

The system was evaluated using real-world data, demonstrat-

ing its effectiveness and efficiency in practical applications.

However, their focus was primarily on logistics vehicles, and

the approach does not fully address the unique challenges of

AV routing in urban environments. Additionally, they do not

incorporate any decision makers for choosing optimal routes

based on use case.

Taha and AbuAli [11] discussed various route planning

considerations for autonomous vehicles, emphasizing the im-

portance of real-time data integration and the need for robust

algorithms that can handle dynamic traffic conditions. Their

work highlights the potential of cooperative tasks, such as

speed harmonization and fuel consumption reduction, through

aerodynamic drag reduction. While their study provides valu-

able insights into AV routing, it does not offer a comprehensive

solution that integrates multiple operational objectives and

real-time data sources.

Minh et al. [12] proposed effective traffic routing mecha-

nisms aimed at enhancing urban transportation capacity and

safety. Their approach adapts routing criteria based on ge-

ographical distance or estimated travel time, depending on

user demands. The proposed mechanisms were shown to

improve robustness, particularly in developing countries with

less developed traffic infrastructures. However, their work

primarily focuses on general traffic routing and does not fully

address the specific requirements of AV operations.

Our proposed solution addresses these gaps by develop-

ing an autonomy-aware routing framework that prioritizes

dependable, low-variance roadways and incorporates multiple

operational objectives, such as road speed, speed variability,

construction zones, pedestrian encounters, and school zones.

By leveraging data from various sources, including RT-GTFS,

INRIX, and AV data streams, our framework provides a

comprehensive and adaptable routing solution for AVs.

The key advantage of our approach lies in its flexibility and

robustness. Our framework can easily adapt to meet the diverse

set of challenges on real-world roadways and quantify them

in the context of dynamic operational requirements. This flex-

ibility ensures that the routing decisions remain reliable and

efficient, ultimately improving the performance and scalability

of AV operations in on-demand micro transit systems.

IV. DATA COLLECTION AND PROCESSING

The development of an effective autonomy-aware routing

framework requires collecting and processing large quantities

of data that accurately reflect real-world road conditions. This

section outlines the data sources, collection methods, and

processing steps used to generate the datasets required for this

study. A detailed list of all the features that were used as part

of the routing framework is shown in Table II.

A. Data Sources

We collected data from various sources for Nashville, TN;

the Bay Area, CA; and Yokohama, Japan. Below is a summary:

OSM Edges: OpenStreetMap (OSM) edges represent seg-

ments of the road network and are used as the base map for

routing; each edge depicts a road segment between two OSM

nodes (waypoints).

AV Partner Observations: This data was collected by AVs

operating in the Silicon Valley Area. It includes lanes denoted

by start and end coordinates with no direct mapping to OSM

edges. Each lane is assigned a 0.25, 0.5, and 0.75 percentile

speed, as well as data from a perception model that contains

observations of construction and pedestrians.

INRIX: Provides speed data for major roads at a 15 minute

intervals. We collect this data for the Nashville area. As

INRIX data, shown in fig. 2, is not available for all roadways,

experiments using this data are limited to areas with high

INRIX availability.

RT-GTFS Data: Provides real-time information on the

locations, speeds, and other attributes of transit vehicles. An

extension of the static GTFS format, which includes scheduled

transit data such as routes, stops, and timetables. We collect

public RT-GTFS data for the Bay Area and Greater Tokyo

Area, recording pings for each active bus every 15–60 seconds.

Since our focus is on autonomous vehicles and shuttles, which

operate at lower speeds than regular cars and can utilize

transit lanes, RT-GTFS data serves as a reasonable proxy for

estimating AV travel speeds. Figure 3 shows the RT-GTFS

pings mapped to the OSM edges, highlighting areas with high

and low variance.



Fig. 2. INRIX roadways in Nashville, TN colored by average speed.

Fig. 3. RT-GTFS pings mapped to OSM edges (blue) and annotated to show
high variance and low variance edges.

B. Data Processing

The raw data requires several processing steps to ensure

its accuracy and usability for routing purposes. The following

methods are employed:

Filtering Bus Stops: We merge RT-GTFS data with static

GTFS data in order to detect buses that are stopped or have low

speed near scheduled bus stops. Where detected, we remove

this data as it is not representative of general travel speeds in

that location.

Calculating Missing Speed and Bearing Data: When

speed or bearing data is missing, we estimate the values

using the distance and time between consecutive pings. We

compute distance using the Haversine distance formula and

bearing using the Haversine bearing formula. We discard those

approximations where the distance or time between sequential

points is infeasible or if the calculated speed exceeds 150km/h.

Identifying Parked Vehicles: We identify parked vehicles

if the speed is below 1 km/h for a time window of 5 minutes.

This helps in filtering out data points where vehicles are not

actively traveling as to avoid biasing roadways near common

parking locations.

Data Cleaning: We remove any duplicated data, data with

null locations or timestamps. We also use DBSCAN clustering

to detect and remove GPS locations that are abnormal in the

context of the rest of the dataset. The large red cluster in fig. 4

is the primary cluster in the Bay Area data collection.

Fig. 4. DBSCAN clustering map of Bay Area RT-GTFS data highlighting
a dark red primary cluster surrounded by outlier clusters and points.

C. Merging with OSM

In order to standardize the data and interface with common

routing engines, we map incoming data to OSM edges.
1) Finding Matches: We perform a spatial join between

OSM edges and GPS coordinates with a tolerance of 20m.

This can result in multiple matches based on edge density. To

pick the best match a score is determined for each match using

the difference between the bearing of the ping and the bearing

of the edge as well as the distance from the pings projection

onto the edge. The best match is selected using this score and

matches under a score threshold are removed.
2) Removing Sampling Bias: Sequential GPS pings from

the same vehicle on the same edge are aggregated into one

data point by averaging speeds to reduce sampling bias during

slow periods.
3) Edge-Level Data Aggregation: We aggregate the dis-

tribution of speeds for each edge into statistical measures,

including standard deviation, mean, and a set of quantiles. The

edge level statistical measures are then saved for later use.

V. PROPOSED APPROACH

Our approach, shown in fig. 5, involves encoding each repre-

sentation of each operational objective into separate instances

of the Open Source Routing Machine (OSRM). OSRM is

a high-performance routing engine designed for finding the

shortest paths in road networks. By using OSRM, we are able

to leverage its highly optimized and reliable search methods,

including contraction hierarchies and multi-level Dijkstra’s

algorithm. We then generate a set of initial routes, evaluate,

and score them. Once scored we select the recommended route

and estimate the travel time.
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Fig. 5. Architecture diagram illustrating our approach, where multiple OSRM instances encode different operational objectives for multiple objective routing.

A. Encoding Objectives into OSRM Instances

Each representation of each operational objective, such as

road speed, speed variability (represented by multiple quan-

tiles), construction zones, pedestrian encounters, school zones,

operator-preferred routes, and legally restricted roadways) is

encoded into a separate OSRM instance by updating the

internal weights with the edge-level data using osrm-contract.

B. Generating Initial Routes

First, we modify each OSRM instance to generate mul-

tiple alternative routes for each query. We then query each

objective-specific OSRM instance to generate an initial set of

routes. This modification as well as using OSRM’s alternative

routes parameter, returns several objective optimized paths

between the start and end points. The set of generated routes is

then consolidated by removing any routes that were duplicated

across OSRM instances. We are left with a set of several

unique routes between the two points, each optimized relative

to differing objectives.

C. Route Evaluation

The consolidated set of initial routes are then re-evaluated

using all other objective-specific OSRM instances using high-

resolution waypoints. The individual scores are used in later

steps to decide between routes. To ensure metric accuracy, we

capture the evaluated routes and compare them to the initial

routes. Routes that are not equivalent within a tolerance are

indicative of a part of a route deemed impassible in the context

TABLE III
EXAMPLE OF USER PREFERENCE PROFILE WITH TIME ESTIMATE

Attribute w α β S

Speed 0.6 0.4 0.6 Mean
Construction 0.2 1 0 Mode
Pedestrian 0.2 1 0 Mode
Time Estimate — 1 2 Mean

of the secondary objective. The resultant metrics from these

routes are marked as invalid and dropped.

D. Preference-based Scoring and Optimization

For each proposed route, scores generated in the prior step,

are used in the route equation, eq. (2), which incorporates

a user-configurable preference profile. The preference profile

defines the weight w, coefficients α and β, the summary

function S for each objective. This allows the operator to bal-

ance objectives according to their specific needs. A preference

profile with a high weight on speed and speed consistency,

but considerations for avoiding construction and pedestrian-

prone roads is shown in table III. Table III shows a user

preference profile with time estimates for various attributes,

users can modify the parameters to optimize the evaluation

function for their specific needs, furthermore, our approach

supports addition of attributes, for example, preference for

scenic routes can be addded to our system.



E. Selecting Route and Estimating Travel Time

The route with the lowest score, given by eq. (3), is

chosen as the suggested route. The estimated time is calculated

using the time estimate field in the user preference profile.

An example of a very conservative time estimate is shown

in table III.

VI. RESULTS AND DISCUSSIONS

In this section, we evaluate AVATAR and compare the

results against several baseline methods. The experiments were

conducted on a 32-core Intel Core i9-14900k with an NVIDIA

GeForce RTX 4090 (24GB) and 128 GB RAM.

A. Baselines

We evaluate the effectiveness of our proposed method by

comparing it against the following baseline routing methods:

Default OSRM: This method uses the standard Open Source

Routing Machine (OSRM) without any modifications for AV-

specific constraints. This is an off-the-shelf implementation of

OSRM v5.28.0, with OpenStreetMap data from Geofabrik.

INRIX Travel Averages: This method uses an OSRM in-

stance with travel speeds updated to be the average INRIX

travel speed for a roadway. Only segments which have a

corresponding INRIX speed value is updated, otherwise it will

use the OSM information.

B. Experimental Setup

We conducted experiments in simulation for single-capacity

autonomous vehicles within Nashville, TN, using INRIX data

from June 1, 2024 to June 22, 2024. INRIX data was loaded

into OSRM instances for both testing and validation to remain

consistent. The first 14 days were used in the setting up the

AV routing framework as well as the INRIX Travel Averages

baseline, while the remaining 8 days were used for validation.

AVATAR Setup: The AV routing framework was created

using five OSRM instances, for the 5, 25, 50, 75 and 95 per-

centiles of speeds. To maximize reliability in this experiment

α was set to 0, and β was set to 1 (in eq. (2), making our

evaluation function:

E(r) = σ(c(r))

To emphasize the configurable nature of AVATAR, some

results are also shown for α = 1, β = 5, and S = mean.

This evaluation function becomes:

E(r) = µ(c(r) + 5 · σ(c(r))

For our time estimate, we used α = 1, β = 0 and S = mean.

This makes the time estimate function:

E(r) = µ(c(r))

Validation: Data from every hour in the eight day validation

data was used to create a separate validation instance, totaling

192 validation instances. The goal of each of these instances is

to represent a specific snapshot time where we have complete

knowledge of road conditions. The travel times for the routes

generated by each method will be computed using these

instances.

−50% −40% −30% −20% −10% 0% 10%

Default

Average

AVATAR

Percentage Value

Fig. 6. Percentage error in estimated travel times. Negative values are
underestimations in travel times. The spread represents the precision of the
estimate with the median representing the accuracy.

1) Route Calculation: We calculated routes between 382

origin-destination pairs throughout Nashville, TN using three

different methods: the AV framework, OSRM with INRIX

travel averages and default OSRM. These 1,146 proposed

routes are each evaluated using the 192 validation engines to

obtain the actual travel times.

2) Evaluation Metrics: We evaluated the performance of

each routing method using the following metrics:

Travel Time: The actual travel time for each route, as

obtained from the validation engine. This is measured in

Average Travel Time (seconds).

Travel Time Estimation Accuracy: The error of the travel-

time estimation given by the routing engines when compared

to the actual travel time for each route, as obtained from the

validation engine. This is measured in MSE (seconds) and

Average Percent Error (%).

Route Reliability: The consistency of travel times across

different runs, measured by the standard deviation of travel

times across validation road states. This is measured in stan-

dard deviation (seconds).

C. Results

The results of our experiments are summarized in table IV.

Our proposed AVATAR routing framework outperformed both

default OSRM and our averages baseline in terms of travel

time estimate mean squared error (MSE) and travel time

estimate average percent error. Specifically, the AVATAR

framework demonstrated the lowest travel time estimate MSE

of 253.8, which is a significant improvement over the averages

baseline MSE of 669.7 and the default OSRM MSE of

13063.3.

Additionally, fig. 6 illustrates the distribution of percentage

errors in travel time estimates, with AVATAR showing a me-

dian near 0% and a notably smaller inter quartile range (IQR)

width, highlighting its precision in travel time predictions.

The IQR for AVATAR is only 5.1%, compared to 10.1%

for the averages baseline and 20.5% for the default OSRM,

demonstrating AVATAR’s higher accuracy and precision in

estimating travel times.

Moreover, AVATAR also achieved the lowest average per-

cent error of −0.13% in comparison to −0.92% for averages

and −26.2% for the default. This reaffirms the enhanced

accuracy of our proposed framework.

In terms of travel time consistency, AVATAR obtained the

lowest route standard deviation at 12.6 seconds, while both the



TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS (BEST RESULTS ARE BOXED)

Method Travel Time Estimate MSE (s) Average Percent Error Average Travel Time(s) Route Std Dev(s)

Default 13063.3 -26.2% 369.8 20.5

Average 669.7 -0.92% 370.5 20.6

AVATAR (β = 5) 283.1 -0.15% 363.4 13.7

AVATAR 253.8 −0.13% 384.8 12.6

0 10 20 30 40 50

Default

Average

AVATAR

Seconds

Fig. 7. Standard deviation of route travel times for AVATAR and default
planners, with AVATAR showing the lowest variability compared to the
baselines, indicating more consistent travel times.

averages baseline and default OSRM showed higher variability

in travel times with standard deviations of 20.6 and 20.5
seconds, respectively. Their distribution of standard deviations

is shown in fig. 7.

Furthermore, although AVATAR experienced a slightly

higher average travel time of 384.8 seconds versus 369.8

seconds for the default and 370.5 seconds for the averages,

this is an expected result of favoring more reliable routes

and a by-product of using a preference profile that gave no

weight to mean speed. Relaxing the reliability preference in

AVATAR-β = 5 yields a slightly better average travel time

while also outperforming baselines in MSE, percent error and

route standard deviation. This result emphasizes the more

robust consideration of the road network being used to avoid

delay prone routes.

Our experiment clearly evidences the superior performance

of the AVATAR framework in providing more accurate and

reliable route planning by substantially outperforming the

default OSRM and averages baseline across key performance

indicators.

D. Sensitivity Analysis

In this section, we analyze the sensitivity of our autonomy-

aware routing framework to changes in the coefficients α, β

for different criteria. This analysis helps to understand how

varying these parameters affects the returned routes and their

performance. Using the same experimental setup described

previously, we conducted experiments by varying the β pa-

rameter in eq. (2). Results are summarized in fig. 8. As the

weight of the standard deviation increases, the reliability of

the route improves and the accuracy of travel time estimations

is enhanced. Specifically, the mean squared error (MSE) of

travel time predictions decreases from approximately 358.5

seconds when standard deviation is not considered at to

253.8 seconds when the weight reaches its maximum value.

In parallel, the added time percentage, which represents the
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Fig. 8. Sensitivity of AVATAR route choice performance to standard deviation
weight. The left y-axis shows the mean squared error (MSE) of estimated
travel times (in seconds), while the secondary y-axis displays both the added
time percentage and the route standard deviation (in seconds). The x-axis
represents the weight of the standard deviation applied, with the value max
denoting a relative α value of 0.
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Fig. 9. Wait time distributions for AVATAR and default planners, highlighting
trade-offs between acceptance rates and delays. AVATAR achieves zero
median and first quartile wait times, while the default planner results in higher
variability and longer waits.

percent difference from the general travel time to the lowest

recorded value, increases gradually by roughly 8.3%. This

trend highlights a clear trade-off: while higher weights help in

reducing variability and enhancing prediction accuracy, they

concurrently introduce a moderate increase in the travel time.

E. Operational Impact

To evaluate the operational impact of AVATAR on transit

operations, a simulation was conducted in Yokohama, Japan

using 1,000 ride requests over a 12 hour period, served by 20

single capacity vehicles. AVATAR was configured with RT-

GTFS data to create 25, 50, and 75 percentile instances, that

were used with preference profile α = 1 , β = 2 and time



estimate α = 1 , β = 2. Ride requests were then accepted or

denied and given pickup times using a constraint driven offline

VRP solver. This solver was configured using both default

OSRM and AVATAR travel time assumptions. These plans

were then evaluated using Google Maps Real-Time Directions

API to generate actual pickup and drop off times. Delays were

allowed to propagate to the next pickup to capture the possible

impact of reliable information in planning.

In this simulation, default OSRM accepted 98.5% of re-

quested rides, resulting in a median pickup time of 4.4 minutes

and a maximum wait of 58.5 minutes. Meanwhile, AVATAR

accepted only 74.2% of ride requests, resulting in a median

pickup time of 0 minutes and a maximum wait time of 15.8

minutes. Planning using the oracle information provided by

Google Maps resulted in an acceptance rate of 80.9% of

requests and no wait times, shown in fig. 9.

VII. CONCLUSION

In this paper, we introduced AVATAR, an autonomy-aware

routing framework designed to address the unique challenges

faced by autonomous vehicles (AVs) in on-demand micro

transit systems. Our approach prioritizes dependable, low-

variance roadways by incorporating multiple operational ob-

jectives such as road speed, speed variability, pedestrian en-

counters, zoning areas, and operator-preferred routes. By lever-

aging a multi-criteria decision-making process and runtime-

configurable preference profiles, our framework allows oper-

ators to dynamically balance reliability, speed, and a host of

other factors according to their needs.

We demonstrated the effectiveness of our framework

through data collection and processing of RT-GTFS, AV data,

and traffic data. We generated a comprehensive dataset that

accurately reflects real-world roadway conditions. Our experi-

mental results, validated using real-world data from Nashville

TN, Bay Area, CA and Yokohama Japan, showed significant

improvements in routing reliability and performance compared

to traditional routing methods. The proposed framework not

only enhances early-stage AV deployment but also facilitates

future integration with conventional transit vehicles, paving the

way for seamless multimodal operations. AVATAR’s flexibility

ensures that the routing framework can adapt to dynamic

conditions and operational requirements.

In conclusion, our autonomy-aware routing framework ad-

vances the state of the art in AV routing by focusing on

dependable roadway selection, real-time data integration, and

robust decision-making. By addressing the critical challenges

of AV deployment, our work contributes to the development of

safer, more efficient, and sustainable transportation systems.
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