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Abstract—Microgrids are seen as an effective way to
achieve reliable, resilient, and efficient operation of the
power distribution system. Core functions of the microgrid
control system are defined by the IEEE standard 2030.7;
however, the algorithms that realize these functions are not
standardized, and are a topic of research. Furthermore, the
corresponding controller hardware, operating system, and
communication system to implement these functions vary
significantly from one implementation to the next. In this
paper, we introduce an open-source platform, Resilient In-
formation Architecture Platform for the Smart Grid (RIAPS),
ideally suited for implementing and deploying distributed
microgrid control algorithms. RIAPS provides a design-time
tool suite for development and deployment of distributed
microgrid control algorithms. With support from a number
of run-time platform services, developed algorithms can be
easily implemented and deployed into real microgrids. To
demonstrate the unique features of RIAPS, we propose and
implement a distributed microgrid secondary control algo-
rithm capable of synchronized and proportional compensa-
tion of voltage unbalance using distributed generators. Test
results show the effectiveness of the proposed control and
the salient features of the RIAPS platform.

Index Terms—Distributed control, microgrid, microgrid
control system.

I. INTRODUCTION

THE ever increasing number of distributed genera-
tors (DGs) located deep in the distribution system makes

conventional centralized control unsustainable. To address
this, there is a need for various customer and utility owned
resources to communicate and interact intelligently with each
other with minimal data exchange to a centralized supervi-
sory control and data acquisition (SCADA) system. Forming
microgrids provides a natural way for these resources to
interact while offering various services to the utility. Therefore,
microgrids can help achieve stable and economical operation
of the future grid while improving system resiliency and
flexibility.

Per IEEE standard 2030.7 [1], a microgrid control system
must provide two core functions: (1) the dispatch function,
which dispatches individual devices in given operating modes
and with specified setpoints; and (2) the transition function,
which supervises the transitions between grid-connected and
islanded states, and ensures that the dispatch is appropriate
for the given state. The secondary and tertiary levels of
hierarchical control try to optimize the dispatch functions to
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utilize the available resources based on optimization criteria.
The transition function manages the primary-level controller
where the DG operation modes or component states change
(e.g. transition from grid forming to grid following mode for
an inverter, or breaker turn-off as a part of an emergency
dispatch order).

To design, implement, and deploy a microgrid control
system, there is a need for a high fidelity testbed to emulate
the microgrid power system, as well as the control system
on which the microgrid controller resides. The testbed must
be flexible enough to allow for modeling of a diverse set of
microgrid topologies while being detailed enough to accurately
represent the real-world implementation complexities. If the
system is to be deployed on an actual microgrid, the developed
control system should be able to interface with commercial
devices and therefore support the native protocols used by the
hardware controllers on the market today.

There are well-established methods of emulating micro-
grids and DG intensive distribution grids through the use of
real-time digital simulators [2]–[6] (e.g. OPAL-RT, Typhoon,
dSPACE, and etc.), or through scaled down [7]–[17] or full-
scale [18]–[21] hardware implementations. Additionally, mul-
tiple tools exist that enable modeling of the communication
networks (e.g. OPNET, NS-2, OMNET++, and etc.), and
these tools have been successfully integrated into various
testbeds [2], [3], [22], [23].

What has not been reported in the literature, according
to our knowledge, is an open-source platform that allows
for the seamless development, testing, and deployment of
a microgrid control system. Such capability is important
to understanding the interactions between different control
levels in a practical system and exploring the complexities
of implementing analytically developed algorithms in the real
world, e.g., realizing computationally complex algorithms on
nodes with limited computational capability. Importantly, a
platform should provide all the necessary tools to deploy the
system into the field. Prototyping platforms exist today, but
most of them lack critical advanced functions, such as time
synchronization and real-time capabilities, that are emerging
in proprietary solutions.

In this paper we review the microgrid control platforms that
have been proposed in literature and point out their advantages
and shortcomings. We then present a new communication and
computation platform, called Resilient Information Architec-
ture Platform for the Smart Grid (RIAPS), which is designed
to operate at the edge of the power grid. To demonstrate the
unique features of the platform, we propose and implement a
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distributed microgrid secondary control algorithm capable of
synchronized and proportional compensation of system volt-
age unbalance caused by unbalanced loads. The application
demonstrates how the platform achieves multi-agent system
(MAS)-type functionality through the implementation of a
distributed control algorithm. Additionally, it demonstrates
the time and functionality coordination between the system
primary-level and secondary-level controllers, to establish a
globally synchronized reference frame in which the DGs can
proportionally compensate system unbalance at a selected
microgrid bus.

The main contributions of this paper include:
• Comprehensive review of the state of the art microgrid

control platforms used in the literature and their features
and limitations.

• Complete description of the RIAPS platform features
including the unique development tool suite and run-time
services while considering system requirements such as
scalability over a large network, real-time response to
events, and time synchronization among nodes.

• Implementation of a novel microgrid control algorithm
that achieves synchronized and proportional compensa-
tion of system voltage unbalance. The application demon-
strates the key features of the platform used for microgrid
control including node time synchronization, implementa-
tion of a distributed consensus algorithm, communication
protocol support, etc.

• Characterization of RIAPS platform performance in terms
of communication delay, packet loss rate, and synchro-
nization error in a close-to-real environment, providing a
reference for control algorithm developers.

The RIAPS platform is open-source and available to the
community; it can be freely used for both lab prototyping and
field implementation. The platform is ideally suited for imple-
menting distributed control algorithms and for performance
benchmarking of other microgrid control systems.

II. RELATED WORK

Microgrid control systems are often implemented and tested
in either in-house developed custom platforms or rely on
proprietary solutions. Typically, little thought is given to how
the system could migrate into the field.

In [2], OPAL-RT real-time simulator is used for grid simu-
lation while OPNET emulates the behavior of the communica-
tion network. Similar approach with RTDS (Real Time Digital
Simulator) as grid simulator and OMNET++ as network
simulator can be found in [3]. Communication-based control
algorithms are implemented in the grid simulator along with
the low level power electronics control. A testbed with a grid
simulator and network simulator allows for flexible simulation
of different microgrid topologies and communication network
configurations; however, with the control algorithms imple-
mented and executed in the simulator, controller computational
limitations, controller interactions, effects of computational
time delays, and controller synchronization become impossible
to evaluate, and are overlooked. In addition, porting the algo-
rithms into the real microgrid control system could potentially
require a complete system redesign, since there could be

little similarity between the simulation system and actual
hardware in the microgrid in terms of computation capability,
communication method, and implementation details.

A more advanced approach, which provides a more realistic
test environment for distributed microgrid control algorithms,
uses dedicated hardware, separate from the power system
simulator, with its own computation and communication ca-
pabilities [4]–[9]. In [4], a Mamba single board computer
is interfaced with RTDS to collect simulated measurement
data and implement communication-based control algorithms
such as load balancing, fault detection, and fault isolation.
In [6], a Zigbee-based MAS enables communication and
coordination between different controllers. In [7], Raspberry PI
single board computers are interfaced to different local control
units to enable microgrid real-time state estimation, and the
communication between Raspberry PIs is based on TCP/IP.
In [8], [9], a system on chip (SoC) with two cores are used
for microgrid control. While one core controls the inverter
hardware, the second core is dedicated to communication using
TCP/IP protocol. In [4]–[9], dedicated controller hardware
enables a close-to-reality emulation of communication-based
control implementation; however, the proposed platforms do
not provide a systematic approach to deliver critical services
that are orthogonal to the actual application logic including
time synchronization, messaging middleware, consensus and
coordination mechanisms, discovery and deployment mech-
anisms, fault-detection and recovery mechanisms, and dis-
tributed security mechanisms. Moreover, the code portability
is another issue as the control algorithms are implemented
assuming a specific controller hardware platform.

MAS software platforms provide an agent-based program-
ming paradigm with various platform services. The JADE
(Java Agent Development Framework) platform, as one of
the most widely used MAS platforms, is employed in [13],
[14] to implement microgrid control algorithms. The controller
hardware for the JADE agent can be any computer that runs
Java virtual machine. In [15], the platform is augmented with
support for IEC 61850 and DDS (Data Distribution Service).
Despite the significant convenience provided by the JADE
platform in terms of agent deployment and communication,
it lacks support for applications specific to the power domain.
For example, the JADE platform does not explicitly support
many communication protocols needed to interact with prac-
tical power system devices. Individual extensions are needed
to support each protocol as described in [15]. Also, the JADE
platform is not suitable for time-sensitive control tasks due
to the lack of real-time functionality in the platform service.
Furthermore, the absence of synchronization among agents
makes the platform unsuitable for applications where actions
need to be taken by different agents simultaneously. Addition-
ally, JADE is designed for implementing MAS algorithms. If
a different form of interactions between the nodes is required,
the platform is not well-suited for the task.

In addition to the open-source microgrid control platforms,
commercial platforms are widely utilized for microgrid con-
trol. In [10]–[12], dSPACE simulator is used as hardware
and Matlab/Simulink as software platform to implement both
power electronics control and communication-based control
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TABLE I: Summary of the RIAPS Features

RIAPS features Description
Tool Component Framework Reuse code for different apps
Suite Deployment Service Deploy apps to hardware

Comm. Framework Support various comm. patterns
including pub-sub, req-rep

Runtime Hard Real-Time Enable real-time operation
Services Time Synchronization Enable synchronous operation

Device Interface Support various comm. protocols
including Modbus, C37.118, etc.

Fault Management Improve resiliency and reliability
Cybersecurity Protect apps from cyber attacks

algorithms for an experimental microgrid. Similar implemen-
tation using CompactRIO and LabVIEW form National Instru-
ments can be found in [16], [17], [20]. Although commercial-
ized solutions provide a mature development environment with
enhanced capabilities such as support for remote deployment
and various communication protocols, one major issue is that
they are cost-prohibitive in many applications. Further, the
proprietary nature of the solutions limits the ability of the end
user to add functionality to the platform, and complicates the
interoperability between components from different vendors.

The RIAPS platform, proposed in this paper, aims to address
the shortcomings identified in the literature. RIAPS is an open-
source software platform that helps developers implement,
deploy, and execute microgrid control algorithms in hardware
controllers. The hardware controller can be any processor
capable of running Linux. In this work, we use the Bealgebone
Black (BBB) single board computer as the hardware controller
due to its low cost and open-source nature. The RIAPS
platform, on one hand, can be combined with any real time
simulators such as OPAL-RT or RTDS to fast prototype control
algorithms with real hardware and network traffic. On the other
hand, it can be integrated with grid devices such as inverters
and relays for deploying a microgrid controller in the field.

III. THE RIAPS PLATFORM

This section presents an open-source software platform,
RIAPS. The RIAPS platform features a tool suite and runtime
services, which are summarized in Table I. Each feature is
introduced in detail in the following subsections.
A. Reusable Component Framework

The RIAPS platform has a component-based design where
an application is formed by components that can be indepen-
dently designed and tested, integrated with other components
to form applications, deployed, and executed. A RIAPS com-
ponent is the most fundamental unit that implements user-
defined functions by storing its local states and by exchanging
information with other components. Fig. 1 shows a general
component model with five different kinds of ports: subscribe-
port, publish-port, request-port, reply-port and timer-port. The
subscribe-port and publish-port are used in a publish-subscribe
communication pattern, while request-port and reply-port fa-
cilitate request-reply communication pattern. Timer-ports are
dynamically programmed to periodically execute at a given
rate or singularly at a point in time in the future, thus allowing
for scheduling events like planned microgrid islanding. A
component can have multiple ports of each kind.

The subscribe-port, reply-port and timer-port have associ-
ated callback functions that are triggered when the subscribed

Fig. 1: RIAPS component model.

Fig. 2: RIAPS application/actor/component relationship.

message is received, the reply is received and the pre-set
timer expires, respectively. Event-driven operations (e.g. power
system protection) and time-driven operations (e.g. discrete
control with a fixed time step) can be conveniently imple-
mented in the callback functions that make use of RIAPS hard
real-time features, is introduced in subsection III-D.

A RIAPS component is single-threaded: at most one opera-
tion (i.e. callback function) is executed at any time. This sim-
plifies the component development, as the designer would not
need to deal with complex synchronization issues – it is han-
dled through message interactions among RIAPS components.
While single-threaded components are easy to understand and
implement, they are not suitable for implementing communica-
tion protocols that require asynchronous interactions with the
physical world, i.e. power system devices. For this reason, the
RIAPS platform supports a special class of component called
“device component” that is multi-threaded and interacts with
power system devices. Such components are expected to be
developed with attention paid to concurrency issues. Device
components are introduced in detail in subsection III-F.

RIAPS components that serve the same function are
grouped and defined as a RIAPS actor for three reasons:

• An actor provides its components with access to the
RIAPS platform services including time synchronization,
resource discovery, and distributed coordination.

• Remote deployment (installation, start, stop, and removal)
of components is done through actors. Instead of individ-
ual components, actors are deployed to the physical nodes
on which the RIAPS platform resides.

• Each actor is an operating system process, which im-
proves the run-time efficiency as it allows several com-
ponents to run within the memory space of a single
process. This is important as the hardware controller
for RIAPS nodes may be single board computers with
limited computational capability, e.g. the BBBs used in
this work. Note that components within one actor are
executed concurrently, i.e. an actor is multi-threaded if it
contains more than one component.

One RIAPS application can contain multiple actors on dif-
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Fig. 3: RIAPS platform architecture overview.

Fig. 4: RIAPS deployment service GUI deploying a secondary control
application to five nodes. Relay C37 actor is deployed to the RIAPS node
with internal IP 192.168.10.110. DER secondary control actor is deployed to
four RIAPS nodes with internal IP from 192.168.10.111 to 192.168.10.114.

ferent nodes with one common objective. The relationship
between RIAPS application, actor, and component is shown
in Fig. 2. A component can be reused in several applications,
while being packaged into various actors. Furthermore, the
same actor can be deployed to multiple RIAPS nodes. This
makes the RIAPS platform ideal for distributed control algo-
rithms, as the controllers on different agents in a distributed
control algorithm may be similar.
B. Deployment Service

RIAPS applications will have actors running across multiple
RIAPS nodes that can be geographically distant from each
other. As such, a robust application deployment and manage-
ment service is crucial. The goal of the deployment service is
to provide an interface to manage applications on the network.
The assumption is that each RIAPS node is accessible from
a control node (e.g. a node in the control room) via an IP
network as shown in Fig. 3. The control node is responsible
for the installation, start, stop, and removal of applications on
the RIAPS nodes.

The RIAPS platform provides a graphical user interface
(GUI) to interact with the deployment service. An example
of the GUI is shown in Fig. 4, which deploys an application
called SecondaryControl to five RIAPS nodes.
C. Discovery Service and Communication Framework

Components and thus actors can communicate with each
other through their publish-ports, subscribe-ports, request-
ports and reply-ports. However, in distributed software frame-
works like RIAPS, it is possible that the publish, subscribe,
request and reply ports do not know the identity or location
of the other party, yet they have to communicate via point-to-
point protocols like TCP/IP. The discovery service assists with
setting up the network connections among actors, as shown in
Fig. 3. The main use cases of the discovery service are:

• Actors in one application: When actors in one applica-
tion are deployed and started, they contact the discovery
service and inform it of (1) what message types they
publish and/or subscribe to, and (2) what services they
offer and require. The discovery service keeps track of
this information in its internal database. The discovery
service also informs the actors about potential matches
and establishes the connections between actors.

• Actors in multiple applications: In some cases, different
applications may need to communicate directly. Data are
shared among applications using the publish-subscribe
communication pattern. The discovery service facilitates
the setting up of connections between actors that belong
to different applications.

• Fault tolerance: The discovery service detects whether
an actor is alive or not and informs other interested
actors. The discovery service itself is fault-tolerant since
it exists in multiple copies on the network; if one or more
nodes in the network go down, the discovery service
is still functional. When a discovery service restarts, it
may retrieve its state from persistent storage and/or the
discovery service community.

Ports dictate the interaction patterns (publish-subscribe and
request-reply) that may be used in applications. However,
ports alone do not determine the communication protocols
that are used to implement these interaction patterns. TCP/IP
protocol is used as the backbone for the RIAPS communica-
tion framework, since it is widely accepted and available for
most intelligent electronic devices (IEDs) and grid devices.
Built upon TCP/IP, many protocols such as DDS, MQTT, and
ZeroMQ are available as messaging middleware. ZeroMQ is
used by the RIAPS platform as the messaging middleware,
because it is message based and has embedded peer-to-peer
communication, security and discovery features with good
community support [24].

D. Hard Real-Time Features

A key requirement for a microgrid control system is the
ability to respond to time sensitive events such as responding
to incoming requests or dispatching an action when an issue is
found in the power grid. Commonly, hardware systems are able
to provide the required accuracy and response time, since the
processors are fast enough and the timers have acceptable pre-
cision. The missing real-time behavior is software related: the
code execution needs to be scheduled with high accuracy. This
requires the ability to minimize the scheduling interrupts that
can occur within the kernel code. The RIAPS platform uses a
well established and trusted technology, Embedded Linux, as
its operating system. The Linux kernel is configured with the
PREEMPT RT feature to make it preemptible, achieving real-
time behaviors by reducing the amount of time during which
high-priority operations are blocked.

E. High-Precision Time Synchronization

The primary function of the RIAPS time synchronization
service is to align the system clock of every RIAPS node to
a common reference clock with minimum jitter and latency.
The time synchronization architecture for the RIAPS platform
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Fig. 5: Synchronization architecture of the RIAPS platform.

Fig. 6: An example of four different device I/O components: component 1
can interact with relay through a GPIO channel; component 2 can interact
with DER through Modbus RTU protocol; component 3 can interact with
DER through Modbus TCP/IP protocol; component 4 can interact with PMU
through C37.118 protocol. Depending on the devices the node interacts with,
one or more device I/O components can be integrated into the application.

is shown in Fig. 5. The synchronization service uses a master-
slave approach where a master node is synchronized to the
reference clock – a GPS receiver, network time, or the master’s
own system clock. The slave nodes synchronize to the master
node by Precision Time Protocol (PTP) and a RIAPS-specific
configuration management tool (tsman).

The secondary objective of the RIAPS time synchroniza-
tion service is to provide easy-to-integrate and reliable time
synchronization services for external hardware. A hardware-
specific tool, sync_gen, was developed on top of the RIAPS
time synchronization service to generate accurate synchroniza-
tion pulses on the selected BBB general purpose input output
(GPIO) pin in a wide-range of frequencies. The pulses are
aligned to the globally established time-scale; thus, they are
generated at the same time instant on all nodes. To minimize
the time jitter and bias from the RIAPS node’s system clock
to its GPIO assertion, various measures are taken:

• Instead of relying on user-space libraries (e.g. libsoc) and
kernel services (sysfs), the service uses direct memory-
mapped I/O access for driving the GPIO pins.

• The sync_gen service is scheduled with real-time pol-
icy (SCHED_FIFO) at the highest priority.

• The timing of the pulse signal does not rely on the sleep
services (e.g. clock nanosleep). Instead, well before the
pulse signal is due, the process wakes up and uses a busy-
wait loop (continuously checking the system time) to find
the best moment to assert the pulse signal.

F. Device Interface Service

Various microgrid components such as DGs, relays, PMUs,
etc. use a wide variety of communication protocols and phys-
ical links to communicate with a supervisory controller. For
example, IEEE Std. 1547 [25] defines Modbus and DNP3 as
standard communication protocols for inverters while C37.118
is a common protocol for PMUs [26]. Additionally, IEC 61850
defines a number of protocols (e.g. GOOSE) for communica-
tion with IEDs such as relays [27]. The fact that there being
no standard protocol for microgrid devices necessitates the
RIAPS device interface service.

The aim of the RIAPS device interface service is to en-
capsulate specific I/O devices so that they are accessible to
application components using a unified interface. In other
words, the device interface service encapsulates the grid de-
vices into a special class of RIAPS components called device
I/O components. The specific ports and interfaces implemented
by these device I/O components are specific to the connected
grid device, the protocol used, and the physical link used. The
I/O components of many devices are available in the RIAPS
platform as library components. They can be configured and
deployed to communicate with grid devices directly without
concerning the implementation details of the underlying com-
munication protocols. While device I/O components exchange
information with grid devices, other application components
communicate with device I/O components using the standard
RIAPS interaction patterns such as publish-subscribe and
request-reply. This approach allows the developers to focus
on the applications rather than on defining interfaces between
the RIAPS platform and the grid devices. An example of four
different types of device I/O components is shown in Fig. 6.

G. Fault Management and Resiliency

As a software platform, the RIAPS platform resiliency is
defined as the built-in fault tolerance capability of the RIAPS
software. Resiliency may have a different definition for power
system but it is referred to as software resiliency in this paper.
The RIAPS platform fault management operates at two levels:
1) platform service level: the fault management at this level is
responsible for fault detection and recovery for the discovery,
deployment and time synchronization services. The platform
service failures can be detected and corresponding services can
be restarted based on the rules specified by the application
developer; 2) application level: the application level fault
management is present both inside and outside the actor. For
internal fault management, the actor is responsible for detect-
ing exceptions generated by the component’s code. Messages
about the exceptions are sent through a fault message bus and
the developer is able to define handlers for such messages.
The fault management outside the actor is responsible for
detecting the crash of the actor process and also restarting the
actor process if so specified by the developer. For example, if
a communication link among components fails, the platform
will detect the failure and try to reestablish the link. At the
same time, the running application is notified and the handler
defined for communication failure in the code is activated.
Further, the hardware resource usage such as CPU, memory,
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Fig. 7: Block diagram for calculating V −.

and network bandwidth utilization is monitored. Violations are
detected and reported to the running application.

H. Cybersecurity
The RIAPS platform addresses cybersecurity from several

aspects. First, application packages are encrypted and crypto-
graphically signed when deployed to the hardware controller
from the development machine. Second, the service registry
is protected by elliptic curve encryption with dynamically
generated keys. Third, all internal communications within an
application are protected by the same method. Additionally,
application processes run under their unique, dynamically
generated user ids, within their own separated and isolated
directories. Application processes can communicate only with
authorized nodes and they are strictly controlled using a non-
bypassable Mandatory Access Control mechanism.

IV. RIAPS MICROGRID CONTROL APPLICATION

In this section, we present a distributed microgrid secondary
control algorithm capable of synchronized and proportional
compensation of system unbalance using coordinated DGs.
The purpose of presenting this application is to showcase how
the RIAPS platform features, which were described in the
previous section, allow for the implementation of distributed,
time-sensitive algorithms on multiple hardware nodes.

A. Problem Statement
In an islanded AC microgrid, droop control (1) is commonly

used as primary control for dispatchable DGs to share micro-
grid load without the need for communication:

ωi = ω∗ −mi(Pi − P ∗
i ) (1a)

Ei = E∗ − ni(Qi −Q∗
i ) (1b)

where ω∗ and E∗ are the nominal frequency and voltage
magnitude, respectively; mi and ni are the frequency and
voltage droop gains of DGi, respectively; Pi and Qi are the
active and reactive power output, respectively; P ∗

i and Q∗
i

are the active and reactive power setpoint, respectively; ωi

and Ei are the frequency and voltage magnitude reference for
capacitor voltage, respectively.

Droop control stabilizes the system voltage and frequency;
however, it introduces steady state frequency and voltage
deviations if the setpoints P ∗

i and Q∗
i are not equal to the

actual power output Pi and Qi, respectively. To eliminate such
deviations, secondary control is used to adjust the setpoints:

ωi = ω∗ −mi(Pi − P ∗
i ) + Ωi (2a)

Ei = E∗ − ni(Qi −Q∗
i ) + ei (2b)

where Ωi and ei are the frequency and voltage secondary
control variables, respectively.

If unbalanced loads exist in the microgrid, the voltage in
the microgrid can be unbalanced. The degree of unbalance is
measured by voltage unbalance factor (VUF):

VUF = V −/V + (3)

where V − is the magnitude of fundamental negative sequence
voltage and V + is the magnitude of fundamental positive
sequence voltage. The fundamental negative sequence voltage
magnitude can be calculated in any dq reference frame rotating
at −ω∗ as shown in Fig. 7. Depending on its phase lock loop
angle, different DGs’ local reference frames can have different
initial angles φ0. Thus, given the same input va, vb, vc, each
DG could come out with different V −

d and V −
q if using local

reference frames, while the magnitude V − remains the same.
To compensate the voltage unbalance and thus reduce the

VUF in the microgrid, the DGs can actively inject negative
sequence current [28], [29]. While the magnitude of the
injected negative sequence current I−i is a measure of the
DGi’s compensation effort for voltage unbalance, the d and
q components of the injected negative sequence current i−d,i
and i−q,i depend on the phase angle of the negative sequence
voltage of the selected compensated bus, θ−i,BUSn. The injected
negative sequence current can be calculated as,

i−d,i = I−i cos θ−i,BUSn , i−q,i = I−i sin θ−i,BUSn (4a)

θ−i,BUSn = arccos
V −
d,i,BUSn√

(V −
d,i,BUSn)

2
+ (V −

q,i,BUSn)
2

(4b)

where V −
d,i,BUSn and V −

q,i,BUSn are the d and q component of
negative sequence voltage of the compensated bus in DGi’s
local dq reference frame, respectively.

Commonly, a DG only has voltage sensors installed locally
and does not have access to the voltage measurement of the
external bus that needs unbalance compensation. Furthermore,
the communication bandwidth is usually not high enough to
stream the measured instantaneous three-phase bus voltage to
the DG. For these reasons, the control strategies in [28] and
[29] use the DG’s local negative sequence capacitor voltage as
the reference vector to calculate the injected negative sequence
current. However, if the compensated bus is electrically remote
from the DG (i.e. there is a large impedance in between), the
negative sequence capacitor voltage and the negative sequence
bus voltage can be very different, resulting in an unsatisfactory
compensation performance for the voltage unbalance at the
remote bus. Thus, there is a need for a globally synchronized
dq reference frame. With that, the negative sequence voltages
at the remote bus can be measured as DC quantities in the
globally synchronized dq reference frame and transmitted
to the DG using low speed communication channels. After
converting the negative sequence voltages from the globally
synchronized dq reference frame to the DG’s local reference
frame, (4) is used to calculate the injected negative sequence
current and improve the unbalance compensation performance.
Subsection V-C describes how such a globally synchronized
dq reference frame is created using the RIAPS platform.

B. Proposed Algorithm

To demonstrate the distributed control capability of the
RIAPS platform, we use a distributed secondary controller to
recover the system frequency and voltage to their nominal
values and regulate VUF at a remote bus, while sharing
the power and unbalance compensation effort proportionally
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Fig. 8: Hardware-in-the-loop testbed setup.

among all DGs. The proposed secondary control is based on
consensus algorithm and it is expressed as:

ki
dΩi

dt
= −αi(ωi − ω∗)−

n∑
j=1

aij(
Pi

P r
i

− Pj

P r
j

) (5a)

κi
dei
dt

= −βi(Ē − E∗)−
n∑

j=1

bij(
Qi

Qr
i

− Qj

Qr
j

) (5b)

ηi
dI−i
dt

= −γi(VUFBUSn − VUF∗)−
n∑

j=1

cij(
I−i
I−r
i

−
I−j

I−r
j

)

(5c)

where ki, κi and ηi are the frequency, voltage and unbalance
compensation secondary control gain, respectively; αi, βi
and γ are the frequency, voltage and VUF regulation gain,
respectively; E∗ is the microgrid rated voltage and Ē is the
microgrid average voltage whose value can be estimated using
a distributed method such as the one from [30]. P r

i and Qr
i

are the rated active and reactive power for DGi, respectively.
VUFBUSn and VUF∗ are the measured VUF at compensated
bus and the required VUF, respectively. I−r

i is the desired
share of unbalance compensation effort for DGi. Adjacency
matrix A = {aij}, B = {bij} and C = {cij} depend on the
microgrid communication topology: aij = bij = cij = 1 if
there is a valid communication link between DG i and DG j,
otherwise aij = bij = cij = 0.

It is worth mentioning that the frequency and voltage
secondary controller in (5a) and (5b) do not require synchro-
nization between different nodes. However, synchronization is
necessary for creating a globally synchronized dq reference
frame for measuring and compensating the voltage unbalance
at a remote location.

V. EXPERIMENT RESULTS

To demonstrate the salient features of the RIAPS plat-
form, we present a hardware-in-the-loop (HIL) testbed using
industry-grade hardware and implement the proposed micro-
grid control using the RIAPS platform. The performance of
the RIAPS platform and the effectiveness of the proposed
microgrid control is validated through experiments.

A. Hardware-in-the-loop Testbed

Fig. 8 presents an overview of the HIL testbed. The testbed
uses an OPAL-RT real-time simulator to model the microgrid
and and its components including DGs, loads, relays, and
etc. The switching power electronics converters are modeled
in OPAL-RT FPGA-based simulator with 500 ns simulation
time step, which allows capture of fast dynamics of switching

Fig. 9: Distribution of different delay components.

Fig. 10: Packet loss rate measurement

converters in real-time. The non-switching components are
modeled in the CPU-based simulator. The converter models
in the simulator are interfaced with TMS320F28377S micro-
controller units (MCUs) from Texas Instruments. The sim-
ulated states like current and voltage are output as analog
signals and scaled down to a suitable level for the analog-to-
digital converters (ADCs) of the MCUs. The power electronics
converters’ local control algorithms are implemented in the
MCUs and they output pulse-width modulated (PWM) signals
as the gate signals for the simulated converters.

The RIAPS platform is deployed as a high level control
platform in the testbed. Each MCU is associated with a
RIAPS node whose hardware is BBB. With RIAPS device
interface service, each BBB can interact with its MCU using
Modbus protocol to access measurement data as well as issue
commands to the MCU. Further, a GPIO channel between each
BBB and its MCU enables synchronizing different MCUs in
the testbed.

The HIL testbed is developed to evaluate the performance of
the RIAPS platform and microgrid control algorithm. Besides
OPAL-RT real-time simulator, the RIAPS platform can also be
integrated with other real-time simulators such as RTDS, as
well as real power stage hardware such as inverters. It allows
a rapid control prototyping as the developed control algorithm
are tested on hardware controllers. Moreover, it can be easily
extended to test the performance of other components. For
example, an inverter and its RIAPS node can be integrated into
the testbed using the method in [31]. Also, the commercialized
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Fig. 11: Synchronization error and its distribution.
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Fig. 12: Block diagram for tuning ωgl in synchronization ISR.

relays can communicate with a RIAPS node using C37.118
protocol and be tested in the system.

B. RIAPS Platform Performance

In this subsection, the performance of the RIAPS platform
is measured in terms of communication delay, communication
packet loss rate and synchronization error.

1) Communication delay: Fig. 9 shows the distribution of
communication delays measured in the testbed. The average
delay for Modbus communication between the BBB and DSP
is 14 ms while the average communication delay between two
BBBs is 7 ms. The communication delay between two BBB
may increase as the number of the RIAPS nodes becomes
larger due to increased network traffic.

2) Packet loss rate: In each time step, the BBB first updates
the measurement, then computes the algorithm and lastly
publishes the calculated results. If the time step is not large
enough, the published results may not be received by other
BBBs before the next time step. This process is shown in
Fig. 10(a). If the packet for time step n arrives at T1, it is used
for calculation in the next time step. However, if it arrives at
T2, it is not used and the information in this packet is lost.
Fig. 10(b) shows the packet loss rate measured using different
time steps. While a large time step gives a lower packet loss
rate, it may degrade the controller performance. As a trade-off,
100 ms time step is selected in the following experiment.

3) Synchronization error: Fig. 11(a) shows the rising edge
of the synchronization pulses generated by four BBBs. The
synchronization error is marked as ∆tsync. The test is re-
peated 120 times and the distribution of ∆tsync is shown in
Fig. 11(b). The average synchronization error is 0.85 µs and
the maximum synchronization error is 1.96 µs.

C. Globally Synchronized dq Reference Frame

The proposed unbalance compensation control requires the
knowledge of negative sequence voltage at the compensated
bus which poses challenges as the DGs’ controllers do not
have a common clock reference. To overcome this issue we
create a globally synchronized dq reference frame at all nodes
using RIAPS’ high accuracy time synchronization service.
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Fig. 13: Two MCUs’ global dq reference frame synchronizing gradually.

Fig. 14: Simulated IEEE 34-bus system for proposed secondary control.

Fig. 15: RIAPS application for distributed microgrid secondary control.

The goal of globally synchronized dq reference frame is
to have the same global reference frame phase φgl on all
the MCUs while maintaining ω∗ rotating frequency. This is
accomplished by two steps. First, in the main PWM interrupt
service routine (ISR), global reference frame phase φgl is
calculated by integrating global reference frame frequency ωgl

over one switching period Tsw,

φgl(n+ 1) = φgl(n) + ωglTsw (6)

The second step is to tune ωgl such that all the MCUs can
have the same phase φgl. A GPIO channel sends synchronized
pulse from BBB to its MCU. The synchronized pulse triggers
a synchronization ISR in each MCU. A phase controller shown
in Fig. 12 is implemented in the ISR. As the synchronization
pulse is generated by all BBBs at the same time instant
(with µs tolerance), all MCUs enter the ISR at the same
time and the sampled global reference frame phase φgl should
be the same on all MCUs. If not, a proportional controller
is used to tune the frequency slightly around its nominal
value. Therefore, an MCU with leading phase will have a
smaller ωgl while an MCU with lagging phase will have
a larger ωgl until the next synchronization pulse. Thus, the
phase difference can be eliminated gradually. Fig. 13 shows
the synchronization process of two MCUs’ global reference
frame. The synchronization ISR has a higher priority than the
main ISR to ensure accurate sampling of the global reference
frame phase φgl.
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Fig. 16: Test results for distributed microgrid secondary control: three-phase voltage waveform at Bus 840

TABLE II: Microgrid Parameters

DG Parameters
DG1,2,3,4 m = 3.1416 × 10−5 n = 1 × 10−4

fsw = 5000 Hz ksync = 5
Secondary Controller Parameters

Frequency control k = 0.16 α = 0.12
Voltage control κ = 0.016 β = 0.028

Unbalance control η = 0.02 γ = 0.35
Time step ∆t = 100 ms

Synchronization Parameters
Sync. pulse frequency fsync = 60 Hz

D. Case Study

To verify the effectiveness of the proposed control algorithm
and the performance of the RIAPS platform as a microgrid
controller, we adopt IEEE 34-bus system as a single microgrid
and implement three changes from the nominal system. First,
four DGs are introduced at bus 814, 822, 890, 844. Second, all
the single phase loads are replaced with three phase balanced
load with a floating neutral to avoid zero sequence current.
Third, the phase-to-phase load in IEEE 34-bus system will
cause voltage unbalance. The remote Bus 840 is expected to
have critical load and its VUF should be low. The controller
parameters are shown in Table II.

Each simulated DG is controlled by an MCU in the testbed.
The control implemented in the MCU includes an inner current
loop to regulate the inverter current, an outer voltage loop to
regulate the filter capacitor voltage, and a droop loop (2). The
negative sequence current injection (4) is also implemented in
the MCU. An additional MCU measures the negative sequence
voltage using the globally synchronized dq reference frame
and VUF at Bus 840. This information is shared with other
DGs for unbalance compensation control.

The RIAPS application for distributed microgrid secondary
control is shown in Fig. 15. The DG actor is deployed to four
DG nodes. A Modbus I/O component sends and receives Mod-
bus messages from the MCU. The secondary controllers (5) are
implemented in component Averager. Averager has a timer-
port that triggers its callback functions every time step ∆t.
In the callback function, (5) is discretized and the control
variables Ωi, ei and I−i are calculated. Local information such
as Pi/P

r
i , Qi/Q

r
i and I−i /I

−r
i is packed and published to the

RIAPS communication network under the topic Node Data.
By default, the RIAPS platform assumes a full communication
network, i.e any DG RIAPS node can receive Node Data
from any other DG RIAPS nodes. If a controller’s performance
under a sparse communication network is to be verified, the
communication network can be reconfigured. All the DG
nodes also subscribe to the message Load Data from the

Fig. 17: Test results for distributed microgrid secondary control: frequency,
voltage and VUF measured at Bus 840.

Fig. 18: Test results for distributed microgrid secondary control: active
power, reactive power and negative sequence current of DGs.

remote bus node. The RIAPS remote bus node publishes
VUFBUSn, as well as V −

d,gl,BUSn and V −
q,gl,BUSn calculated in

the globally synchronized dq reference frame.
The HIL test results are presented in Fig. 16, Fig. 17 and

Fig. 18. Initially, the microgrid operates in grid-connected
mode with the point of interconnection (POI) relay closed.
All the DGs output 100 kW active power and 60 kvar reactive
power. At t = t1 a dispatch command is sent from the
microgrid control system to DG1. Based on the command,
the output of DG1 is changed to 200 kW active power and 50
kvar reactive power. The three phase voltage waveform at Bus
840 is shown in Fig. 16(a). As the grid is a stiff voltage source,
the voltage waveform at Bus 840 shows little unbalance during
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grid-connected operation.
At t = t2, the microgrid experiences an unintentional

islanding event and the POC relay opens. The microgrid loads
are supplied by the DGs in the microgrid. During t = t2
to t = t3, the microgrid operates in islanded mode and the
secondary control application is not activated. The system
frequency and voltage deviation introduced by droop control
can be observed: |∆VSS | = 0.14 p.u. and |∆fSS | = 0.002
p.u. The voltage waveform at Bus 840 in Fig. 16(b) shows a
reduced voltage magnitude and significant voltage unbalance.
The VUF at this stage is 0.11.

At t = t3, the frequency and voltage secondary control
(5a) and (5b) is enabled, while unbalance secondary control
(5c) remains disabled. The microgrid frequency and magnitude
deviation is eliminated gradually. At t = 45 s the microgrid
frequency and magnitude are restored to their nominal values,
respectively. However, the voltage at Bus 840 is still highly
unbalanced as shown in Fig. 16(c) and the VUF is 0.11.

At t = t4, the proposed unbalance secondary control (5c)
is further enabled. The DGs start to compensate the voltage
unbalance by injecting negative sequence current. After around
10 seconds, the VUF at Bus 840 is regulated to below 0.04.
The voltage waveform with all controllers enabled is shown
in Fig. 16(d). Fig. 18 shows the active power, reactive power
and injected negative sequence current are shared equally by
all DGs in steady state.

This application demonstrates that the RIAPS platform
serving as a micorgrid control system can provide all the
necessary functionalities for both microgrid grid-connected
and islanding operation. It also supports advanced features
such as distributed control and time synchronization.

VI. CONCLUSION

We presented an open-source software platform, RIAPS,
for microgrid control. The platform provides a design-time
toolsuite and run-time environment for the design, implemen-
tation, testing, and deployment of microgrid control systems
with enhanced capabilities. It supports the development of
distributed applications and provides time synchronization,
real-time scheduling of operations, and fault tolerance. Fur-
ther, we presented a distributed microgrid secondary control
algorithm capable of synchronized and proportional compen-
sation of system voltage unbalance. Besides its the MAS-
type functionality, this application demonstrates the platform’s
synchronization functionality which is exploited to establish a
globally synchronized reference frame.
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