Automating Pattern Selection for Assurance
Case Development for Cyber-Physical Systems

Shreyas Ramakrishna! ® | Hyunjee Jin?, Abhishek Dubey!, and Arun
Ramamurthy?

! Institute for Software Integrated Systems, Vanderbilt University, Nashville, USA
{shreyas.ramakrishna,abhishek.dubey}@vanderbilt.edu
2 Siemens Corporation, Technology, New Jersey, USA
{hyunjee.jin,arun.ramamurthy}@siemens.com

Abstract. Assurance Cases are increasingly being required for regula-
tory acceptance of Cyber-Physical Systems. However, the ever-increasing
complexity of these systems has made the assurance cases development
complex, labor-intensive and time-consuming. Assurance case fragments
called patterns are used to handle the complexity. The state-of-the-art
approach has been to manually select generic patterns from online cat-
alogs, instantiate them with system-specific information, and assemble
them into an assurance case. While there has been some work in au-
tomating the instantiation and assembly, a less researched area is the
automation of the pattern selection process, which takes a considerable
amount of the assurance case development time. To close this automation
gap, we have developed an automated pattern selection workflow that
handles the selection problem as a coverage problem, intending to find
the smallest set of patterns that can cover the available system artifacts.
For this, we utilize the ontology graphs of the system artifacts and the
patterns and perform graph analytics. The selected patterns are fed into
an external instantiation function to develop an assurance case. Then,
they are evaluated for coverage using two coverage metrics. An illustra-
tive autonomous vehicle example is provided, demonstrating the utility
of the proposed workflow in developing an assurance case with reduced
efforts and time compared to the manual development alternative.

Keywords: Cyber Physical Systems - Assurance Case - Patterns - GSN
- Optimization - Ontology - Graph Isomorphism - Coverage Metrics

1 Introduction

Assurance Cases (ACs) are increasingly being required for regulatory acceptance
of Cyber-Physical Systems (CPSs) in several safety-critical applications, such as
automotive [19], aviation [8] and medical devices [9]. For example, the develop-
ment of a safety case (AC with a focus on safety) is a requirement for compliance
with the ISO 26262 safety standard in the automotive domain [19]. An AC is a
structured argument, supported by evidence, intended to demonstrate that the
system satisfies its assurance guarantees under a particular context and under

| depth AEBS Brake Alarm Angular
Error L:tlcla)ral Steer

@speed A
METER P Supervisor
Images y Tonai Throttle

e e Py
Controller) _|WaYPOINtS Eprror P _——
Anomaly

Detectors| anomaly scores

Fig. 1: (left) Image from the forward-looking camera of an autonomous vehicle
in CARLA simulation. (right) The system model of the autonomous vehicle.

a given set of assumptions about the behavior of the system’s components and
its operating environment [1]. Goal Structuring Notation (GSN) [15] has been a
widely used graphical modeling language used to represent an AC.

However, the increasing complexity of CPS has made the assurance process
complex, labor-intensive, and time-consuming because of the activities that in-
volve managing numerous requirements, curating a large number of artifacts and
evidence, developing and managing huge ACs, among others [18]. These prob-
lems can be alleviated with an adequate tool that can partially automate some
of these activities. In this regard, several tools like Advocate [6], Resolute [11],
Isabelle [10], AMASS [23], among others [17] have been developed in the recent
years. In addition to managing the requirements and artifacts, these tools utilize
modular assurance arguments called assurance case patterns® [16] to handle the
size and complexity of AC being developed. Patterns are argument fragments
that provide a partial solution for one aspect of the overall AC. They provide a
reusable structure through parameter placeholders that can be instantiated with
system-specific artifacts and assembled with other patterns into an AC.

While these tools specialize in data management and automation of the in-
stantiation and assembly algorithm, an activity that has not been researched is
the automation of the pattern selection process. To contextualize the selection
process, consider the Autonomous Vehicle (AV) example in Fig. 1. Assume we
want to develop an AC with the goal that the “Automatic Emergency Braking
System (AEBS) will function satisfactorily in applying the emergency brake”,
given that the operating context is a clear day. For this, we are given an artifact
database with system architecture, component decomposition, component test-
ing results (from different contexts like a clear day, rainy day, night, etc.), and
a pattern database with patterns related to requirement decomposition, compo-
nent decomposition, and failures, functional decomposition, hazard decomposi-
tion, etc. The problem is to select patterns that (a) support the goal and (b)
have all the artifacts in the given context required for instantiation. Typically, a
designer manually compares each pattern against the system artifacts to check
if all the artifacts required for instantiation are available [22]. It is assumed the
designer has complete knowledge of the system artifacts and is familiar with the

3 In the rest of this paper, we will refer to “AC patterns” as “patterns”

content of the patterns and the context to which they are applicable. However,
this comparison gets complicated and tedious for complex systems with more
goals and diverse heterogeneous system artifacts [23]. For example, in one of the
recent studies, Yamamoto, Shuichiro et al. [24] have shown that manual pattern
selection took one designer 30 hours (14% of the development time) and required
significant understanding about the available artifacts and patterns. Therefore,
automating the selection process can aid the assurance process.
Contributions: To close this automation gap, we have developed a workflow
that handles the selection problem as a coverage problem, intending to find
the smallest set of patterns that can cover the system artifacts. For this, we
leverage the ontology graph of the system artifacts and patterns and perform
graph analytics. We address the coverage problem using an optimization problem
setup, which is assisted by a data preparation function that utilizes a weaving
model* [3] to generate data files, a mapping file, and an ontology graph of the
artifacts. A selection function uses the processed files and a database of patterns
to select a set of patterns, which are then plugged into an instantiation function
to develop an AC. Finally, the AC is evaluated for coverage, and a report with
information about unused artifacts and patterns is generated to aid the developer
with future refinement. To evaluate the workflow, we have integrated it with a
newly developed tool called ACCELERATE to automatically construct an AC
for an Autonomous Vehicle ® example within a CARLA simulation [7].
Outline: The rest of this paper is organized as follows. In Section 2, we
formalize assurance case patterns. In Section 3, we present the proposed workflow
that includes the data preparation, pattern selection, and evaluation functions to
automate the development and evaluation of an AC. In Section 4, we demonstrate
the utility of our workflow by an AV example in a CARLA simulation. Finally, we
present the related research in Section 5 followed by our conclusion in Section 6.

2 Assurance Case Patterns

Goal Structuring Notation uses an iterative decomposition strategy to decom-
pose the top-level system goal(s) to be proved to lower-level component goals,
often supported by evidence. Although this notation has simplified the documen-
tation of ACs, it is challenging to design monolithic GSNs for complex systems.
Patterns [16] are argument fragments that provide a partial solution for one
aspect of the overall AC. They capture common repeated argument structures
and abstract system-specific argument details as placeholders with free parame-
ters to be instantiated. Patterns typically include information like name, intent,
motivation, structure, applicability, related patterns, description of the decom-
position strategy, and implementation details. In addition, Kelly has introduced
several structural and entity abstractions to the GSN modeling language for de-
scribing a pattern [16]. Currently, there are several online catalogs [21, 16, 22)
with patterns in GSN format that can be readily used to design an AC.

4 Captures the fine-grained relationships between different system artifacts
® For the CARLA AV setup, visit https://github.com/scope-lab-vu/AV-Assurance

2.1 Pattern Formalization

We adapt the formal definition of patterns as presented by Denney et al. [4] with
slight modifications, including a metadata field that holds additional information
about the pattern and a modifier function that specifies the operations that need
to be performed on the nodes. We provide a formal definition below:

Definition 1 (Pattern). A pattern P is a tuple (M, N1, t, i, mul, c,mod, —),
where (N, =) is a finite, directed hypergraph in which each edge has a single
source and possibly several destination targets. —: (N, N} is the connector re-
lation between nodes, M is the pattern metadata, and the functions I, t, p, mul,
and mod are defined below:

— M is the pattern metadata tuple (N, R,pl), where N is the name of the
pattern, R is a set of relevant patterns that share the same intent as this
pattern or patterns that can be composed with this pattern for further growing
the assurance case, and pl is a dictionary that maps a system artifact label
(key) to a placeholder variable (value) that requires instantiation. The artifact
label is of the type string. An illustrative placeholder dictionary is of the form
{“system” : SM, “top-level-goals : TG”, “requirements” : SR}.

— [and t are labeling functions, where | : N — {g, s, ¢, a, j, e} maps each node
onto its type, namely on g (goal), s (decomposition strategy), ¢ (context), a
(assumption), j (justification), or e (evidence).

— 4 is the id label of each node, i: N' — id x class, which returns the identifier
and the type of each node, i.e. class = {g, s, ¢, a,j, e}.

— mul provides a multiplicity label for each outgoing connector. For the example
shown in Fig. 2, mul = n : RC represents a one-to-many relationship, where
n is an integer value determined by placeholder RC, such that each instance
of node S2 is related to n instances of node G4. The relationship is one-to-one
if not explicitly stated otherwise.

— mod indicates the modifying operation to be performed on a given node: no-
operation, instantiate, or develop.

In addition to the pattern entities, there are several structural rules required:

— The root node of a pattern is always a goal.

— The connectors can only go out of the goal and the strategy nodes: n, — np
= 1(ng) € {9, s}

— A strategy node cannot directly connect to another strategy node or an
evidence node: (ng, — np) A [l(ng)=s] = 1(ny) € {g,0a,¢,j}.

Fig. 2 illustrates an example requirements decomposition pattern based on
the formalization in Definition 1. This pattern argues for the satisfaction of
the system’s high-level requirements through the requirements decomposition
of all the associated components. A node in this pattern is represented by its
labels (e.g., G1, G2) and content with placeholders (e.g., SM, C) that can be
replaced by system-specific information. The node multiplicity (mul) is marked
on the graph edges, representing how one node is related to another. Further,
“instantiate” and “develop” are the two modifier (mod) operations that can be
performed on the nodes.

. G1: System {SM}
C2: Operating . . A
Condition of the will satlsfy high-
level requirement
system {C} ¥}

~— ‘/\

G2: All Hazards
associated with the

requirement are
identified and

mitifated

\4
Develop

G3: All components
associated with
requirement is
functional

(A1: Hazard list
is available

S2: Argument by
decomposing the
related
components

mul=n:RC

G4: Component {RC}
functions
satisfactorily

Instantiate «------------

Node Identifiers mul=n:RCE
G - Goals
C - Context
A - Assumption testing
: : ::’rizt:gge efficiency is,
{RCE}

Fig.2: An example pattern based on requirements decomposition arguments.
3 Pattern Selection Workflow

We present the proposed workflow that leverages an ontology graph of the system
artifacts and patterns to automatically select patterns that can be instantiated
to construct an AC. The workflow is composed of several functions that work as
follows: First, the prepare(AD, W M) function uses a weaving model (WM) to
map artifact files from the artifact database (AD) onto several data files (Fp)
and a mapping file Fi;. Then, the function select(AD, PD) selects a set of pat-
terns Pg from the pattern database (PD). The selected patterns are instantiated
and assembled into an AC using an external instantiate function. Finally, the
evaluate(AC, Fp, Fir) function generates a report with the coverage score (CS)
and additional information to aid the evaluation and further refinement of the
AC. We discuss these functions in the rest of this section.

3.1 Data Preparation

The artifacts (e.g., goals, requirements, system models) for the assurance process
are typically curated using several engineering activities and stored in a database
AD. These activities include requirements engineering, system analysis, hazard
analysis and risk assessment, and evidence generation. The artifacts generated
from these activities are usually in heterogeneous file formats like PDF, Text,
Architecture Analysis and Design Language (AADL) and System Modeling Lan-
guage (SysML). The prepare function takes these raw artifact files to prepare the

Algorithm 1 Data Preparation

1: function PREPARE(AD:Artifact Database,W M :weaving model)
2: Fp {}, Fy {}, temp < {}
for each file in AD do

processed file < process(file)

temp < temp |J {processed file}
end for
accepted_files < manual_check(temp)
for each file in accepted_files do
9: data file < arrange(file,W M)
10: Fp < Fp | {data file}
11: end for
12: place + {}, depend + {}, source + {}
13: for each file in Fip do

14: source < get_source_query(file)
15: place + extract(header)

16: for each entry in header do

17: result < search(entry, Fp)
18: depend < result

19: end for

20: Frr «+ {place, depend, source}
21: Ga + make_graph(place,depend)

22: end for

23: AD(—FA{,FD, QA
24: return Fys, Fp
25: end function

processed files required for the pattern selection discussed in the next section.
The function performs two operations as shown in Algorithm 1.

The first operation processes relevant artifacts required for the AC into pro-
cessed data files stored in tabular format (CSV file). The function can currently
process AADL files. We are working towards automatically processing other
file formats. Then, the processed files are checked for completeness, correctness,
and relevance. The check is to ensure that only complete and essential artifacts
necessary for the development of the AC are retained while discarding the non-
essential artifacts. Non-essential artifacts bloat the AD, which slows the selection
process and impacts the evaluation metrics (discussed later in Section 4). In the
current implementation, the checking is manually performed by a designer. We
assume the designer has complete knowledge of the system for which the AC is
being developed. The accepted files are passed through an arrange function to
generate a set of data files Fip. To generate the file, we use a weaving model WM
that weaves the different artifacts and transforms them into a single model file.
The model is developed based on our domain knowledge and previous experi-
ence with CPSs. Each data file is a table where the column headers represent the
name of the artifacts, and the rows capture the content of these artifacts. Also,
each column in the data file is related to the other columns, with the relation-

ship derived using the weaving model. Finally, these accepted files are manually
tagged with labels required for the selection process. For example, the context
in which particular artifacts and evidence are applicable is one label that we
currently include.

The second operation generates a mapping file F);, which is a lookup ta-
ble of system artifacts and their ontology required to bridge the data files for
the pattern selection algorithm discussed in Section 3. Fj; holds the physical
link to the data file location obtained using a simple query to the database.
It also holds the placeholder and dependency mapping derived from an extract
function, which reads the header of each data file to create an intra-file de-
pendency mapping between them. For example, one entry capturing the rela-
tionship between a cause and a hazard in the dependency mapping file looks
like [cause, cause_table, hazard]. If there are multiple causes for the same haz-
ard, they will be stored as separate entries. Next, to capture the inter-file de-
pendencies, each header (e.g., cause) is searched across every data file using
a search function. The search result is used for placeholder mapping, required
for pattern selection. For example, the search result for the cause header is
{[mitigation_table, cause], [cause_table, cause], [risk_table, cause]}, which shows
all the other files in which the entry is present. Finally, the ontology captured
in F); is also stored as an artifact graph G as shown in Fig. 3.

Then, we curate PD for which we gather patterns from online catalogs [16,
22] and manually re-design them using the formalization and rules discussed in
Section 2. While re-designing, a designer checks the language consistency across
data in the nodes. These patterns are stored in textual format (JSON) and as a
graph Gp with placeholders as nodes (See Fig. 3).

3.2 Pattern Selection

As discussed earlier, the goal of the selection algorithm is to select a smallest
set of patterns Pg from the database PD = {Py,Pa, --,P,} that maximizes
the artifact coverage. We formulate the selection as a two-objective optimization
problem: (a) maximizing the coverage such that the placeholders of every selected
pattern have the corresponding artifact for instantiation and (b) minimizing the
number of patterns selected by iteratively comparing the pattern graph to the
artifact graph (See Fig. 3).

The optimization is realized using the select(PD, Fy, Fp) function shown
in Algorithm 2. It takes the patterns from PD, the mapping file and the data
files as inputs to select Pg. The selection is performed using the findmatch,
the findconflict and the findsubgraph functions. The selected patterns are then
instantiated and assembled into an AC using an external instantiate function.
An existing algorithm [13,12] can be used for instantiation and assembly.

Next, the findcomplete(P, Fjr) function in Definition 2 checks if the place-
holders in the patterns have a matching entry in F);. If all the placeholders have
corresponding entries, the pattern is said to be complete, and it is added to Pgs.
Otherwise, the pattern is discarded from the selection process.

Artifact Graph system
N

subsystem system goals
subsystem system
components requirement

subsystem - subsystem \
components failure components highlevel
redundancy modes efficiency

requirement

|

sub-
requirement

ailure
modes
detectors

failure
mitigation
failure mitigation
efficiency

y -

Pattern Pattern1 ¢ Pattern2 .~

Graphs failure
modes
failure
mitigation
failure mitigation
efficiency

Fig.3: The artifact and pattern ontology extracted for pattern selection. The
selected patterns are highlighted by thick outlines in the artifact graph.

ailure modes
detectors
efficiency

related
components

failure
modes
detectors

failure modes
detectors
efficiency

Definition 2 (Pattern Completeness). We say a pattern is complete if each
placeholder has a corresponding entry in Fyr. We define a function findmatch(pl)
that determines if a given placeholder has a corresponding entry.

Once Pg has been selected, the findsubgraph and the findconflict functions
are used to minimize the cardinality of Pg and remove duplicate patterns. First,
the findsubgraph(Ga,Gpi) function checks whether the artifact graph G4 con-
tains a subgraph that is isomorphic to Gpi, the graph of the it" pattern. Two
graphs are isomorphic (or equivalent) if their structures preserve a one-to-one
correspondence between their vertices and between their edges. For example,
in Fig. 3, patternl and pattern2 are isomorphic to subgraphs of G4. The non-
isomorphic patterns are removed from Pg.

Next, the findconflict(P1,P2) function checks Pg for redundant patterns.
For this, it performs the following steps: (a) duplication checking checks if the
patterns have the same set of placeholders requiring instantiation (see Defini-
tion 3). (b) graph checking checks if the graphs of the two patterns are isomor-
phic. While performing this, we also require data on corresponding nodes of the
patterns to be equivalent. Only if the duplication checking fails, the function

Algorithm 2 Pattern Selection

1: function SELECT(PD:Pattern Database,Fr:Mapping File, Fp:Data Files)

2: Ps < {}, dups < {}

3: for each pattern P € PD do

4: temp < True

5: for each placeholder p € P do

6: temp < temp A findmatch(p)
7 end for

8: if temp is True then

9: Ps +— Ps U {P}

10: end if

11: end for
12: for each pattern P € Ps do

13: if findsubgraph(Ga,Gp) is False then
14: Ps.remove(Gp)

15: end if

16: end for

17: for i < 1 to len(Ps) do

18: for j + i+ 1 to len(Ps) do

19: match <+ findcon flict(Pi, P;)
20: if match is True then

21: dups < dups |J {P;}

22: end if

23: end for

24: end for

25: for each entry E in dups do
26: Ps.remove(E)

27: end for

28: AC < instantiate(Ps,Fa,Fp)
29: return AC

30: end function

performs graph checking. On the whole, the function findcon flict returns true
if steps (a) or (b) return true, i.e., if the patterns are redundant.

Definition 3 (Duplication Checking). We say two patterns P; = (M,
Nl, ll, tl, il, mi, S, —>1> and PQ = <M2,NQ, lg, tg, ig, ma, S2, —>2> are duplicates
if they contain exactly the same placeholders.

3.3 Coverage Evaluation

As discussed previously, automating different activities of the assurance pro-
cess reduces the development time and manual efforts. However, this gain is at
the expense of increased effort and time required to review and evaluate the
quality and correctness of the generated AC. To aid the evaluation process, the
evaluate(AC, Fp, Fyy) function takes the AC and generates a report to provide
qualitative insights which is not available in the generated AC graphical struc-
ture. We believe this information can aid the designer in further refinement. The

report includes the coverage score, the selected and unused patterns, and the
unused artifacts. The coverage score is a tuple (A, S) of the artifact coverage
(A) and the problem coverage (S).

1) Artifact Coverage (A): The artifact coverage metric measures the pro-
portion of the artifacts available in AD that have been included in the AC. Also,
a relevance check (discussed in Section 3.1) on the artifact is essential for this
metric to be accurate. Besides the score itself, this metric can also be used to
derive a list of unused artifacts.

Artifacts used in the AC

= 1
A # Artifacts available in AD (1)

2) Problem Coverage (S): The problem coverage metric quantifies the
coverage of all the known problems affecting a system’s property (e.g., safety,
availability). Problem coverage is a tuple S = (Cp,,Cp,, - ,Cp,) consisting
of coverage measures Cp, related to different problem classes P;. The coverage
measure is shown in Eq. (2), and it is computed as the percentage of problems
within a given problem class which are addressed by an AC.

_ # Problems from P; addressed by the AC
~ # Problems in P; identified during analysis

Cop,

: (2)

While coverage metrics and the report can aid the refinement process by pro-
viding insights into the missing patterns or artifacts, they do not fully quantify
the quality of artifacts (e.g., evidence) required for AC selection. So, the coverage
metrics cannot solely rely on measuring the quality of the AC. A combination
of coverage and confidence metrics is needed for robust quantitative assessment.
We are therefore working towards integrating a confidence metric.

4 Illustrative Example

In this section, we provide an illustrative example by applying the proposed
workflow to develop an AC for an AV in the CARLA simulator [7]. In this
example, the AV is required to navigate a town while avoiding collisions with
obstacles in its travel path. We integrate our workflow with the ACCELERATE
tool © for pattern instantiation and assembly as shown in Fig. 4.

Artifacts and Patterns Preparation: We performed the analysis steps
listed in Section 3.1 to curate AD. We first performed a requirement and system
analysis using the given requirements document. The vehicle has three goals asso-
ciated with two system requirements and three high-level requirements, each as-
sociated with several sub-requirements. We then designed the AV system model
shown in Fig. 1. It has a navigation component that uses three cameras, a global
positioning system (GPS), an inertial measurement unit (IMU), a speedometer,
and a route planner to compute the vehicle’s next position. Then a velocity

5 Tool is being built as part of the DARPA ARCOS program. Check our GitHub for
release information.

10

<> ! ACCELERATE Tool !
A — = -
Pattern Empty Patterns Pattern | Patterns E Visualizer |
Editor Pattern Selection ! :
Database ' '
Mapping H '
Fil ,
ile : * :
\
' Instantiation '
H nd A bly '
' 1
,

Req:;lr:;nent System Test .o Mapping File

Files Cases

@ r- = r— ata
= P i
- - rope Data Files,

Developer Data Files,

Mapping File

=) =
Assurance -
. Assurance Case Case =)
[Raw Artifact Files | EV 1
(e.g., PDF, CSV) =

| Assurance Case Report _@ Certifier/
Developer

I:I Fully Automated Steps E Partially Automated Steps

Fig. 4: The proposed pattern selection workflow integrated with the ACCELER-
ATE tool for AC development.

planner calculates the average velocity needed to traverse from the current po-
sition to the next position. The velocity and the camera images are fed to a
deep-learning controller to predict the waypoints, which are passed to a motion
estimator to compute throttle, brake, and steer errors. In addition, it has an
AEBS controller that uses two radars to raise a brake alarm on detecting ob-
stacles. We then performed fault analysis of the system model to identify 14
component faults and analyzed the possible mitigation strategies. Further, we
performed hazard analysis to identify eight operational and functional hazards
associated with the different system components. Finally, we curated PD for
which we gathered several patterns from online catalogs [16,22] and re-designed
them using the formalization discussed in Section 3.2.

Results: We applied the integrated tool to develop an AC for the vehicle.
We summarize the key results in terms of the coverage metrics and the size of the
AC (computed in terms of GSN nodes) in two revisions. We used the AC report”
from “revisionl” to refine the AC in “revision2”. The pattern database had seven
patterns for the selection process to choose from in these revisions. The analysis
of the revisions is: In “revisionl”, four patterns were selected to develop an AC”
with 805 nodes. The evaluation function returned a coverage score with artifact
coverage of 76%, a problem coverage of [Cy : 60%, Cr : 100%)] with five unused
artifacts. Here, C'y represents the percentage of known hazards that are covered,
and Cp represents the percentage of known system faults that are covered. From
the report, we analyzed the artifacts relating to failure decomposition that was
unused. So, we designed a new failure decomposition pattern that was added
to PD. Further, some of the sub-requirements associated with the hazards were
missing, which we included. In “revision2”, the selection mechanism selected
five patterns, including the new pattern to develop an AC with 909 nodes. The

7 For a bird’s eye view of the “revisionl” assurance case and the report, visit

https://github.com/scope-lab-vu/AV-Assurance

11

refined AC had a higher coverage with an artifact coverage of 90%, a problem
coverage of [Cy : 85%,CF : 100%)] with unused artifacts reduced by two. We
performed several iterations until all the artifacts were included in the AC.

To estimate the time saved by the workflow, the data preparation and se-
lection steps were first performed manually by a developer who performed the
following tasks: re-design of patterns into the defined formalization, which took
approximately one hour, processing the artifact files, extracting the artifact de-
pendencies to generate an ontology file, and instantiation and assembly of the
patterns using the ACCELERATE tool. While instantiation and assembly were
performed in less than a minute, the manual selection and data curation process
took approximately three hours. Next, for comparison, we fed the manually re-
designed patterns and the artifacts to the integrated tool (See Fig. 4), which only
took close to one minute for data preparation, pattern selection, instantiation,
and assembly. Finally, to stress test the integration, we increased the artifacts
and patterns in the database. Our workflow took less than five minutes, even
for large ACs with 1500 to 3000 nodes. Significantly less manual processing was
needed when the artifact files were changed or updated. We expect the time
saving to get even more significant as the size of the artifact database grows.
However, the manual steps involved in the data preparation step are a bottleneck
for scaling the workflow, which we want to address in the future.

5 Related Work

The last decade has seen several tools with automation capabilities to support
different activities of the AC development process. A comprehensive survey on
these tools is available in [17]. We discuss a few of these tools that support
automation. Advocate [6] is one such tool that provides an editor for design-
ing system architectures, patterns, and automated development of ACs from
patterns. A pattern formalization and the instantiation algorithm is built into
the tool for automating pattern instantiation [4]. Here, a pattern dataset and
a parameter table are manually created to assist the instantiation algorithm.
Resolute [11] is another tool that automatically synthesizes an AC from AADL
models. Isabelle [10] is a recently developed tool with integrated formal meth-
ods for evidence generation. Assurance language and automated document pro-
cessing are a few tool features that support the development process. AMASS
tool [23] provides a partially automated heterogeneous collaborative environ-
ment that supports activities such as requirement management, artifacts and
evidence generation, pattern composition, and AC construction.

There are several independent efforts. For example, Ramakrishna et al. [20]
have presented a methodology to partially automate AC construction directly
from system models and graphs. Hawkins et al. [13] utilize the concept of model
weaving to automatically learn the artifact files from system models and use them
for instantiating patterns. The authors of [12] provide an automated mechanism
for instantiation and composition of patterns, where the artifacts are heteroge-
neous system models that are linked to represent the cross-domain relationship.

12

While these tools and approaches automate the instantiation and assembly of
patterns, their selection largely remains manual.

Further, evaluation is key to automating AC development. Confidence met-
rics are often used to represent the assurance deficit [14]. However, there has
been minimal work in coverage evaluation. Denney et al. [5] have presented sev-
eral coverage metrics for different system artifacts like hazards and requirements.
These metrics measure the proportion of the system artifacts used in the AC to
those available in the database. Chindamaikul et al. [2] have presented two cov-
erage metrics: a claim coverage that is similar to those in [5], and an argument
coverage metric that measures the arguments and evidence covered in the AC.
We build on prior work to provide additional coverage metrics.

6 Conclusion and Future Work

In this paper, we have presented a workflow that can automate the pattern
selection process. We formulate the selection problem as a coverage problem that
selects the smallest set of patterns that can maximally cover the available system
artifacts. The coverage problem is realized using an optimization problem that
leverages the ontology graphs of the artifacts and patterns and performs graph
analytics. The optimization is aided by an array of functions that perform data
preparation, pattern selection, and AC evaluation. These functions collectively
reduce the manual effort and time required in selecting the necessary patterns.

We plan to move this research in several directions. First, fully automating
the data processing function using natural language processing (NLP). Second,
design a translator to convert textual patterns into our format. Third, automate
the language check using NLP and relevance check using topic modeling [2].
Finally, include confidence metrics for AC evaluation.

Acknowledgement. The authors would like to thank Sarah C. Helble and
Dennis M. Volpano for helpful discussions and feedback. This work was sup-
ported by the DARPA ARCOS project under Contract FA8750-20-C-0515 (AC-
CELERATE) and the DARPA Assured Autonomy project. The views, opinions,
and/or findings expressed are those of the author(s) and do not necessarily re-
flect the views of DARPA. We would like to thank the reviewers and editors for
taking the time and effort necessary to review the manuscript. We appreciate
the valuable feedback, which helped us to improve the quality of the manuscript.

References

1. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Safety
and Reliability. vol. 20, pp. 34-42. Taylor & Francis (2000)

2. Chindamaikul, K., Toshinori, T., Port, D., Hajimu, I.: Automatic approach to pre-
pare information for constructing an assurance case. In: International Conference
of Product Focused Software Development and Process Improvement (2014)

3. Del Fabro, M.D., Bézivin, J., Jouault, F., Valduriez, P., et al.: Applying generic
model management to data mapping. In: BDA (2005)

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Denney, E., Pai, G.: A formal basis for safety case patterns. In: International Con-
ference on Computer Safety, Reliability, and Security. pp. 21-32. Springer (2013)
Denney, E., Pai, G.: Automating the assembly of aviation safety cases. IEEE Trans-
actions on Reliability 63(4), 830-849 (2014)

. Denney, E., Pai, G., Pohl, J.: Advocate: An assurance case automation toolset. In:

International Conference on Computer Safety, Reliability, and Security. pp. 8-21.
Springer (2012)

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open
urban driving simulator. arXiv:1711.03938 (2017)

. European Organisation for the Safety of Air Navigation: Safety case development

manual, ver 2.2 (2006)

FDA, [Online]: Introduction of assurance case method and its application in regu-
latory science (2019), https://www.fda.gov/media/125182/download

Foster, S., Nemouchi, Y., O’Halloran, C., Stephenson, K., Tudor, N.: Formal model-
based assurance cases in isabelle/sacm (2020)

Gacek, A., Backes, J., Cofer, D., Slind, K., Whalen, M.: Resolute: an assurance
case language for architecture models. ACM SIGAda Ada Letters 34(3) (2014)
Hartsell, C., Mahadevan, N., Dubey, A., Karsai, G.: Automated method for as-
surance case construction from system design models. In: 2021 5th International
Conference on System Reliability and Safety (ICSRS). pp. 230-239 (2021)
Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case
from design: a model-based approach. In: 2015 IEEE 16th International Symposium
on High Assurance Systems Engineering. pp. 110-117. IEEE (2015)

Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In: Advances in systems safety, pp. 3-23. Springer (2011)
Kelly, T., Weaver, R.: The goal structuring notation—a safety argument notation.
In: Proceedings of the dependable systems and networks workshop on assurance
cases. p. 6. Citeseer (2004)

Kelly, T.P.: Arguing safety: a systematic approach to managing safety cases. Ph.D.
thesis, University of York York, UK (1999)

Maksimov, M., Fung, N.L., Kokaly, S., Chechik, M.: Two decades of assurance case
tools: a survey. In: International Conference on Computer Safety, Reliability, and
Security. pp. 49-59. Springer (2018)

Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D.: Evidence management for
compliance of critical systems with safety standards: A survey on the state of
practice. Information and Software Technology 60, 1-15 (2015)

Palin, R., Ward, D., Habli, 1., Rivett, R.: Iso 26262 safety cases: Compliance and
assurance (2011)

Ramakrishna, S., Hartsell, C., Dubey, A., Pal, P., Karsai, G.: A methodology for
automating assurance case generation. arXiv preprint arXiv:2003.05388 (2020)
Safety-Critical Systems Club, [Online]: Tiered pattern catalogue (2022), https:
//scsc.uk/gsn?page=gsn}205Library’,20Patterns

Szczygielska, M., Jarzkebowicz, A.: Assurance case patterns on-line catalogue. In:
Advances in Dependability Engineering of Complex Systems, pp. 407-417 (2017)
de la Vara, J.L., Parra, E., Ruiz, A., Gallina, B.: The amass tool platform: An
innovative solution for assurance and certication of cyber-physical systems. In:
REFSQ Workshops (2020)

Yamamoto, S., Matsuno, Y.: An evaluation of argument patterns to reduce pitfalls
of applying assurance case. In: 2013 1st International Workshop on Assurance
Cases for Software-Intensive Systems (ASSURE). pp. 12-17. IEEE (2013)

14

