IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Resilient Information Architecture Platform for
the Smart Grid (RIAPS): A Novel Open-Source
Platform for Microgrid Control

Hao Tu, Student Member, IEEE, Yuhua Du, Student Member, IEEE, Hui Yu, Student Member, IEEE,
Abhishek Dubey, Senior Member, IEEE, Srdjan Lukic, Senior Member, IEEE,
and Gabor Karsai, Senior Member, IEEE

Abstract—Microgrids are seen as an effective way to
achieve reliable, resilient, and efficient operation of the
power distribution system. Core functions of the microgrid
control system are defined by the IEEE standard 2030.7;
however, the algorithms that realize these functions are not
standardized, and are a topic of research. Furthermore, the
corresponding controller hardware, operating system, and
communication system to implement these functions vary
significantly from one implementation to the next. In this
paper, we introduce an open-source platform, Resilient In-
formation Architecture Platform for the Smart Grid (RIAPS),
ideally suited for implementing and deploying distributed
microgrid control algorithms. RIAPS provides a design-time
tool suite for development and deployment of distributed
microgrid control algorithms. With support from a humber
of run-time platform services, developed algorithms can be
easily implemented and deployed into real microgrids. To
demonstrate the unique features of RIAPS, we propose and
implement a distributed microgrid secondary control algo-
rithm capable of synchronized and proportional compensa-
tion of voltage unbalance using distributed generators. Test
results show the effectiveness of the proposed control and
the salient features of the RIAPS platform.

Index Terms—Distributed control, microgrid, microgrid
control system.

I. INTRODUCTION

HE ever increasing number of distributed genera-

tors (DGs) located deep in the distribution system makes
conventional centralized control unsustainable. To address
this, there is a need for various customer and utility owned
resources to communicate and interact intelligently with each
other with minimal data exchange to a centralized supervi-
sory control and data acquisition (SCADA) system. Forming
microgrids provides a natural way for these resources to
interact while offering various services to the utility. Therefore,
microgrids can help achieve stable and economical operation
of the future grid while improving system resiliency and
flexibility.

Per IEEE standard 2030.7 [1], a microgrid control system
must provide two core functions: (1) the dispatch function,
which dispatches individual devices in given operating modes
and with specified setpoints; and (2) the transition function,
which supervises the transitions between grid-connected and
islanded states, and ensures that the dispatch is appropriate
for the given state. The secondary and tertiary levels of
hierarchical control try to optimize the dispatch functions to

This work was supported in part by the Advanced Research Projects
Agency-Energy (ARPA-E), U.S. Department of Energy, under Award
Number DE-AR0000666.

utilize the available resources based on optimization criteria.
The transition function manages the primary-level controller
where the DG operation modes or component states change
(e.g. transition from grid forming to grid following mode for
an inverter, or breaker turn-off as a part of an emergency
dispatch order).

To design, implement, and deploy a microgrid control
system, there is a need for a high fidelity testbed to emulate
the microgrid power system, as well as the control system
on which the microgrid controller resides. The testbed must
be flexible enough to allow for modeling of a diverse set of
microgrid topologies while being detailed enough to accurately
represent the real-world implementation complexities. If the
system is to be deployed on an actual microgrid, the developed
control system should be able to interface with commercial
devices and therefore support the native protocols used by the
hardware controllers on the market today.

There are well-established methods of emulating micro-
grids and DG intensive distribution grids through the use of
real-time digital simulators [2]-[6] (e.g. OPAL-RT, Typhoon,
dSPACE, and etc.), or through scaled down [7]-[17] or full-
scale [18]-[21] hardware implementations. Additionally, mul-
tiple tools exist that enable modeling of the communication
networks (e.g. OPNET, NS-2, OMNET++, and etc.), and
these tools have been successfully integrated into various
testbeds [2], [3], [22], [23].

What has not been reported in the literature, according
to our knowledge, is an open-source platform that allows
for the seamless development, testing, and deployment of
a microgrid control system. Such capability is important
to understanding the interactions between different control
levels in a practical system and exploring the complexities
of implementing analytically developed algorithms in the real
world, e.g., realizing computationally complex algorithms on
nodes with limited computational capability. Importantly, a
platform should provide all the necessary tools to deploy the
system into the field. Prototyping platforms exist today, but
most of them lack critical advanced functions, such as time
synchronization and real-time capabilities, that are emerging
in proprietary solutions.

In this paper we review the microgrid control platforms that
have been proposed in literature and point out their advantages
and shortcomings. We then present a new communication and
computation platform, called Resilient Information Architec-
ture Platform for the Smart Grid (RIAPS), which is designed
to operate at the edge of the power grid. To demonstrate the
unique features of the platform, we propose and implement a

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

distributed microgrid secondary control algorithm capable of
synchronized and proportional compensation of system volt-
age unbalance caused by unbalanced loads. The application
demonstrates how the platform achieves multi-agent system
(MAS)-type functionality through the implementation of a
distributed control algorithm. Additionally, it demonstrates
the time and functionality coordination between the system
primary-level and secondary-level controllers, to establish a
globally synchronized reference frame in which the DGs can
proportionally compensate system unbalance at a selected
microgrid bus.
The main contributions of this paper include:

o Comprehensive review of the state of the art microgrid
control platforms used in the literature and their features
and limitations.

o Complete description of the RIAPS platform features
including the unique development tool suite and run-time
services while considering system requirements such as
scalability over a large network, real-time response to
events, and time synchronization among nodes.

o Implementation of a novel microgrid control algorithm
that achieves synchronized and proportional compensa-
tion of system voltage unbalance. The application demon-
strates the key features of the platform used for microgrid
control including node time synchronization, implementa-
tion of a distributed consensus algorithm, communication
protocol support, etc.

o Characterization of RIAPS platform performance in terms
of communication delay, packet loss rate, and synchro-
nization error in a close-to-real environment, providing a
reference for control algorithm developers.

The RIAPS platform is open-source and available to the
community; it can be freely used for both lab prototyping and
field implementation. The platform is ideally suited for imple-
menting distributed control algorithms and for performance
benchmarking of other microgrid control systems.

[l. RELATED WORK

Microgrid control systems are often implemented and tested
in either in-house developed custom platforms or rely on
proprietary solutions. Typically, little thought is given to how
the system could migrate into the field.

In [2], OPAL-RT real-time simulator is used for grid simu-
lation while OPNET emulates the behavior of the communica-
tion network. Similar approach with RTDS (Real Time Digital
Simulator) as grid simulator and OMNET++ as network
simulator can be found in [3]. Communication-based control
algorithms are implemented in the grid simulator along with
the low level power electronics control. A testbed with a grid
simulator and network simulator allows for flexible simulation
of different microgrid topologies and communication network
configurations; however, with the control algorithms imple-
mented and executed in the simulator, controller computational
limitations, controller interactions, effects of computational
time delays, and controller synchronization become impossible
to evaluate, and are overlooked. In addition, porting the algo-
rithms into the real microgrid control system could potentially
require a complete system redesign, since there could be

little similarity between the simulation system and actual
hardware in the microgrid in terms of computation capability,
communication method, and implementation details.

A more advanced approach, which provides a more realistic
test environment for distributed microgrid control algorithms,
uses dedicated hardware, separate from the power system
simulator, with its own computation and communication ca-
pabilities [4]-[9]. In [4], a Mamba single board computer
is interfaced with RTDS to collect simulated measurement
data and implement communication-based control algorithms
such as load balancing, fault detection, and fault isolation.
In [6], a Zigbee-based MAS enables communication and
coordination between different controllers. In [7], Raspberry PI
single board computers are interfaced to different local control
units to enable microgrid real-time state estimation, and the
communication between Raspberry PIs is based on TCP/IP.
In [8], [9], a system on chip (SoC) with two cores are used
for microgrid control. While one core controls the inverter
hardware, the second core is dedicated to communication using
TCP/IP protocol. In [4]-[9], dedicated controller hardware
enables a close-to-reality emulation of communication-based
control implementation; however, the proposed platforms do
not provide a systematic approach to deliver critical services
that are orthogonal to the actual application logic including
time synchronization, messaging middleware, consensus and
coordination mechanisms, discovery and deployment mech-
anisms, fault-detection and recovery mechanisms, and dis-
tributed security mechanisms. Moreover, the code portability
is another issue as the control algorithms are implemented
assuming a specific controller hardware platform.

MAS software platforms provide an agent-based program-
ming paradigm with various platform services. The JADE
(Java Agent Development Framework) platform, as one of
the most widely used MAS platforms, is employed in [13],
[14] to implement microgrid control algorithms. The controller
hardware for the JADE agent can be any computer that runs
Java virtual machine. In [15], the platform is augmented with
support for IEC 61850 and DDS (Data Distribution Service).
Despite the significant convenience provided by the JADE
platform in terms of agent deployment and communication,
it lacks support for applications specific to the power domain.
For example, the JADE platform does not explicitly support
many communication protocols needed to interact with prac-
tical power system devices. Individual extensions are needed
to support each protocol as described in [15]. Also, the JADE
platform is not suitable for time-sensitive control tasks due
to the lack of real-time functionality in the platform service.
Furthermore, the absence of synchronization among agents
makes the platform unsuitable for applications where actions
need to be taken by different agents simultaneously. Addition-
ally, JADE is designed for implementing MAS algorithms. If
a different form of interactions between the nodes is required,
the platform is not well-suited for the task.

In addition to the open-source microgrid control platforms,
commercial platforms are widely utilized for microgrid con-
trol. In [10]-[12], dSPACE simulator is used as hardware
and Matlab/Simulink as software platform to implement both
power electronics control and communication-based control

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

TABLE I: Summary of the RIAPS Features
RIAPS features

Description

Tool Component Framework ~ Reuse code for different apps
Suite Deployment Service Deploy apps to hardware
Comm. Framework Support various comm. patterns
including pub-sub, req-rep
Runtime Hard Real-Time Enable real-time operation
Services Time Synchronization Enable synchronous operation

Device Interface Support various comm. protocols
including Modbus, C37.118, etc.
Improve resiliency and reliability

Protect apps from cyber attacks

Fault Management
Cybersecurity

algorithms for an experimental microgrid. Similar implemen-
tation using CompactRIO and LabVIEW form National Instru-
ments can be found in [16], [17], [20]. Although commercial-
ized solutions provide a mature development environment with
enhanced capabilities such as support for remote deployment
and various communication protocols, one major issue is that
they are cost-prohibitive in many applications. Further, the
proprietary nature of the solutions limits the ability of the end
user to add functionality to the platform, and complicates the
interoperability between components from different vendors.
The RIAPS platform, proposed in this paper, aims to address
the shortcomings identified in the literature. RIAPS is an open-
source software platform that helps developers implement,
deploy, and execute microgrid control algorithms in hardware
controllers. The hardware controller can be any processor
capable of running Linux. In this work, we use the Bealgebone
Black (BBB) single board computer as the hardware controller
due to its low cost and open-source nature. The RIAPS
platform, on one hand, can be combined with any real time
simulators such as OPAL-RT or RTDS to fast prototype control
algorithms with real hardware and network traffic. On the other
hand, it can be integrated with grid devices such as inverters
and relays for deploying a microgrid controller in the field.

IIl. THE RIAPS PLATFORM

This section presents an open-source software platform,
RIAPS. The RIAPS platform features a tool suite and runtime
services, which are summarized in Table I. Each feature is
introduced in detail in the following subsections.

A. Reusable Component Framework

The RIAPS platform has a component-based design where
an application is formed by components that can be indepen-
dently designed and tested, integrated with other components
to form applications, deployed, and executed. A RIAPS com-
ponent is the most fundamental unit that implements user-
defined functions by storing its local states and by exchanging
information with other components. Fig. 1 shows a general
component model with five different kinds of ports: subscribe-
port, publish-port, request-port, reply-port and timer-port. The
subscribe-port and publish-port are used in a publish-subscribe
communication pattern, while request-port and reply-port fa-
cilitate request-reply communication pattern. Timer-ports are
dynamically programmed to periodically execute at a given
rate or singularly at a point in time in the future, thus allowing
for scheduling events like planned microgrid islanding. A
component can have multiple ports of each kind.

The subscribe-port, reply-port and timer-port have associ-
ated callback functions that are triggered when the subscribed

Sub

Current
\ Message queue 0peration
Rep

Fig. 1: RIAPS component model.

Application
(concept)

Component |

Fig. 2: RIAPS application/actor/component relationship.

message is received, the reply is received and the pre-set
timer expires, respectively. Event-driven operations (e.g. power
system protection) and time-driven operations (e.g. discrete
control with a fixed time step) can be conveniently imple-
mented in the callback functions that make use of RIAPS hard
real-time features, is introduced in subsection III-D.

A RIAPS component is single-threaded: at most one opera-
tion (i.e. callback function) is executed at any time. This sim-
plifies the component development, as the designer would not
need to deal with complex synchronization issues — it is han-
dled through message interactions among RIAPS components.
While single-threaded components are easy to understand and
implement, they are not suitable for implementing communica-
tion protocols that require asynchronous interactions with the
physical world, i.e. power system devices. For this reason, the
RIAPS platform supports a special class of component called
“device component” that is multi-threaded and interacts with
power system devices. Such components are expected to be
developed with attention paid to concurrency issues. Device
components are introduced in detail in subsection III-F.

RIAPS components that serve the same function are
grouped and defined as a RIAPS actor for three reasons:

e An actor provides its components with access to the
RIAPS platform services including time synchronization,
resource discovery, and distributed coordination.

« Remote deployment (installation, start, stop, and removal)
of components is done through actors. Instead of individ-
ual components, actors are deployed to the physical nodes
on which the RTAPS platform resides.

o Each actor is an operating system process, which im-
proves the run-time efficiency as it allows several com-
ponents to run within the memory space of a single
process. This is important as the hardware controller
for RTIAPS nodes may be single board computers with
limited computational capability, e.g. the BBBs used in
this work. Note that components within one actor are
executed concurrently, i.e. an actor is multi-threaded if it
contains more than one component.

One RIAPS application can contain multiple actors on dif-

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Development Machine

(Deployment control

RIAPS control node

Deployment/Execution control

4
Discovery/Registration
. _ 0
Component communication/Interaction

—_) —— Vi ——— | o | S
l I | 4 o § — ,[Discovery‘ |
l |Component|... Deployment |Component|u. cployment ,,,l
| Actorf RTAPS node) | Actorfl pIAPSnode) |
\ Application J

Fig. 3: RIAPS platform architecture overview.

[~ RIAPS Control - + X
Select View Help

i@l | fhomelriaps/riaps_apps/app_secondary control

Model Depl
App \ Node 192.168.10.110{192.168.10.111|192.168.10.112 | 192.168.10.113 IEE.]EE:.]D.H-'J-
SecondaryControl | RelayC37Actor DerSecCtrlActor DerSecCtrlActor DerSecCtrlActor DerSecCtrlActor

Deploy | View

Fig. 4: RIAPS deployment service GUI deploying a secondary control
application to five nodes. Relay C37 actor is deployed to the RIAPS node
with internal IP 192.168.10.110. DER secondary control actor is deployed to
four RIAPS nodes with internal IP from 192.168.10.111 to 192.168.10.114.

ferent nodes with one common objective. The relationship
between RIAPS application, actor, and component is shown
in Fig. 2. A component can be reused in several applications,
while being packaged into various actors. Furthermore, the
same actor can be deployed to multiple RIAPS nodes. This
makes the RIAPS platform ideal for distributed control algo-
rithms, as the controllers on different agents in a distributed
control algorithm may be similar.

B. Deployment Service

RIAPS applications will have actors running across multiple
RIAPS nodes that can be geographically distant from each
other. As such, a robust application deployment and manage-
ment service is crucial. The goal of the deployment service is
to provide an interface to manage applications on the network.
The assumption is that each RIAPS node is accessible from
a control node (e.g. a node in the control room) via an IP
network as shown in Fig. 3. The control node is responsible
for the installation, start, stop, and removal of applications on
the RIAPS nodes.

The RIAPS platform provides a graphical user interface
(GUI) to interact with the deployment service. An example
of the GUI is shown in Fig. 4, which deploys an application
called SecondaryControl to five RIAPS nodes.

C. Discovery Service and Communication Framework

Components and thus actors can communicate with each
other through their publish-ports, subscribe-ports, request-
ports and reply-ports. However, in distributed software frame-
works like RIAPS, it is possible that the publish, subscribe,
request and reply ports do not know the identity or location
of the other party, yet they have to communicate via point-to-
point protocols like TCP/IP. The discovery service assists with
setting up the network connections among actors, as shown in
Fig. 3. The main use cases of the discovery service are:

o Actors in one application: When actors in one applica-
tion are deployed and started, they contact the discovery
service and inform it of (1) what message types they
publish and/or subscribe to, and (2) what services they
offer and require. The discovery service keeps track of
this information in its internal database. The discovery
service also informs the actors about potential matches
and establishes the connections between actors.

« Actors in multiple applications: In some cases, different
applications may need to communicate directly. Data are
shared among applications using the publish-subscribe
communication pattern. The discovery service facilitates
the setting up of connections between actors that belong
to different applications.

o Fault tolerance: The discovery service detects whether
an actor is alive or not and informs other interested
actors. The discovery service itself is fault-tolerant since
it exists in multiple copies on the network; if one or more
nodes in the network go down, the discovery service
is still functional. When a discovery service restarts, it
may retrieve its state from persistent storage and/or the
discovery service community.

Ports dictate the interaction patterns (publish-subscribe and
request-reply) that may be used in applications. However,
ports alone do not determine the communication protocols
that are used to implement these interaction patterns. TCP/IP
protocol is used as the backbone for the RIAPS communica-
tion framework, since it is widely accepted and available for
most intelligent electronic devices (IEDs) and grid devices.
Built upon TCP/IP, many protocols such as DDS, MQTT, and
ZeroMQ are available as messaging middleware. ZeroMQ is
used by the RIAPS platform as the messaging middleware,
because it is message based and has embedded peer-to-peer
communication, security and discovery features with good
community support [24].

D. Hard Real-Time Features

A key requirement for a microgrid control system is the
ability to respond to time sensitive events such as responding
to incoming requests or dispatching an action when an issue is
found in the power grid. Commonly, hardware systems are able
to provide the required accuracy and response time, since the
processors are fast enough and the timers have acceptable pre-
cision. The missing real-time behavior is software related: the
code execution needs to be scheduled with high accuracy. This
requires the ability to minimize the scheduling interrupts that
can occur within the kernel code. The RIAPS platform uses a
well established and trusted technology, Embedded Linux, as
its operating system. The Linux kernel is configured with the
PREEMPT_RT feature to make it preemptible, achieving real-
time behaviors by reducing the amount of time during which
high-priority operations are blocked.

E. High-Precision Time Synchronization

The primary function of the RIAPS time synchronization
service is to align the system clock of every RIAPS node to
a common reference clock with minimum jitter and latency.
The time synchronization architecture for the RIAPS platform

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

E 1 lO [1 12
s 7 & G o T Slave 1 GPIO”—”—”—
|-|° |-|'l |-|Z SYNC GEN
SYNC_GEN)] GPIO @ @
TCP/IP
PHC : System
:> Master E /d(OCk i cl]ock[)
PHC2SYS}—{ tsman
[Gpslc—) "
®UART/PPS @ @ E
ReferenWSystem —" PHC .: - I by 4 I
) ik
clock i clock clock ; L | 1| een |GPIO
(CHRONY/GPSD) (PHC25Ys) (PTP4L]) \ H SYNC_GEN
OO
PHC : System
clock 1 clock
(pHC25YS)—{ tsman)

Fig. 5: Synchronization architecture of the RIAPS platform.

Pub-Sab " 7 7 7 7 Deviceinterfaceservice N\
v l Device /O Device I/O Device /O Device /O
omponentfe. R | Componentl| | Component2| |[Component3 | | Component4
eq-Rep
Actor — __ —
J 7 {/’
Protocols | Modbus || Modbus || c37.118 |
10s | epo || UsRT || Ethernet || Ethernet |
Smartgriddevices [Retay || pER |[DER |[PMU |

Fig. 6: An example of four different device I/O components: component 1
can interact with relay through a GPIO channel; component 2 can interact
with DER through Modbus RTU protocol; component 3 can interact with
DER through Modbus TCP/IP protocol; component 4 can interact with PMU
through C37.118 protocol. Depending on the devices the node interacts with,
one or more device I/O components can be integrated into the application.

is shown in Fig. 5. The synchronization service uses a master-
slave approach where a master node is synchronized to the
reference clock — a GPS receiver, network time, or the master’s
own system clock. The slave nodes synchronize to the master
node by Precision Time Protocol (PTP) and a RIAPS-specific
configuration management tool (tsman).

The secondary objective of the RIAPS time synchroniza-
tion service is to provide easy-to-integrate and reliable time
synchronization services for external hardware. A hardware-
specific tool, sync_gen, was developed on top of the RIAPS
time synchronization service to generate accurate synchroniza-
tion pulses on the selected BBB general purpose input output
(GPIO) pin in a wide-range of frequencies. The pulses are
aligned to the globally established time-scale; thus, they are
generated at the same time instant on all nodes. To minimize
the time jitter and bias from the RIAPS node’s system clock
to its GPIO assertion, various measures are taken:

« Instead of relying on user-space libraries (e.g. libsoc) and
kernel services (sysfs), the service uses direct memory-
mapped I/O access for driving the GPIO pins.

o The sync_gen service is scheduled with real-time pol-
icy (SCHED_FIFO) at the highest priority.

o The timing of the pulse signal does not rely on the sleep
services (e.g. clock_nanosleep). Instead, well before the
pulse signal is due, the process wakes up and uses a busy-
wait loop (continuously checking the system time) to find
the best moment to assert the pulse signal.

F. Device Interface Service

Various microgrid components such as DGs, relays, PMUs,
etc. use a wide variety of communication protocols and phys-
ical links to communicate with a supervisory controller. For
example, IEEE Std. 1547 [25] defines Modbus and DNP3 as
standard communication protocols for inverters while C37.118
is a common protocol for PMUs [26]. Additionally, IEC 61850
defines a number of protocols (e.g. GOOSE) for communica-
tion with IEDs such as relays [27]. The fact that there being
no standard protocol for microgrid devices necessitates the
RIAPS device interface service.

The aim of the RIAPS device interface service is to en-
capsulate specific I/O devices so that they are accessible to
application components using a unified interface. In other
words, the device interface service encapsulates the grid de-
vices into a special class of RIAPS components called device
I/0O components. The specific ports and interfaces implemented
by these device I/O components are specific to the connected
grid device, the protocol used, and the physical link used. The
I/O components of many devices are available in the RIAPS
platform as library components. They can be configured and
deployed to communicate with grid devices directly without
concerning the implementation details of the underlying com-
munication protocols. While device I/O components exchange
information with grid devices, other application components
communicate with device I/O components using the standard
RIAPS interaction patterns such as publish-subscribe and
request-reply. This approach allows the developers to focus
on the applications rather than on defining interfaces between
the RIAPS platform and the grid devices. An example of four
different types of device [/O components is shown in Fig. 6.

G. Fault Management and Resiliency

As a software platform, the RIAPS platform resiliency is
defined as the built-in fault tolerance capability of the RIAPS
software. Resiliency may have a different definition for power
system but it is referred to as software resiliency in this paper.
The RIAPS platform fault management operates at two levels:
1) platform service level: the fault management at this level is
responsible for fault detection and recovery for the discovery,
deployment and time synchronization services. The platform
service failures can be detected and corresponding services can
be restarted based on the rules specified by the application
developer; 2) application level: the application level fault
management is present both inside and outside the actor. For
internal fault management, the actor is responsible for detect-
ing exceptions generated by the component’s code. Messages
about the exceptions are sent through a fault message bus and
the developer is able to define handlers for such messages.
The fault management outside the actor is responsible for
detecting the crash of the actor process and also restarting the
actor process if so specified by the developer. For example, if
a communication link among components fails, the platform
will detect the failure and try to reestablish the link. At the
same time, the running application is notified and the handler
defined for communication failure in the code is activated.
Further, the hardware resource usage such as CPU, memory,

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

i
.

Fig. 7: Block diagram for calculating V' —.

Vg, Vp, Ve
— 2Ly

—-w't+
$o

and network bandwidth utilization is monitored. Violations are
detected and reported to the running application.

H. Cybersecurity

The RIAPS platform addresses cybersecurity from several
aspects. First, application packages are encrypted and crypto-
graphically signed when deployed to the hardware controller
from the development machine. Second, the service registry
is protected by elliptic curve encryption with dynamically
generated keys. Third, all internal communications within an
application are protected by the same method. Additionally,
application processes run under their unique, dynamically
generated user ids, within their own separated and isolated
directories. Application processes can communicate only with
authorized nodes and they are strictly controlled using a non-
bypassable Mandatory Access Control mechanism.

IV. RIAPS MICROGRID CONTROL APPLICATION

In this section, we present a distributed microgrid secondary
control algorithm capable of synchronized and proportional
compensation of system unbalance using coordinated DGs.
The purpose of presenting this application is to showcase how
the RIAPS platform features, which were described in the
previous section, allow for the implementation of distributed,
time-sensitive algorithms on multiple hardware nodes.

A. Problem Statement

In an islanded AC microgrid, droop control (1) is commonly
used as primary control for dispatchable DGs to share micro-
grid load without the need for communication:

wi =w* —m;(P;, — P})
Ei=E" —ni(Qi — QF)

where w* and E* are the nominal frequency and voltage
magnitude, respectively; m; and n; are the frequency and
voltage droop gains of DGi, respectively; P; and @); are the
active and reactive power output, respectively; P and Q)
are the active and reactive power setpoint, respectively; w;
and F; are the frequency and voltage magnitude reference for
capacitor voltage, respectively.

Droop control stabilizes the system voltage and frequencys;
however, it introduces steady state frequency and voltage
deviations if the setpoints P; and ()} are not equal to the
actual power output P; and @), respectively. To eliminate such
deviations, secondary control is used to adjust the setpoints:

W :w* 7m1(PZ 7P1*)+Ql (2&)

E;,=E"—n;(Q; — QF) + ¢ (2b)

where €); and e; are the frequency and voltage secondary
cont<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>