
Dynamic-Weighted Simplex Strategy for Learning Enabled Cyber Physical Systems

Shreyas Ramakrishna, Charles Harstell, Matthew P Burruss, Gabor Karsai, Abhishek Dubey

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN, USA

Abstract

Cyber Physical Systems (CPS) have increasingly started using Learning Enabled Components (LECs) for performing perception-
based control tasks. The simple design approach, and their capability to continuously learn has led to their widespread use in
different autonomous applications. Despite their simplicity and impressive capabilities, these models are difficult to assure, which
makes their use challenging. The problem of assuring CPS with untrusted controllers has been achieved using the Simplex Archi-
tecture. This architecture integrates the system to be assured with a safe controller and provides a decision logic to switch between
the decisions of these controllers. However, the key challenges in using the Simplex Architecture are: (1) designing an effective
decision logic, and (2) sudden transitions between controller decisions lead to inconsistent system performance. To address these
research challenges, we make three key contributions: (1) dynamic-weighted simplex strategy – we introduce “weighted simplex
strategy" as the weighted ensemble extension of the classical Simplex Architecture. We then provide a reinforcement learning
based mechanism to find dynamic ensemble weights, (2) middleware framework – we design a framework that allows the use of
the dynamic-weighted simplex strategy, and provides a resource manager to monitor the computational resources, and (3) hardware
testbed – we design a remote-controlled car testbed called DeepNNCar to test and demonstrate the aforementioned key concepts.
Using the hardware, we show that the dynamic-weighted simplex strategy has 60% fewer out-of-track occurrences (soft constraint
violations), while demonstrating higher optimized speed (performance) of 0.4 m/s during indoor driving than the original LEC
driven system.

Keywords: Convolutional Neural Networks, Learning Enabled Components, Reinforcement Learning, Simplex Architecture.

Abbreviations

CPS Cyber Physical Systems

CNN Convolutional Neural Network

DNN Deep Neural Network

e2e end-to-end

LD Lane Detection

LEC Learning Enabled Component

RL Reinforcement Learning

1. Introduction

Cyber Physical Systems (CPS) have increasingly started re-
lying on the use of Learning Enabled Components (LECs) as
part of the control loop, performing varied perception-based
autonomy tasks. These data-driven components are trained us-
ing machine learning approaches like deep learning [1], and re-
inforcement learning (RL) [2]. These approaches have given
these components the capability to continuously learn and work
in unfamiliar environments. Recently, these components are
seeing widespread acceptance and use in various autonomous
applications like NVIDIA’s DAVE-II [3] convolutional neural
network (CNN) that performs end-to-end (e2e) learning-based
self-driving, and Tesla’s autonomous driving that has recently

completed 2 billion driving miles [4] using several LECs to per-
form object detection and tracking, and image segmentation [5].

Despite their impressive capabilities, it is still a challenge to
assure the correctness of these systems under all circumstances.
Applying conventional assurance based development [6] or de-
signing safety and assurance cases [7] is complicated for these
systems because of the following limitations: First, the black-
box nature of these models limits testing coverage. Pei, Kexin,
et al. [8] discuss the limitations of performing exhaustive test-
ing of these models, and introduce a whitebox framework called
DeepXplore that can perform limited testing. Secondly, the ex-
isting verification tools are limited by the complexity of the
neural network and non-linearity of the activation functions.
The authors in [9] discuss the limitations of performing verifica-
tion techniques on CNNs. Third, these components learn from
data, and they perform well only when the test observations re-
semble the training data. The authors in [8], [10] have shown
how subtle changes (or adversaries) in the test image confuse
the model and results in erroneous predictions. These limita-
tions make it challenging to design safety or assurance cases
for these systems. Recently, the DARPA Assured Autonomy
project [11] has been focusing on designing tools to overcome
these limitations.

The problem of assuring safety guarantees in CPS has been
tackled using the Simplex Architecture [12]. This architec-

Preprint submitted to Special Issue on the 2019 IEEE Symposium on Real-time Computing ISORC March 3, 2020

Baseline
Controller

(BC)

Advanced
Controller

(AC)

Decision
Manager

(DM)

Plant

Sensor D
ata

Figure 1: The Simplex Architecture adopted from [15] combines an unveri-
fied advanced controller (AC) with a safe baseline controller (BC) and a deci-
sion manager (DM). The DM is responsible for selecting the controller that can
maintain the system safe.

ture (see Fig. 1) improves the system’s safety by combining an
unverified high-performance controller (Advanced Controller
(AC)) with a safety controller (Baseline Controller (BC)) and
a decision manager (DM). The DM is the core component in
the Simplex Architecture, which arbitrates the control between
the two controllers based on a safety criteria. This architecture
requires verifying only the BC and the DM, thus alleviating the
requirement of verifying the AC (e.g. LEC), which is some-
times difficult or not possible. Simplex Architectures have been
used in several applications: the authors in [13] have demon-
strated the utility of the Simplex Architecture to avoid a colli-
sion in a fleet of remote-controlled cars. [14] discusses a case
study of using the Simplex Architecture for the automatic land-
ing of a F-16 aircraft. These applications demonstrate the use
of Simplex Architecture for complex and safety-critical CPS
applications.

However, the key challenges in using the Simplex Architec-
tures for CPS applications are: (1) designing effective decision
logic: as discussed in [16], the critical challenge is the design
of appropriate decision logic. It is trivial to design safe logic
by always using the BC to make the decisions. However, that
would make the system too defensive without utilizing the high
performance AC. Therefore, the the architecture should seek to
utilize the AC as much as possible to avoid conservatively using
the BC. That is, it is important to design decision logic that bal-
ances the safety and performance of the system. Key challenge
(2) sudden transitions: the instantaneous transitions (see Fig. 3)
from the AC to the BC drastically degrades the system perfor-
mance. For example, Bak, Stanley, et al.[15] have discussed the
applicability of the Simplex Architecture in heart pacemakers.
The authors discuss how sudden transitions between simplex
controllers are dangerous in safety critical applications. For
a pacemaker case study, they illustrate how sudden jumps be-
tween two discrete heart rates (65 to 120 beats per minute) from
two simplex controllers can make the patients dizzy and un-
comfortable. Similarly, in automotive applications the sudden
changes in the control (e.g. speed) will be perceived as jerks
(high rate of change of acceleration) and can be uncomfortable
for passengers (e.g. Toyota sudden acceleration problem [17]).

Contributions: To address these challenges we perform a
weighted blending of the simplex control actions. We refer to
this weighted extension of the conventional Simplex Architec-
ture as the "weighted simplex strategy". Instead of selecting

Table 1: Notation Lookup Map

Symbol Description
θL Steering PWM value of DeepNNCar using LEC controller
θC Steering PWM value of DeepNNCar using OpenCV controller
θD Steering PWM value using dynamic-weighted simplex strat-

egy
θF Steering PWM value using fixed-weighted simplex strategy
WL Ensemble weight given to LEC controller
WC Ensemble weight given to OpenCV controller

WS ET Ensemble weights {WL,WC} computed by dynamic-weighted
simplex strategy

TR Inference pipeline time of DeepNNCar
νt Current speed PWM value of DeepNNCar

a single controller action, this strategy computes a weighted
ensemble of all the controllers actions. Such blending mech-
anisms have shown to improve performance or accuracy in
model ensembles [18], and multiple model adaptive predictive
control [19]. For the Simplex Architecture, we hypothesize
blending the controllers actions could optimally balance the
performance and soft constraint violations of the system while
avoiding abrupt transitions. Specifically, this strategy aims at
optimizing the performance while reducing the constraint vio-
lations. So, it can only be used for systems which can tolerate
soft constraint violations (ie. constraints that can be violated,
but will incur a penalty). We summarize our contributions be-
low.

• Dynamic-Weighted Simplex Strategy – We discuss a mecha-
nism to find dynamic ensemble weights of the weighted sim-
plex strategy using reinforcement learning (RL). We show
the design of the reward function that is responsible for re-
ducing the soft constraint violations while improving the per-
formance of the system.
• Middleware Framework – We design a middleware frame-

work to deploy the weighted simplex strategy on a physical
CPS platform called DeepNNCar. In addition, the frame-
work also has a resource manager that is used to monitor
the computational resource of the system while mitigating
any overload introduced by the complex computations of the
proposed strategy.
• Hardware Testbed – We discuss the design of a resource con-

strained remote controlled car, called the DeepNNCar, that
will be used as a case study to test the dynamic weighted
blending mechanism and the middleware framework.

Outline: The outline of the this paper is as follows: in Sec-
tion 2, we discuss the background topics. In Section 3, we
present related research. Section 4 describes our DeepNNCar
testbed and its control algorithms. Section 5 introduces the
dynamic-weighted simplex strategy and the setup to compute
dynamic weights. In Section 6, we design the resource manager
for managing the systems resource utilization. Section 7 de-
scribes the system integration. Section 8 evaluates the dynamic-
weighted simplex strategy and the resource manager. Section 9
presents our conclusions. The notations used in the paper are
described in Table 1.

2

Observation State
Estimation Localization Motion

Planning
Motor

Controller

Observation Motor
Controller

(a) Mediated perception control

(b) end-to-end learning

Deep Neual Network

Figure 2: Perception based control approaches in robotics. Adopted from [20].

2. Background

In this section we discuss a few key concepts that are required
to understand our methodology discussed in the later sections
of this paper. Readers who are familiar can skip this section.

2.1. LEC Based Control Approaches in Autonomous Systems

Perception based control paradigms in autonomous vehicles
can be classified into the mediated perception approach, and
end-to-end (e2e) learning approach as shown in Fig. 2.

The mediated perception approach [21], [22] decomposes the
problem into multiple sub-goals which then together form a
processing pipeline for performing autonomous driving. The
pipeline (see Fig. 2) has multiple stages of operation like sens-
ing, state estimation, localization, motion planning and motor
control, which use sensor data to learn high level representa-
tions of lanes, objects, cars, and traffic lights. This high-level
information is then used by the controller to compute the low
level actuation of the car.

The advantages of using this approach (as discussed in [23])
are: (1) transparent internal modes of operation for testing and
debugging, (2) robust decision-making capabilities due to mul-
tiple dedicated algorithms, and (3) a high degree of freedom for
the designer to select and fine tune the internal stage algorithms.
However, multiple stages of operation along with the require-
ment to create and maintain a large code base even for simple
navigation tasks makes its application on small-scale systems
challenging.

In contrast, e2e learning [24] is a perception-based control
approach that uses supervised learning [25] to directly com-
pute the control action. It has been applied to different indoor
and outdoor navigation tasks, such as obstacle avoidance [26],
off-road autonomous navigation systems [27], and autonomous
driving [3],[28]. In this work, we use an e2e learning approach
for navigating a DeepNNCar (explained in Section 4) around an
indoor track. In this approach, a data-driven model (e.g. DNN
or CNN) takes in observations from different sensors such as
camera, IMU, LIDAR, etc. and predicts an output control ac-
tion that could either be the steering or speed of the system.
Unlike traditional software where the execution logic is derived
from analytical models, DNNs learn the underlying relationship
between the observed input and the output from the data. The

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Baseline
Controller

Advanced
Controller

Time in milliseconds

Simplex Architecture Dynamic-Weighted Simplex Strategy

W
ei

gh
ts

Figure 3: The weighted simplex strategy works alike the conventional simplex
architecture in the high performance and safe regions. However, the targeted
spectrum of this strategy is the transition region represented by yellow grid,
where the unverified controller actions start drifting the system towards the un-
safe state. Here, instead of instantaneous transition, the dynamic weights of
the weighted simplex strategy provide a mechanism for a smoother transition
between the controller outputs. The discreet weight adjustment in the dynamic-
weighted simplex strategy (red line) takes a staircase function approximating a
smoother curve (dotted gray line).

functionality of DNNs can be tuned with training hyperparam-
eters like learning rates, epochs, optimization algorithms, etc.
This approach has recently gained considerable attention be-
cause of its conceptual simplicity and computational efficiency.

Problems: Some limitations of the e2e learning approach are:
(1) the direct sensor-actuation mapping is only limited to per-
form point based predictions, which can limit the use of the
approach in complex navigation based tasks, (2) LECs used in
mapping the sensor to actuation values learn from training data.
So, even slight distribution shift in the test observations will
result in inconsistent behavior in these models, and (3) train-
ing the LEC is hard as there are several hyperparameters to be
tuned. Improper tuning of these parameters can lead to under-
fitting or overfitting problems.

2.2. Simplex Architecture

As discussed by Seto, et al. [12], the Simplex Architecture is
built on the concept of analytic redundancy, i.e. redundant com-
ponents with different design and implementations, but similar
interfaces. Fig. 1 illustrates the structure of the Simplex Archi-
tecture, where the analytic redundancy is achieved using two
controllers with same interfaces but with different implementa-
tion and specifications. An advanced controller (AC) with high-
performance specification is combined with a reliable and safe
baseline controller (BC), and a decision manager (DM). The
decision logic of the DM is encoded to guarantee the safety of
the system, i.e. the logic will transfer the control from the AC to
the BC, when the AC decisions start moving the system toward
unsafe states. The simplex combination of controller outputs
can be represented as the weighted combination of the two con-
troller output and can be written as in Eq. (1):

CS A = W1 ·CAC + W2 ·CBC (1)

Where, CS A is the system’s control output, CAC , CBC repre-
sents the controller outputs of the AC and the BC respectively.
W1, W2 represents the weights and they sum up to 1. For the

3

conventional Simplex Architecture, W1=1 and W2=0 in most
scenarios, but when the AC is on the verge of jeopardizing the
safety of the system, the control transfers to the BC and the
weights become W1=0 and W2=1. The blue line in the Fig. 3
shows the control transition between the two controllers of the
classical Simplex Architecture. As seen, the control remains
with the AC up to a certain point, and when the DM decides
to switch there is a sudden (or instantaneous) transition of the
control to the BC.

Problems: As mentioned in Section 1 the key challenge of
using the Simplex Architectures are: (1) designing an effective
decision logic that can optimally balance the safety and perfor-
mance of the system, and (2) avoiding sudden transitions in the
control between the AC to BC. Such sudden control transitions
may result in inconsistent system performance in some domain
specific applications like pacemakers [15] which are sensitive
to minute changes in control actions. These challenges make it
difficult to directly apply Simplex Architectures to certain sen-
sitive domains in CPS applications.

We solve these challenges by introducing the dynamic-
weighted simplex strategy, which is the weighted extension of
the classical Simplex Architecture (Fig. 3). We also introduce a
mechanism to find the dynamic weights using a RL approach.

3. Related Work

This section provides an overview of the existing literature
work in the dimensions of decision logic for Simplex Archi-
tecture, middleware framework for small scale CPS platforms,
and autonomous robot testbeds. A complete survey of papers
in these areas is beyond the scope of this paper.

3.1. Decision Logic for Simplex Architectures

The existing literature on designing decision logic for the
Simplex Architecture can be classified into two categories:

• Lyapunov function-based techniques (linear matrix inequal-
ity (LMI) [29]) have been used widely as the switching cri-
teria for continuous systems. LMI is based on designing a
verifiable decision logic by solving linear matrix inequali-
ties. The authors in [30] have used LMI tools to design the
decision logic for inverted pendulum control.
• Reachability analysis [31] is another technique used popu-

larly in hybrid systems. In this technique the systems are
modeled as hybrid automata, and a set of reachable states by
the system is computed. A comprehensive discussion about
reachable state computations is made in [31], [32] .

In addition, there are a few other techniques used to design
decision logic for the Simplex Architecture. The authors in [16]
have designed a switching criterion called Real-Time reachabil-
ity algorithm. The algorithm proposes a unified approach that
uses the offline LMI results along with online reachability anal-
ysis to design an effective decision logic. In [33], the authors
have designed a simple application specific decision logic by
designing a set of conditions under which the AC fails and when
the controller transition must be made. This decision logic has

been used in the Simplex Architecture to control an unmanned
aerial vehicle (UAV). Phan, Dung et al. [34] have proposed
the use of Assume-Guarantee (A-G) contracts to construct the
decision logic for Simplex Architectures. A-G is a powerful
reasoning, proof-based technique that show the guarantees that
the system can provide when a set of assumptions are satisfied.
They demonstrate their approach on a quick bot rover.

All these discussed techniques are based on either traditional
control theory, reachability analysis or pre-defined rules. The
rule-based technique does not scale well across applications and
would require us to write new rules for different applications.
The reachability-based techniques would be too slow to imple-
ment at runtime if the state space is large. Also, the reachability
analysis for LECs using DNNs is still limited to feed forward
ReLU based networks [35] and gets complex for CNNs.

In this work, we use an RL algorithm as the decision logic of
the simplex combination. For this we design a reward function
that involves information about the performance and the con-
straint (safety) of the system. The motivation for using RL are
as follows: (1) the inability of the traditional verification tech-
niques to verify complex CNNs, (2) the reward based system
of RL that can continuously learn to choose safe actions in dy-
namic environments, and (3) an RL algorithm takes very less
time (typically fractions of millisecond, depending on the com-
plexity of state space) to compute a decision, as compared to
the traditional verification techniques. Such short time decision
computation is critical at runtime for CPS testbeds.

3.2. Middleware Framework for Small Scale Robots

There are several middleware frameworks designed for man-
aging the functionalities of small-scale robots. Seiger, Ronny,
et al [36] have designed a Robot Operating System (ROS) [37]
based high-level programming framework to control the func-
tionalities of domestic robots. ROS commands are used through
the framework to control the robot in manual, semi-autonomous
and fully-autonomous modes. The authors in [38] have intro-
duced a middleware platform for distributed applications in-
volving robots, sensors and the cloud. The framework uses
AIOLOS [39], which is a distributed software framework that
allows the developer to design software on multiple compo-
nents (sensors, robots) without having them to design the inter-
component communication. This framework seeks to make the
software design process easier and distributed to developers.
The F1/10 platform [40] is a small-scale remote-controlled race
car that uses a ROS based communication framework to control
the steer and speed actuations of the car.

In [41], the authors have discussed an architecture for intelli-
gent manufacturing units in shop floors. The key responsibility
of their middleware layer is to manage devices, define interfaces
and data management. The key focus of the middleware layer is
to relay the data collected from the robotic sensors to the server
for analysis. [42] discusses a multi-agent cloud-based frame-
work for management of collaborative robots. The sensor data
collected by a swarm of robots is sent to a cloud-based server
over the internet. The server then computes the actions that
need to be taken by the robots.

4

All these frameworks aim at providing a middleware layer to
control the actuations of the system. However, the key contri-
bution of our middleware framework is the resource manage-
ment strategy. We hypothesize an optimal resource manage-
ment strategy is required to improve the performance of CPS
applications.

3.3. Autonomous Robot Testbeds
There have been several ongoing research projects related

to physical testbeds for autonomous systems. MIT’s RaceCar
[43], and University of Pennsylvania’s F1/10 [40] have become
popular autonomous racing platforms built on Traxxas 1/10
scale remote-controlled car with an NVIDIA’s Jetson TX1 on-
board computational unit. These cars use cameras, IMUs, and
expensive LIDAR ($1,775) systems for performing simultane-
ous localization and mapping (SLAM), whereas DeepNNCar
performs e2e learning using data from a limited array of sensors
(camera, IR-Optocoupler, LIDAR ($100)). The cost compari-
son for F1/10 and DeepNNCar platforms is $3000 vs. $518.

DeepPicar [44] is another remote-controlled car platform that
uses a smaller 1/24 scale chassis. Like DeepNNCar, this plat-
form also uses a Raspberry Pi3 (RPi3) as the computational
unit and performs e2e learning based autonomous driving us-
ing NVIDIA’s DAVE-II CNN. This platform is relatively inex-
pensive ($70) but has a considerably smaller chassis and uses
discrete steering actuation unlike DeepNNCar which performs
continuous steering. Donkey car [45] is an open source au-
tonomous car platform for small-scale remote-controlled cars.
These cars are built on a 1/16 or 1/10 scale chassis, and use
RPi3 as the computational unit along with a wide angle RPi
camera that is the primary sensor. Like the other e2e learning
platforms these cars use a 7-layer CNN, which take in image
inputs and predict categorical throttle values (i.e. discreet steer
and speed actuation controls). In comparison to our platform,
this car uses a different CNN model, and it performs discreet
control actuations.

Compared to the existing platforms, DeepNNCar has an ideal
tradeoff of cost vs. autonomous driving functionalities.

4. DeepNNCar: Testbed for Autonomous Driving

To understand the methodology discussed in later sections,
we first introduce DeepNNCar1 (in Fig. 4) that is built using the
chassis of the Traxxas Slash 2WD 1/10 scale remote-controlled
car. It has two on-board motors - a servomotor for steering
control, and a Titan 12T 550 motor for motive force - both of
which are powered by an 8.4 V NiMH battery. A Raspberry Pi
3 (RPi3) is the onboard computational unit which performs all
the required computations and interfaces with the sensors. RPi3
reserves two GPIO pins to generate Pulse Width Modulation
(PWM) signals that are used to control the motors of the car.
The PWM signal is defined by a duty cycle component and a
frequency component. The duty cycle of a PWM signal is the

1Build instructions, source code, and videos of DeepNNCar can be found
at: https://github.com/scope-lab-vu/deep-nn-car

Electronic	Speed
Control

LIDAR

USB	
Webcam

Raspberry	Pi3	
							(RPi3)

Titan	12T
Motor

IR	Optocoupler

8.4V	NiMH
Battery

RPi3	Power
Supply

Figure 4: DeepNNCar is a resource constrained remote-controlled car that is
designed to perform end-to-end learning based autonomous driving. The hard-
ware components and operating modes of the car is discussed in Section 4.

proportion of time the signal remains in the high state (or logical
1) over the total time it takes to complete one cycle.

For the DeepNNCar the duty cycle is the percentage of a dig-
ital square pulse with a period 10 ms (frequency = 100 Hz).
Varying the PWM duty cycle percentage allows us to control
the two onboard motors of the car. For the servomotor, varying
the duty cycle ∈ [10%, 20%] results in a continuous steering
angle ∈ [-30°, 30°]. Similarly, for the titan motor, varying the
duty cycle ∈ [15.58%, 15.70%] results in a speed ∈ [0, 1] m/s.
Throughout this work we use the notations (ν) for speed and
(θ) for steering. The speed is always refereed in-terms of m/s,
and steering in degrees. However, to control the testbed, the
steering and speed are varied as PWM duty cycle values.

The goals of DeepNNCar are: (1) minimize the soft con-
straint violations, i.e. reduce the out-of-track occurrences, and
(2) optimize the speed based on the different track segments.
i.e. each track segment has different maximum attainable speed
(straight segment – 0.65 m/s, curved segment – 0.25 m/s), and
the car must learn to switch between the speed modes.

4.1. Sensors and Operating Modes

Sensors: A USB webcam is attached to the RPi3 to capture
images at 30 Frames Per Second (FPS) with a resolution of 320
× 240 RGB pixels. A slot-type IR Opto-coupler is attached to
the chassis near the rear wheel that counts the revolutions of the
wheel. The speed of the car is calculated based on the frequency
of revolutions. The captured RGB images and the speed values
are recorded on the computational unit and later utilized during
the data collection, and training modes.

Operating Modes: DeepNNCar (server) is used along with a
desktop (client) to provide a server-client setup for data collec-
tion, monitoring and runtime diagnostics. An Xbox controller
is connected to the desktop via Bluetooth and it communicates
with the car using TCP messages. Using this setup there are
three different modes in which the car can function: (1) data
collection – manually driving the car to collect training data
(images, steering PWM duty cycle, and speed PWM duty cy-
cle), (2) autonomous driving – for autonomous driving using
LEC or other simplex strategies discussed in this work, and (3)
livestream tracking – for streaming runtime images captured by
the camera to the client for runtime tracking.

5

Conv1
Conv2

Conv3 Conv4 Conv5
FC1

FC2

FC3

FC4
FC5

FC6

66x220x3
24 @ (5,5) 36 @ (5,5) 48 @ (5,5) 64 @ (3,3) 64 @ (3,3)

Input Image

1162

100 100

100

50
10

Steer PWM
duty cycle

Speed PWM
duty cycle

Figure 5: Modified NVIDIA’s DAVE-II CNN, which takes in images and speed PWM duty cycle as input and predicts the steering PWM duty cycle. This modified
model also takes in the speed as the inputs, which is not considered by the original NVIDIA DAVE-II model [3]. The model has five convolutional layers and six
fully connected layers. Conv– represents the convolutional layers and sizes of the filters are mentioned below. FC – represents the fully connected layers and the
number of neurons is mentioned below.

Figure 6: Track 1 and Track 2: on which the training data for the LEC was
collected. The RL exploration for the dynamic-weighted simplex strategy was
performed on Track 1; Track 3: used to test the performance and accuracy
of the trained LEC, and the dynamic-weighted simplex strategy. The tracks
were built indoor in our laboratory using 10’ x 12’ blue tarps. The videos
of DeepNNCar preforming on these three tracks can be found in https://
github.com/scope-lab-vu/deep-nn-car.

4.2. Vehicle Control

Two independent controllers were developed for the DeepN-
NCar: one using a Learning Enabled Component (LEC) and the
other using traditional image processing algorithms provided
by OpenCV. Both controllers took the available camera images
as input and were required to output PWM duty cycle values
for both steering and speed control.

The speed control while driving the DeepNNCar using the
LEC and OpenCV controller is initially set by a human super-
visor. It is then controlled either using a constant throttle or a
PID controller. Each of these controllers is discussed in more
detail in the following sections.

4.2.1. LEC Controller
In the current implementation, the hardware performs au-

tonomous driving based on e2e learning. For this we use a
modified version of NVIDIA’s DAVE-II CNN that takes in im-
age and PWM duty cycle of speed ν as inputs to predict the
PWM duty cycle of steering (θL). This is an extension to the
original DAVE-II CNN [3] that took in only image as input to
predict steering θL.

Network Architecture: Our CNN model (in Fig. 5) has five
convolutional layers and six fully connected layers. We mod-
ified the CNN architecture for two reasons. First, the steering
and speed actions cannot be treated independently. Any change

in the speed will impact the steering performance. Through
experiments we observed that the modified CNN takes wider
trajectories at turns compared to the original one. Second,
since the quality of the captured image deteriorates as speed in-
creases, additional information is required for the CNN to pre-
dict correct steering values.

Model Training and Validation: We train the CNN with 6000
labeled images collected from Track 1 and Track 2 (in Fig. 6).
We also performed hyperparameter tuning [46] using random
search [47] to select the appropriate learning rate, and number
of epochs.

We validated the trained model using a test dataset of 1000
images. We then used Mean Square Error (MSE) [48] as a met-
ric to quantify the distance between the actual and predicted
steering values. Once the MSE was within our acceptable limits
(0.1 – found through varied experiments), we deploy the model
on the car for autonomous driving.

4.2.2. OpenCV Controller
The OpenCV controller is designed using classical image

processing algorithms and it performs two tasks: (1) lane de-
tection – finds lanes in images using classical lane detection al-
gorithm, and (2) steer computation – associates a discreet steer-
ing (θC) based on the lanes detected. The output of these tasks
are the detected lanes, the lane segments (M̂) identified from
number of lanes, the discreet steering θC (in degrees) and its
corresponding PWM duty cycle, and a stop signal alarm when
the car runs out of the track.

Lane Detection (LD) algorithm: We convert the 200 × 66
RGB image to gray scale (to reduce computation time) and
then apply the LD algorithm. The different image processing
involved in the LD process are:

• Gaussian blur and white masking: A 3x3 Gaussian kernel is
convolved across the image to reduce noise. Next, all pixels
except those within a specified range (e.g., [215, 255]) are
masked, thus differentiating the track lanes from the fore-
ground.
• Canny edge detection [49]: The algorithm first computes a

gradient of pixel intensities. An upper and lower threshold of
these gradients is defined at compile time. A comparison of

6

Figure 7: Image transformations as it passes through the different steps of
the LD algorithm. Based on the lanes detected the OpenCV controller as-
signs a track segment and then associates a discreet steering value. During
the livestream mode, real-time images captured from the car are relayed to the
client, which runs LD algorithm continuously to get this visualization.

the pixel gradients to these thresholds in addition to hystere-
sis (suppress all weak and unconnected edges) can determine
if a pixel is an edge or not. The edges reveal the boundary of
the lanes.
• Region of interest (ROI) selection: The image is divided into

two similar 30x66 regions of interest to capture the left and
right lane respectively.
• Hough line transform [50]: A Hough line transform is ap-

plied to each ROI to detect the existence of a lane based on
the results of the canny edge detection algorithm. Using this
information, we determine a label for the track segment.

Fig. 7 shows the image transformation as it passes through
the different steps of the LD algorithm. As seen from the figure,
when the OpenCV controller detects two lanes it classifies the
segment to be straight. Similarly, if it finds only the left lane, it
classifies the segment to be right. Finally, if it does not find both
the lanes, it classifies the track segment to be out and issues a
stop signal.

Once the lanes are detected, the OpenCV controller asso-
ciates a discrete steering angle θC , and its corresponding PWM
duty cycle (similar to [51]): if two lanes are detected, θC = 0◦

(corresponds to a PWM duty cycle of 15%); if the right lane
is detected, θC = −30◦ (corresponds to a PWM duty cycle of
10%); and if the left lane is detected, θC = 30◦ (corresponds to
a PWM duty cycle of 20%).

The LD algorithm was tested with a dataset of 3000 im-
ages and correctly labeled the track regions with an accuracy of
89.6%. Table 2 summarizes the accuracy of the LD algorithm in
correctly classifying the lanes in to straight or curved (left and
right) segments. To generate this plot, we manually iterated
through the 3000 images and made a note of the actual lane
segment visualized by a human supervisor, and the lane seg-
ment as classified by the LD algorithm. Using this we gathered
the number of correct lane predictions and mis-classifications
to generate the data for the precision-recall graph. Using the
precision and recall values we also computed the F1 score [52]
- a metric which indicates the accuracy of the LD algorithm.
The F1 scores for the straight and curved segments were 92.4%
and 91.8% respectively. Higher F1 score indicates the LD algo-
rithm’s accuracy in classifying the lane segments correctly.

Track Segment Precision (%) Recall (%)
Straight 97.73 87.78
Curved 90.78 93.05

Table 2: The precision and recall values to evaluate the performance of the
LD algorithm in different segments of the track. We manually iterated through
3000 images and compared the actual lane segments to those predicted by the
LD algorithm.

0.25 0.35 0.45 0.55 0.65

0

3

6

9

speed m/s

O
ut

-o
f-

tr
ac

k
O

cc
ur

re
nc

es

CV LEC

Figure 8: The out-of-track occurrences for different speeds in the curved seg-
ments of the track. From figure, CV: driving only with the OpenCV controller,
LEC: driving only with the modified Dave-II model. The horizontal axis shows
the different speeds of the car during the experiment. The data is collected by
running DeepNNCar with each of these controllers independently around the
track for 10 laps. The out-of-track occurrences was manually noted down by a
human supervisor.

4.3. Performance of the Controllers

We evaluate the performance of these controllers based on
their highest achievable speeds and the number of out-of-track
occurrences. During the testing regiment, the DeepNNCar
drives 10 laps each around the track for both the trained LEC
controller and the OpenCV controller. The track was divided
into straight and curved (left and right) segments, and perfor-
mance results were compiled for each segment. The out-of-
track occurrences was manually noted by a human supervisor.
In the straight segment the LEC controller performed well with
very few (typically 2 or 3) out-of-track occurrences up to a
speed of 0.55 m/s. The OpenCV controller had typically 1 or
no out-of-track occurrences up to 0.35 m/s. Above 0.35 m/s
the OpenCV controller had higher chances of leading the car
out-of-track as compared to the LEC controller.

The out-of-track occurrences of the different controllers in
the curved segment of the track is shown in Fig. 8. The LEC has
very few (typically 3) out-of-track occurrences up to a speed of
0.45 m/s and gradually as the speed increases the out-of-track
occurrences increases. In comparison, the OpenCV controller
performed well up to a speed of 0.35 m/s with only 1 out-of-
track occurrences. Again, above 0.35 m/s the OpenCV con-
troller started making higher wrong predictions leading the car
out-of-track. At 0.65 m/s, the OpenCV controller had a higher
out-of-track occurrence of 10 as compared to 8 of the LEC con-
troller.

These results show that each controller outperforms the other
controller in certain segments of operation. This implies that
the total number of out-of-track occurrences can be reduced by
intelligently blending the two controller actions. In the next
section, we introduce the weighted simplex strategy for this pur-
pose.

7

5. Dynamic-Weighted Simplex Strategy

Earlier, we discussed the two key challenges of using the
Simplex Architecture, they are: (1) designing an effective de-
cision logic, and (2) instantaneous switching between the con-
trollers which may cause undesirable transient effects on sys-
tem performance. In addition, the OpenCV controller did not
perform reliably at high speeds (> 0.35 m/s) in the curved seg-
ments of the track (discussed in Section 4.3). So, the OpenCV
controller cannot always be relied on as a safe controller when
the vehicle is operating at high-speed in curved track segments.

To overcome these challenges, we compute the systems out-
put as a weighted blending of the two controller outputs. This
means the weights in Eq. (1) are no longer restricted to taking
only values of 0 or 1, but can take any value in the continuous
range [0,1]. However, the combination of the ensemble weights
must sum to 1. Such blending approaches have been popularly
used in model ensembles [18], and multiple model adaptive pre-
dictive control [19]. We call this approach the “weighted sim-
plex strategy”.

As shown in Fig. 3, the weighted simplex strategy works like
the conventional Simplex Architecture in the high performance
and the safe regions. The targeted spectrum of this strategy is
the arbitration region, which is represented by the yellow grid
in Fig. 3. In this region, the conventional Simplex Architecture
performs an instantaneous transition from the AC to the BC.
In contrast, the continuous ensemble weights of the weighted
simplex strategy can be used to provide a smoother transition
between the two controllers. However, one key challenge in
using this strategy is the calculation of appropriate ensemble
weights.

For this, we present a strategy called the “dynamic-weighted
simplex strategy" which computes dynamic ensemble weights.
This strategy uses an RL technique to find the optimal dynamic
ensemble weights for the different segments of the track. In
this work, we demonstrate the RL based ensemble weight se-
lection process for DeepNNCar. The car’s steering is computed
as the weighted ensemble of the steering values computed by
the LEC controller and the OpenCV controller. The weighted
simplex combination for DeepNNCar steering is computed us-
ing Eq. (2).

θD = WL · θL + WC · θC (2)

Where, θD represents the PWM duty cycle corresponding to
steering computed while using dynamic weights, WL is the en-
semble weight to the LEC, WC is the ensemble weight to the
OpenCV controller, θL is the PWM duty cycle corresponding
to steering computed by the LEC controller and θC is the PWM
duty cycle corresponding to steering computed by the OpenCV
controller.

Other than selecting the WL and WC , the reward function (ex-
plained in detail in Section 5.1) in the RL setup is also designed
to control the speed of the car. The PWM duty cycle of the new
speed (νt+1) can be incremented or decremented by (δν) based
on the PWM duty cycle of the system’s current speed (νt).

ν(t + 1) = ν(t) ± δν (3)

5.1. The Learning Approach
The key contribution of our work is to find dynamic weights

that optimally balances the performance and safety across all
the segments of the track. As discussed earlier, we use RL to
compute the dynamic ensemble weights. The continuous learn-
ing based setup of RL encouraged us to use it for our applica-
tion, which has a dynamically changing environment (changing
track segments). Any RL algorithm can be used in the deci-
sion logic, however in this work, we use the simplest of RL
algorithms called the Q-learning [53] algorithm. Through this
section we discuss the important elements and steps required to
setup the Q-learning problem. The important elements required
to setup the Q-learning problem are:

Environment: estimate the state (s) of a system based on an
internal estimate of the Markov Decision Process (MDP) and
computes a reward value (r) for each action (a) produced by
an RL component. In the DeepNNCar, the environment is im-
plemented as a standalone component within our middleware
framework (described in the next section).

State (s): represents the current state of the system. For the
DeepNNCar, the system state is continuously changing as the
car interacts with the environment (track). Since our problem is
to find optimal ensemble weights and optimal speed, we encode
weights (WL, WC), the PWM duty cycle corresponding to speed
(ν), and the PWM duty cycle corresponding to steering θL and
θC as the state information. As we do not have an explicit sensor
for locating the position of the car, we use the steering values θL

and θC to identify the position, and thus it is included as internal
state information. The state st of the car at time t is: (WL(t),
WC(t), ν(t), θL, θC). The transition between the states happen
when the element WL changes by ± δWL, WC changes by ±
δWC , and the corresponding PWM duty cycle of ν changes by
± δν. These transitions are illustrated in Eq. (4).WL(t+1)

WC(t+1)
ν(t+1)

 =

WL(t)
WC(t)
ν(t)

 ±
δWL

δWC

δν

 (4)

Further, to limit the dimension of our state space we reduce
the number of states in our MDP, by discretizing the elements
of the state. Each weight WL,WC ∈ [0, 1] is divided into 21
elements (WC = 1-WL, as the two weights sum up to 1) in in-
crements of 0.05. Also, our tracks were small and we could not
maintain the car within the track at speed > 0.65 m/s. Thus,
we restricted the speed ∈ [0, 0.65] m/s, and the corresponding
PWM duty cycle to ν ∈ [15.58%,15.62%]. We then divided this
PWM range into 41 elements in increments of 0.001.

Reward: Designing an appropriate reward function is the key
step in the Q-learning process. Our goal is to reduce the soft
constraint violations while improving the performance of the
system. Thus, we need to incorporate them in designing the re-
ward function. Our reward function is a combination of the
performance factor and the safety factor. In the case of the
DeepNNCar, we chose speed to be the performance factor and
a deviation of the car from the center of the track (t̂) to be the
safety factor. The calculated reward is expressed in Eq. (5):

r(st, at) = νt · (1 − t̂) (5)

8

θL= 10%
(Left) θL= 11% θL= 12% θL= 13% θL= 14%

θL= 15%
(Straight) θL= 16% θL= 17% θL= 18% θL= 19%

θL=20%
(Right)

θC = 20%
(Right) - - - -

WL=0.95
WC=0.05

WL=0.95
WC=0.05

WL=0.95
WC=0.05

WL=0.85
WC=0.15

WL=0.80
WC=0.20

WL=0.80
WC=0.20

WL=0.80
WC=0.20

θC= 15%
(Straight) - - - -

WL=0.95
WC=0.05

WL=0.95
WC=0.05

WL=0.90
WC=0.10 - - - -

θC= 10%
(Left) - - -

WL=0.80
WC=0.20 - - -

WL=0.90
WC=0.10 - - -

Table 3: The variations in the ensemble weights are captured with respect to the change in the steering PWM duty cycle of LEC and OpenCV controller. The
rows indicate the discretized steering PWM duty cycle of the OpenCV controller θC ∈ [10%,15%,30%]. The columns indicate the steering PWM duty cycle of the
LEC controller θL ∈ [10%,20%]. These steering values are discretized in steps of 1%. The blocks with “-" indicate those steering value combinations were not
encountered in our experiments. The prime reason for this was our track was small and did not have very steep left turns. A large track with lots of turns could have
better explored all the combinations. Also, it is evident from top right corner of the table that, WC starts to increase as car starts turning in the right segment.

where, νt is the current speed of the car and t̂ is a scalar quan-
tity calculated based on the deviation of the car from the center
of the track. The measure t̂ is calculated based on the lane seg-
ment information given by the LD algorithm. If the algorithm
detects both lanes in the captured image, we infer that the car is
at the center of the track and we assign t̂ = 0. If the algorithm
detects only one lane, we assume the car has deviated from the
center and we assign t̂ = 1/2. Finally, if no lanes are detected,
we assume the car has moved out of the track and we assign
t̂ = 10, a large penalty.

The positive reward given for remaining in the center of the
track encourages the car to always select an action that keeps
it within the track boundaries. Also, the reward value increases
proportionately to vehicle speed which encourages the RL com-
ponent to optimize for the highest achievable speed without ex-
iting the track boundaries.

Action
Space ↑ νt by 0.001 ↓ νt by 0.001 NOP

↑ WL
by 0.05

(0.95,0.05,15.591,
16,15)

(0.95,0.05,15.589,
16,15)

(0.95,0.05,15.590,
16,15)

↓ WL
by 0.05

(0.85,0.15,15.591,
16,15)

(0.85,0.15,15.589,
16,15)

(0.85,0.15,15.590,
16,15)

NOP
(0.90,0.10,15.591,

16,15)
(0.90,0.10,15.589,

16,15)
(0.90,0.10,15.590,

16,15)

Table 4: Action space for a given state (WL = 0.90, WC = 0.10, νt = 15.590%,
θL = 16%, θC=15%). WC is computed as (1-WL). Similar action combinations
are generated for other states. NOP: means no operation. This is a sample action
space when the car is in the straight segment of the track. So, the steering values
remain almost the same in the next achievable states too.

Agent: In our setup the DeepNNCar is the agent. For each
state s ∈ S , the agent performs an action a ∈ A, which results
in a reward, r : S × A → R, as the agent transitions from the
initial state to a new state s → s′ ∈ S . An action space is
created for all the different combinations of the state. As an
example, the possible action space for the DeepNNCar when
starting from the state s = (WL = 0.90, WC = 0.10, νt =

15.590%, θL = 16%, θC=15%) is shown in Table 4. Since,
there are three possible actions δWL, δWC and δν, there are 9
possible actions that can be performed from any state.

5.2. Exploration
Exploration is the training phase of RL, where the RL agent

learns to select an appropriate action by continuously interact-

ing with the environment. During this phase, the car stores re-
sults as state-action pairs Q(st, at), which is a measurement of
the quality of the immediate reward r(st, at) from being in state
st and taking action at discounted by the maximum expected
future award in the new state denoted Q′(st+1, at+1). The new
Q-state, Q′(st+1, at+1), is obtained by selecting an action which
results in the maximum Q-value as shown in the Eq. (6) below.

Q′(st+1, at+1) = max
ak∈A

Q(st+1, ak) (6)

The Q-state is updated using the Bellman equation which
takes the current state and action as inputs along with the pa-
rameters α ∈ [0, 1] and γ ∈ [0, 1]. α controls the learning rate
of the algorithm, while γ represents the discount factor which
balances the importance of future benefits over immediate ben-
efits (i.e. decreasing γ increases priority on obtaining immedi-
ate rewards).

Qnew(st, at) = Q(st, at) + α[r(st, at)+

γ ·max Q′(st+1, at+1) − Q(st, at)] (7)

The new Q-states and the Q-value calculated from the Q-
learning algorithm are stored in a Q-Table, which is a look up
table that holds the state-action pairs Q(st, at) and the associ-
ated reward r(st, at). For our experiments we used a learning
rate α = 0.1, discount factor γ = 0.4, and 1000 exploration
steps. These hyper-parameters were obtained by tuning through
various training runs. Also, for all the exploration runs we fix
WL=0.5, and WC=0.5 as the initial state, and we start from dif-
ferent parts of the tracks. We hypothesize doing this could help
us obtain a robust Q-Table with larger percentage of the state-
action pairs explored.

Table 3 shows the ensemble weights learned during explo-
ration of the different steering values. In the table, the columns
list the PWM duty cycle corresponding to the LEC controller
steering, θL ∈ [10%,20%], that is discretized in steps of 1. Sim-
ilarly, the row lists the PWM duty cycle corresponding of the
OpenCV controller steering, θC ∈ [10%,20%], that has been
discretized in steps of 5. The resulting rectangular regions is
shown in Table 3. The learned ensemble weights for each re-
gion of operation are listed within the corresponding block.
A block with a “-" indicates a valid system state which was
not represented in the training dataset, and thus no ensemble
weights were learned. In addition, most of the blocks for θC=10

9

are not explored. The reason for this is our tracks were small
and did not have steep left turns. A larger track with different
turns would result in a larger exploration. Also, when the car is
driving in a straight segment (row with θC=15), a higher weight
is given to the output of the LEC. However, the OpenCV con-
troller starts to get higher weights (see right corner of the row
with θC=20) as the car moves towards the right curved segment.

5.3. Exploitation
During exploitation the car uses the learned action sequence

stored in the Q-Table. The state-action pair with the highest
Q-value is chosen as the action of the current state. During ex-
ploitation the learnt Q-Table is loaded onto the car and based on
the steering PWM values, the agent starts moving towards the
appropriate weights. In straight segments the weights quickly
move to WL=0.95, and WC=0.05, and in curved segments the
weights hover around WL=0.8, and WC=0.2.

If the state-space is not completely explored during the ex-
ploration phase, then there is a possibility that the agent may
encounter unexplored states during exploitation and perform an
incorrect action. This problem was encountered during our ex-
ploitation, causing occasional out-of-track occurrences. Since
our tracks are small, 5 trial runs of 1000 steps exploration were
enough to overcome this problem. Additionally, we had a de-
caying learning rate as the exploration run progressed. For sys-
tems with larger state spaces we would recommend a higher
number of episodes and exploration steps.

To compare the performance of the dynamic weighted ap-
proach, we also introduce a fixed-weighted simplex strategy.
The fixed weights version uses static weights for the different
segments of the tracks.

5.4. Fixed-Weighted Simplex Strategy
The fixed-weighted simplex strategy is an empirical weight

selection mechanism. It uses fixed weights across the different
segments of track. The weights are found through a trial-and-
error approach by a human supervisor. For the DeepNNCar
running on Tack 1 (see Fig. 6), we found the optimal weights to
be WL=0.8, WC=0.2. The weighted simplex steering equation
using these weights is shown below:

θF = 0.8 · θL + 0.2 · θC (8)

where, θF represents the PWM duty cycle corresponding to
steering computed while using fixed weights, θL is the PWM
duty cycle corresponding to steering computed by the LEC con-
troller and θC is the PWM duty cycle corresponding to steering
computed by the OpenCV controller.

To implement the fixed weighted strategy on the DeepNNCar
we use the concept introduced by Fridman et. al. [54] called
“Arguing Machines” with a slight modification. Their work fo-
cused on combining an LEC based system with a human su-
pervisor to aid its decision making during uncertain situations.
Their approach had two LEC controllers predicting steering
values, and when the difference (or argument) between their
predicted steering values is higher than a predefined thresh-
old (τS W), then the steering action is performed by a human

driver. We replicate the same idea for DeepNNCar, but the
human driver is replaced by Eq. (8). In our case, if the com-
puted steering difference between the LEC controller and the
OpenCV controller is greater than τS W , then Eq. (8) is used to
compute the steering of the car. However, if the difference is
lower than τS W , then the predicted steering of the LEC is cho-
sen to drive the car.

Further, the speed of the car is also calculated based on the
argument between the controllers. If the difference among the
controller predictions is greater than τS W , then νt is decre-
mented using Eq. (3). However, if the difference among the
controller predictions is lesser than τS W , then νt is incremented
as it suggests consensus among the controllers predictions.

5.5. Discussion
It is evident from the above sections that computing weights

dynamically based on the operating contexts (like changing
track segments) is better than the fixed weights. The main
reason for this is the computation of the dynamic weights in-
volves domain information (like the track segment), whereas
the fixed weight is an empirical value calculated based on trail
runs. Including contextual information has been found effec-
tive in different machine learning applications of data-driven
anomaly detection [55], face recognition [56], speech recog-
nition, and query classification [57]. In our setup, the use of
contextual information in the reward function helps us compute
a superior dynamic weights compared to fixed weights. We hy-
pothesize these weights are optimal and are required to improve
the safety and the performance of the system. Currently these
weights are learnt offline, but an online learning technique that
adjusts weights on the fly could be useful to tackle new unseen
contexts like track, lighting levels, etc.

6. Resource Management

The dual controller operations of the weighted simplex strat-
egy requires significant computational resources, which are not
often available in small scale autonomous vehicles such as
those used in hospitals [58], warehouse [59], and laboratory
research testbeds [40], [43]. For the DeepNNCar, the weighted
simplex strategy workload increased the power consumption,
CPU utilization, and temperature of the RPi3 beyond 70°C
(configured soft limit). Beyond the soft limit, the clock speed
and the operating voltage of RPi3 are reduced [60], which could
affect the performance of the car. We can address this problem
in two ways: (1) multiple computational units – deploy multiple
computational devices on-board the DeepNNCar, and distribute
the tasks among them. However, this approach requires ad-
ditional external power sources, which increases development
cost of the platform, and (2) computation offloading – as the
RPi3 supports WiFi connectivity, we setup wireless communi-
cation with other edge devices 2 or fog devices 3 and offload
some tasks. In this work, we use the computation offloading

2Devices that have similar computational capacity as the onboard RPi3.
3Devices that have higher computational capacity than the onboard RPi3.

10

Resource
Monitor

Temperature
Forecaster

Fog Selection &
Task Offload

Speed
Adjustment

Resource
Manager

Figure 9: Resource Manager is responsible for resource monitoring, tempera-
ture forecasting, fog selection and task offload, and speed adjustment.

approach to keep the development costs low, and utilize the
wireless communication capability that enables computation on
other available devices.

For this, we designed a Resource Manager (RM) that per-
forms the following tasks: (1) resource monitoring – contin-
uous monitoring of resource state (temperature and CPU Uti-
lization), (2) temperature forecasting– forecast the temperature
of the RPi3 based on current temperature and CPU utilization,
(3) fog device selection and task offloading – selecting an opti-
mal fog device and offloading non-critical tasks, and (4) vehicle
speed adjustment– adjusting the vehicle speed (ν) according to
variations in the inference pipeline times. The workflow of the
RM is illustrated in Fig. 9.

6.1. Resource Monitoring

For resource constrained computation platforms (e.g. RPi
and NVIDIA Jetson), it is important to continuously monitor
system utilization including CPU, memory, network, and disk.
Variations in these utilization levels could result in degraded
computational performance of the system. In our case, temper-
ature and CPU utilization of RPi3 are identified to be the impor-
tant system parameters that must be monitored, as they directly
affect both the computational and hardware performance of the
DeepNNCar.

To perform resource monitoring, the RM in the background
continuously monitors the temperature and CPU utilization of
the RPi3. This monitoring capability gives the ability to enact
preventive measures that could avert the RPi3 from overheating.
We use the psutil [61] library for retrieving utilization informa-
tion and it runs in the background once every 30 seconds.

6.2. Temperature Forecasting

Forecasting the future system utilization based on the cur-
rent workload is important for resource constrained computa-
tion platforms. The forecasting model when used in conjunc-
tion with the resource monitor can aid resource management
by allowing time to enact mitigation strategies. For example,
in our experiments, forecasting the RPi3 temperature based on
current workload helped in preparing for task offloading (see
Fig. 15).

The RM is responsible for forecasting the temperature of the
RPi3 based on the current temperature and the CPU utilization
(which represents the workload). To perform this forecasting,
we designed a simple 2-layer DNN with 20 and 40 neurons in

Fog1
Latency

(ms)

Fog2
Latency

(ms)

Fog1
avg Latency

(ms)

Fog2
avg Latency

(ms)

Selected
Fog

Device
13.0
11.4
11.2

10.8
11.7
14.0

11.87 12.17 Fog1

11.7
11.9
10.1

11.4
10.6
10.3

11.23 10.77 Fog2

Table 5: Fog device selection based on the average of three latency pings. The
fog device with the lowest latency is selected for offloading. The experimental
testbed for the fog device selection experiments had Fog1 device (laptop), Fog2
device (desktop), and each of these were connected to different WiFi networks.

the first and second layer respectively. To collect data, we set
up an experiment in which we continuously monitored temper-
ature, CPU utilization, and offload status (indicated if the task
was performed on the RPi3 or offloaded to a fog device).

The dataset consisted off three hours of resource monitoring
data and was a representation of the entire offload process. We
trained the model for 200 epochs with the data collected from
the system utilization experiment. The performance and the
accuracy of the model is discussed in Section 8 and illustrated
in Fig. 14. The trained model was then deployed at runtime
along with the resource monitor to forecast the temperature of
the RPi3 in the next 30 seconds.

6.3. Fog Device Selection and Task Offloading

The RM continuously performs a latency ping every 10 sec-
onds using the iPerf [62] networking tool to the available fog
devices. After 30 seconds, an average time of the latest three
ping tests is calculated and the fog device with the lowest av-
erage latency is selected for task offloading. Table 5 shows the
latency test results for two 30 second periods, and how we se-
lect the appropriate fog device using average latency values.
For these experiments we do not perform online discovery, but
instead assume that we have prior knowledge of the available
fog devices.

Once, the temperature forecasting model predicts the tem-
perature to exceed 70°C and an optimal fog device has been
selected, the RM prepares to offload the tasks. In our context
it is not feasible to transfer the entire task code-base to the fog
device at runtime, so we assume these devices have a copy of
the code-base pre-installed. During runtime offloading the RM
deactivates the code on the RPi3 and activates the same code
on the fog device. The message transferring between the RPi3
and the fog device is managed using ZeroMQ (ZMQ). A sim-
ilar task activation exchange is performed when the predicted
temperature falls below 70°C. The forecasting model and the
offloader synchronously work at runtime to plan about the of-
floading of the computations.

6.4. Vehicle Speed Adjustment

During the task offload process, the inference time TR (dis-
cussed in Section 7) increases because of the additional net-
work overhead in the wireless communication channel. As the
inference time increases, the maximum allowable speed of the

11

Physical
Camera

(§4)

Physical
Opto-Coupler

(§4)

Camera
Device Actor

(publish I) (§7)

Opto-Coupler
Device Actor

(publish V) (§7)

Message
Buffer
(Actor)

(§7)

LEC Actor
(modified-
DAVE-II)

(§4)

OpenCV-
Controller

Actor
(§4)

RL-Actor
(RL-Agent

+ Environment)
(§5)

Decision
Manager
Actor (§7)

GPIO
Device

(§4)

Steering
Servos

(§4)

Titan
Motor

(§4)

Resource Manager
(Monitors the state of all hardware and the resource used on RPi3) (§6)

θL

θC , STOP

M̂

νS ET , WS ET

PWM

Sampling Tick

VMAX

Figure 10: A block diagram of DeepNNCar along with actors. There are asyn-
chronous interactions among various actors and thus different messaging pat-
terns were used. The request-reply communications are shown with dotted
lines, the publish-subscribe communications are shown in solid lines, and the
red dotted lines indicate the hardware connections. Also, refer to the listed
section numbers for a detailed description about the components.

vehicle must decrease. For this, the RM instructs the DM to sat-
urate (limit) the top speed of the car. The saturated maximum
speed νMAX is calculated using the safe distance (dS) which is
the closest distance to the track during turning where the car
can still safely perform an action to avoid going off the track.
The dS is a track specific quantity which was found to be 0.09m
for our track (see Fig. 6). Therefore, any decision taken before
reaching this distance will give the car a good turning radius.
However, any decision taken after this distance will leave the
car with insufficient space to turn and will result in a safety vi-
olation. νMAX is computed as: νMAX =

dS
TR

, where TR is the
inference pipeline time. This speed is converted to the corre-
sponding PWM duty cycle value and applied to the RPi3 to
control the speed of the car. During task offloading, the Deci-
sion Manager Actor (DMA) must wait longer for a reply from
the offloaded component due to the latency overhead, which in-
creases the TR.

7. System Integration

We use an actor based design [63] to integrate the compo-
nents discussed in the aforementioned sections. As discussed in
[64], an actor is a self-constrained and restartable process that
has its own execution thread and communicates synchronously
or asynchronously with other actors. The actors of DeepNNCar
and the data flow between them is shown in Fig. 10. Com-
munication between actors is done with various ZMQ messag-
ing patterns. The camera provides new images at 30 Hz and
the IR opto-coupler continuously collects RPM data to com-
pute the speed of the car. Then, the camera device actor4 and
the opto-coupler device actor periodically publish the images
and current-speed to all subscriber actors. The LEC controller

4A device actor converts hardware sensor information into topics that can
be published and subscribed to (see [65]).

actor, the OpenCV controller actor, and the RL-Actor are ape-
riodic consumers (see [66]) which do not consume the sensor
values until prompted by the DMA.

The interactions between the periodic publishers and aperi-
odic consumers are handled with the help of a Message Buffer
Actor (MBA), which has a one buffer queue to store the pub-
lished data (both images and current-speed) along with a se-
quence label. The data in the MBA gets updated according to
the sampling period of the sensors. However, this data cannot
be published until the MBA has received a sampling tick and
a request from the DMA to publish the data of a certain la-
bel. Once the MBA receives this request, it publishes the image
and current-speed messages to all subscribed actors. Using this
data, the LEC actor predicts θL, the OpenCV controller com-
putes θC , track position M̂, and S TOP (a command issued if
the car goes out of the track), and the RL-Actor computes WL,
WC and νS ET .

Decision Manager Actor (DMA): This is the key component
in the architecture that controls and initiates the entire message
exchange process every inference cycle. The DMA issues re-
quests for the sequence label and data θL, θC from the con-
trollers, and for WL, WC , and νS ET from the RL-Actor. Once the
controller and the RL-Actor have finished computation, they re-
spond to the DMA with their label and values. The DMA then
matches the labels and computes θD using Eq. (2) before feed-
ing θD and νS ET to the GPIO device actor, which controls the
two motors.

After applying the controls to the GPIO, the DMA starts a
new cycle. This cycle continues indefinitely until it is termi-
nated by the STOP signal from the OpenCV controller or man-
ually by the user. The tasks performed between two sampling
ticks of the DMA is one control cycle of the system and the
time taken to perform one control cycle is referred to as the in-
ference pipeline time TR. TR varies for every control cycle, but
the average inference time for the dynamic-weighted simplex
strategy is experimentally found to be 130 ms (in Fig. 13).

8. Evaluation

We evaluate the performance of the middleware framework
and the introduced weighted simplex strategies by deploying it
on the DeepNNCar. For this evaluation, we built three different
indoor tracks shown in Fig. 6. These tracks were built in our
laboratory using 10’ x 12’ tarps under controlled lighting con-
ditions (higher lighting intensities create reflections on the tarp,
causing the LD algorithm to fail). Each track had different geo-
metric shapes and turns. These tracks also look wrinkled since
they are folded for storage after experiments are complete. All
the experiments were performed using the tracks in the same
wrinkled conditions. The LEC was trained on the images col-
lected from Track 1 and Track 2 and then tested on Track 3 to
ensure the trained CNN had not overfit (generalized with the
training data).

For evaluating the performance of the RM, we designed the
DeepNNCar to communicate with a laptop (with an Intel 4-core
processor) and a desktop (with AMD Ryzen Threadripper 16-
core processor) using wireless communication over WiFi.

12

0.25 0.35 0.45 0.55 0.65

0
3
6
9

12

speed in m/s

O
ut

-o
f-

tr
ac

k
O

cc
ur

re
nc

es

CV LEC FW DW

Figure 11: The out-of-track occurrences by different controllers for different
speeds. From figure, CV: driving only with the OpenCV controller, LEC: driv-
ing only with the modified Dave-II model, FW: driving with fixed-weighted
simplex strategy, and DW: driving with dynamic-weighted simplex strategy.
The horizontal axis shows the different speeds of the car during the experiment.
The DeepNNCar performs fewer out-of-track occurrences when combined with
the dynamic-weighted simplex strategy. The data for this experiment was col-
lected by running DeepNNCar with each of these controllers independently
around Track 1 (see Fig. 6) for 10 laps.

8.1. Experiments on Weighted Simplex Performance

Out-of-track Occurrences: To evaluate the performance of
the LEC controller, the OpenCV controller, and the weighted
simplex strategies, we deployed them on DeepNNCar and per-
formed various trial runs. Fig. 11 shows the number of out-
of-track occurrences performed by the different controllers at
different speeds. We varied the speed between [0.25 - 0.65] m/s
and ran the different controllers separately for 10 laps around
Track 1. From Fig. 11 it is evident that, at low speeds (< 0.35)
m/s, both variants of weighted simplex strategy have lower out-
of-track occurrences compared to the independent controllers.
At higher speeds (0.65 m/s), the dynamic-weighted simplex
strategy outperforms all other controllers reducing the number
of out-of-track occurrences to 3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

CV

LEC

FW

DW

Speeds across different strategies in m/s

Figure 12: Speeds in meters per second of CV: driving only with the OpenCV
controller, LEC: driving only with the modified Dave-II model, FW: driv-
ing with fixed-weighted simplex strategy, and (d) DW: driving with dynamic-
weighted simplex strategy.

Speed Performance: Fig. 12 shows the maximum speed (rep-
resented as anomalies in the figure) and the average speed per-
formance of the different controllers. To collect data for this ex-
periment we ran the car with different controllers independently
for 10 laps around Track 1. Both the OpenCV controller and
the LEC controller operate with approximately the same aver-
age speeds of 0.29 - 0.39 m/s. This is because these controllers
have a small number of out-of-track occurrences (see Fig. 11)
in this speed range. However, the two weighted simplex strate-
gies operate in a higher speed range because they perform sig-

nificantly less out-of-track occurrences for speeds (< 0.4) m/s.
Notably, the dynamic-weighted simplex strategy operates at a
higher speed with lower out-of-track occurrences as compared
to the other controllers.

0 50 100 150 200

CV

LEC

FW

DW

Inference Times in Milliseconds

Figure 13: Inference times in milliseconds of CV: driving only with the
OpenCV controller, LEC: driving only with the modified Dave-II model,
FW: driving with fixed-weighted simplex strategy, and (d) DW: driving with
dynamic-weighted simplex strategy. Inference time is affected by the state
(computational load, temperature), so we have very high variance in the in-
ference times.

Inference Times: We also evaluate the performance of the
controllers based on inference times. Fig. 13 illustrates the in-
ference times of the different controllers. It is evident from
the figure that, the dual controller operation and the decision
computation steps of the weighted simplex strategy increases
the inference times of the car. The dynamic-weighted simplex
strategy has an average inference time of 130 ms, and the fixed-
weighted simplex strategy has an average of 120 ms whereas
both independent controllers have smaller inference times of
about 80 ms. The higher number of anomalies in this graph is
due to the variation in inference times based on the computa-
tional load and the onboard temperature of the RPi3. As the
RPi3 gets overheated and overloaded, the chances of varying
inference times is higher.

Weighted
Simplex Strategy

Straight
Segment

Near
Curved

Segment

In
Curved

Segment
Dynamic Weights

(WL, WC) 0.95, 0.05 0.85, 0.15 0.80, 0.20

Fixed Weights
(WL, WC) 0.80, 0.20 0.80, 0.20 0.80, 0.20

Table 6: Comparing the ensemble weights of different simplex strategies. For
the dynamic-weighted simplex strategy the weights were dynamically updated
by the Q-learning algorithm. For the fixed-weighted simplex strategy we have
a fixed weight for all the track segments, these weights were manually tuned by
a human supervisor.

Fixed and Dynamic Weights: We performed an experiment to
show how the weights of different weighted simplex strategies
vary across different segments of the track. For this we clus-
tered the Track 1 into three segments: Straight, Near Curved,
and In Curved. Then as the car ran using the two weighted
simplex strategies, we recorded the ensemble weights. We
later classified the weights into the three segments. From Ta-
ble 6 we see the weights used in the fixed-weighted strategy,
remains constant across the three track segments. However,
in the dynamic-weighted strategy the weights change dynam-
ically and are different for the three different track segments.

13

The dynamic-weights in each segment are not always the same
as shown in Table 6, but they vary ± 0.05. To simplify the table
we have just listed a single value that occurred most often for a
particular track segment.

Summary: Fig. 11 shows the introduced dynamic-weighted
simplex strategy can operate at higher speeds with lower out-
of-track occurrences. However, this comes with a penalty of in-
creased inference times (see Fig. 13). From these results, it can
be inferred that dynamic blending of the simplex weights helps
in reducing soft constraint violations while achieving higher
performance.

8.2. Experiments on Task Offloading

100 150 200 250 300

68

70

72

74

Iterations

Te
m

pe
ra

tu
re

(°
C

)

Actual

100 150 200 250 300

Predicted

Figure 14: The result of the DNN temperature predictions vs. the actual temper-
ature values. The DNN forecasts the temperature of the computing unit based
on the current state (temperature, CPU utilization). We see the DNN predic-
tions closely match the actual values. The graph shows a subset of iterations
(total 10000 iterations).

Temperature variations: As discussed in Section 6, we de-
sign a temperature forecasting model using a DNN. Fig. 14
shows the predicted DNN temperatures vs. the actual tempera-
ture readings. We can see the DNN predictions closely match to
the actual ones. To quantify the performance of the temperature
forecaster, we use Mean Absolute Percentage Error (MAPE) as
the metric. The results of MAPE = 0.16% across 1000 predic-
tions indicates the model accurately predicts the temperature of
the RPi3.

1,400 1,450 1,500 1,550 1,600 1,650 1,700

66

68

70

72

74

Iterations

Te
m

pe
ra

tu
re

(°
C

)

1,400 1,450 1,500 1,550 1,600 1,650 1,700

(off)

(on)

Figure 15: The effect of offloading the tasks in response to high temperature per
iteration of the inference pipeline. The trigger to offload the task is 70°C. The
blue line shows the temperature in Celsius. The red line shows when the tasks
were offloaded to the fog (on=on fog, off=off fog). The graph shows a subset
of iterations (total 10000 iterations).

Task Offloading: To evaluate the performance of the task of-
floader, we continuously offloaded the task onboard the DeepN-

NCar to any one of the available fog devices (laptop or a desk-
top). We then note the temperature variations when the tasks
stay onboard and when they are offloaded. The fluctuating blue
lines in Fig. 15 shows the temperature variations when the task
was moved on and off the RPi3. The red lines indicate if the
tasks were executed on or off the RPi3. As observed, the tem-
perature drops below the threshold (70°C) when the tasks get
offloaded.

0.2 0.3 0.4 0.5 0.6

ON

OFF

Speed in m/s

Figure 16: Speed readjustment during offload (m/s) ON: dynamic-weighted
simplex strategy with all tasks executed onboard, and OFF: dynamic-weighted
simplex strategy with RL task offloaded (Q-table was offloaded).

Speed Performance: Fig. 16 shows that the DeepNNCar can
operate at higher speeds (≈ 0.42 m/s) when all tasks are pre-
formed onboard. As tasks are offloaded to fog devices, the
operating speed decreases to 0.34 m/s. This is because of the
continuous speed adjustment performed to compensate for the
increased inference times (due to increased latency overhead).

50 100 150 200 250

ON

OFF

Inference Times in Milliseconds

Figure 17: ON: dynamic-weighted simplex strategy with all tasks executed on-
board, and OFF: dynamic-weighted simplex strategy with RL task offloaded
(Q-table was offloaded). The higher overloaded, and overheated the RPi3 gets,
the inference times gets higher. Inference time is affected by the state (com-
putational load, temperature), so we have very high variance in the inference
times.

Inference Times: Fig. 15 shows task offloading performed
to maintain the RPi3’s temperature below the threshold (70°C).
During offloading, the inference times increase because of the
network overhead involved in sending out the computations to
the fog devices. The inference time comparison of the car when
tasks get offloaded vs. not-offloaded is shown in Fig. 17. The
dynamic-weighted simplex strategy with all tasks performed
onboard has a lower inference time (≈ 130 ms) compared to
the inference time (≈ 140 ms) with RL tasks offloaded (Q-Table
was offloaded).

The higher number of anomalies in this graph is because in-
ference times vary based on the computational load and the on-
board temperature of the RPi3. As the RPi3 overheats and gets
overloaded, the chance of varying inference times are higher. In

14

addition, during offloading the wireless exchange of messages
is performed over Vanderbilt University WiFi. The network
traffic variations in the WiFi adds on to the latency overhead.

Summary: It is evident from Fig. 15 that the resource man-
ager tries to keep a tight check on the RPi3 temperature by of-
floading the RL task onto available fog devices. However, to
balance the increase in inference times during offloading (see
Fig. 17), the resource manager has to penalize or adjust the
speed of the car. The average speed during offload is 0.34 m/s,
compared to 0.42 m/s without the offload. Since, the primary
concern of this paper is to reduce the soft constraint violations,
the slight penalization in the performance (speed) is acceptable.
For small-scale CPS systems with limited computational ca-
pacity, we would recommend the use of a resource manager
along with an optimal dynamic-weighted blending strategy as
discussed in this work.

9. Conclusion

In this work, we have discussed the problems associated in
using LECs for perception in autonomous systems. We have
further implemented an LEC based end-to-end learning con-
troller on our physical testbed, the DeepNNCar. We have also
discussed the two key challenges of using the classical Simplex
Architecture. They are: (1) designing effective decision logic,
and (2) mitigating sudden transitions. To address these research
challenges, we discuss: (1) a dynamic-weighted simplex strat-
egy which computes dynamic simplex weights according to the
segments of the track, (2) a middleware framework which al-
lows the integration of the introduced dynamic-weighted strat-
egy and provides a resource manager for monitoring the on-
board computational unit, and (3) a hardware testbed to de-
ploy and test the proposed concepts. We have further evalu-
ated the performance of the dynamic-weighted simplex strat-
egy in terms of its capability to reduce soft constraint violations
while improving the system’s performance. Our results show
the dynamic-weighted simplex strategy works well at higher
speeds (∼ 0.4 m/s) with low out-of-track occurrences as com-
pared to only the LEC driven controller and the OpenCV con-
troller. In addition, the evaluation results also show the resource
manager to be effective in mitigating the computational over-
load generated by the dynamic-weighted simplex strategy.

This framework finds utility in factories, warehouses, hospi-
tals where various levels of safe autonomy are required to per-
form tasks. Currently, the dynamic-weighted simplex strategy
is suitable for systems which can tolerate soft constraint viola-
tions. However, in the future we would like to extend this strat-
egy to compute dynamic ensemble weights that can be appli-
cable to systems with hard constraints. Further, we would like
to extend our middleware framework with an architecture such
as CHARIOT [67], which provides a mechanism for achieving
autonomous resilience. Network failure is a significant problem
in our current setup. Using CHARIOT could help us detect this
failure and mitigate it.

Acknowledgements: This work was supported by DARPA’s
Assured Autonomy project and Air Force Research Laboratory.
Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not
necessarily reflect the views of DARPA or AFRL.

References
[1] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[2] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT

press, 2018.
[3] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,

L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., End to end learning
for self-driving cars, arXiv preprint arXiv:1604.07316 (2016).

[4] Just how far ahead is tesla in self-driving, https://www.
forbes.com/sites/greatspeculations/2019/11/08/
just-how-far-ahead-is-tesla-in-self-driving/
#3b71f97c1b24.

[5] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional
encoder-decoder architecture for image segmentation, IEEE transactions
on pattern analysis and machine intelligence 39 (12) (2017) 2481–2495.

[6] P. J. Graydon, J. C. Knight, E. A. Strunk, Assurance based development of
critical systems, in: 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), IEEE, 2007, pp. 347–357.

[7] R. Bloomfield, P. Bishop, Safety and assurance cases: Past, present
and possible future–an adelard perspective, in: Making Systems Safer,
Springer, 2010, pp. 51–67.

[8] K. Pei, Y. Cao, J. Yang, S. Jana, DeepXplore: Automated whitebox test-
ing of deep learning systems, in: Proceedings of the 26th Symposium on
Operating Systems Principles, ACM, 2017, pp. 1–18.

[9] W. Xiang, H.-D. Tran, T. T. Johnson, Reachable set computation and
safety verification for neural networks with ReLU activations, arXiv
preprint arXiv:1712.08163 (2017).

[10] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, X. Zhang, At-
tacking vision-based perception in end-to-end autonomous driving mod-
els, arXiv preprint arXiv:1910.01907 (2019).

[11] S. Neema, Assured autonomy, DARPA Research Program. (2019).
[12] D. Seto, B. Krogh, L. Sha, A. Chutinan, The simplex architecture for safe

on-line control system upgrades, in: Proceedings of the American Control
Conference, Vol. 6, AMERICAN AUTOMATIC CONTROL COUNCIL,
1998, pp. 3504–3508.

[13] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, P. Kumar, The simplex
reference model: Limiting fault-propagation due to unreliable compo-
nents in cyber-physical system architectures, in: 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), IEEE, 2007, pp. 400–412.

[14] D. Seto, E. Ferreira, T. F. Marz, Case study: Development of a base-
line controller for automatic landing of an f-16 aircraft using linear ma-
trix inequalities (lmis), Tech. rep., CARNEGIE-MELLON UNIV PITTS-
BURGH PA SOFTWARE ENGINEERING INST (2000).

[15] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, L. Sha, The
system-level simplex architecture for improved real-time embedded sys-
tem safety, in: Real-Time and Embedded Technology and Applications
Symposium, 2009. RTAS 2009. 15th IEEE, IEEE, 2009, pp. 99–107.

[16] S. Bak, T. T. Johnson, M. Caccamo, L. Sha, Real-time reachability for
verified simplex design, in: Real-Time Systems Symposium (RTSS),
2014 IEEE, IEEE, 2014, pp. 138–148.

[17] J. Finch, Toyota sudden acceleration: a case study of the national highway
traffic safety administration-recalls for change, Loy. Consumer L. Rev. 22
(2009) 472.

[18] D. Jiménez, Dynamically weighted ensemble neural networks for classifi-
cation, in: 1998 IEEE International Joint Conference on Neural Networks
Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No. 98CH36227), Vol. 1, IEEE, 1998, pp. 753–756.

[19] W. Zhang, Stable weighted multiple model adaptive control with im-
proved convergence rate, IFAC Proceedings Volumes 45 (13) (2012) 570–
575.

[20] S. Levine, Deep reinforcement learning, http://rll.berkeley.edu/
deeprlcourse/f17docs/lecture_1_introduction.pdf.

[21] S. Ullman, Against direct perception, Behavioral and Brain Sciences 3 (3)
(1980) 373–381.

[22] C. Chen, A. Seff, A. Kornhauser, J. Xiao, Deepdriving: Learning affor-
dance for direct perception in autonomous driving, in: Proceedings of
the IEEE International Conference on Computer Vision, 2015, pp. 2722–
2730.

15

[23] D. Mantegazza, J. Guzzi, L. M. Gambardella, A. Giusti, Vision-based
control of a quadrotor in user proximity: Mediated vs end-to-end learning
approaches, arXiv preprint arXiv:1809.08881 (2018).

[24] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep
visuomotor policies, The Journal of Machine Learning Research 17 (1)
(2016) 1334–1373.

[25] X. Zhu, A. B. Goldberg, Introduction to semi-supervised learning, Syn-
thesis lectures on artificial intelligence and machine learning 3 (1) (2009)
1–130.

[26] U. Muller, J. Ben, E. Cosatto, B. Flepp, Y. L. Cun, Off-road obstacle
avoidance through end-to-end learning, in: Advances in neural informa-
tion processing systems, 2006, pp. 739–746.

[27] M. Bajracharya, A. Howard, L. H. Matthies, B. Tang, M. Turmon, Au-
tonomous off-road navigation with end-to-end learning for the LAGR pro-
gram, Journal of Field Robotics 26 (1) (2009) 3–25.

[28] D. A. Pomerleau, ALVINN: An autonomous land vehicle in a neural net-
work, in: Advances in neural information processing systems, 1989, pp.
305–313.

[29] D. Seto, L. Sha, A case study on analytical analysis of the inverted pendu-
lum real-time control system, Tech. rep., CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST (1999).

[30] K. Lee, L. Sha, A dependable online testing and upgrade architecture
for real-time embedded systems, in: 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA’05), IEEE, 2005, pp. 160–165.

[31] S. Bak, K. Manamcheri, S. Mitra, M. Caccamo, Sandboxing controllers
for cyber-physical systems, in: Cyber-Physical Systems (ICCPS), 2011
IEEE/ACM International Conference on, IEEE, 2011, pp. 3–12.

[32] E. Asarin, O. Bournez, T. Dang, O. Maler, Approximate reachability anal-
ysis of piecewise-linear dynamical systems, in: International Workshop
on Hybrid Systems: Computation and Control, Springer, 2000, pp. 20–
31.

[33] P. Vivekanandan, G. Garcia, H. Yun, S. Keshmiri, A simplex architecture
for intelligent and safe unmanned aerial vehicles, in: 2016 IEEE 22nd In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), IEEE, 2016, pp. 69–75.

[34] D. Phan, J. Yang, M. Clark, R. Grosu, J. D. Schierman, S. A. Smolka,
S. D. Stoller, A component-based simplex architecture for high-assurance
cyber-physical systems, in: 17th International Conference on Application
of Concurrency to System Design, ACSD 2017, Zaragoza, Spain, June
25-30, 2017, 2017, pp. 49–58. doi:10.1109/ACSD.2017.23.
URL https://doi.org/10.1109/ACSD.2017.23

[35] A. Lomuscio, L. Maganti, An approach to reachability analysis for feed-
forward relu neural networks, arXiv preprint arXiv:1706.07351 (2017).

[36] R. Seiger, C. Seidl, U. Aßmann, T. Schlegel, A capability-based frame-
work for programming small domestic service robots, in: Proceedings of
the 2015 Joint MORSE/VAO Workshop on Model-Driven Robot Software
Engineering and View-based Software-Engineering, ACM, 2015, pp. 49–
54.

[37] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, Ros: an open-source robot operating system, in: ICRA work-
shop on open source software, Vol. 3, Kobe, Japan, 2009, p. 5.

[38] E. De Coninck, S. Bohez, S. Leroux, T. Verbelen, B. Vankeirsbilck,
B. Dhoedt, P. Simoens, Middleware platform for distributed applications
incorporating robots, sensors and the cloud, in: 2016 5th IEEE Inter-
national Conference on Cloud Networking (Cloudnet), IEEE, 2016, pp.
218–223.

[39] S. Bohez, E. De Coninck, T. Verbelen, P. Simoens, B. Dhoedt, Enabling
component-based mobile cloud computing with the aiolos middleware,
in: Proceedings of the 13th Workshop on Adaptive and Reflective Mid-
dleware, ACM, 2014, p. 2.

[40] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant, R. Mang-
haram, D. Agarwal, M. Behl, P. Burgio, et al., F1/10: An open-source
autonomous cyber-physical platform, arXiv preprint arXiv:1901.08567
(2019).

[41] C. Liu, P. Jiang, A cyber-physical system architecture in shop floor for
intelligent manufacturing, Procedia Cirp 56 (2016) 372–377.

[42] T. Samad, S. Iqbal, A. W. Malik, O. Arif, P. Bloodsworth, A multi-
agent framework for cloud-based management of collaborative robots,
International Journal of Advanced Robotic Systems 15 (4) (2018)
1729881418785073.

[43] S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra,
O. Guldner, M. Mohamoud, B. Plancher, R. Shin, et al., Project-based,
collaborative, algorithmic robotics for high school students: Program-
ming self-driving race cars at mit, in: 2017 IEEE Integrated STEM Edu-
cation Conference (ISEC), IEEE, 2017, pp. 195–203.

[44] M. G. Bechtel, E. McEllhiney, H. Yun, DeepPicar: A low-cost deep neural
network-based autonomous car, arXiv preprint arXiv:1712.08644 (2017).

[45] W. Roscoe, Donkey car: An opensource diy self driving platform for
small scale cars.

[46] J. S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-
parameter optimization, in: Advances in neural information processing
systems, 2011, pp. 2546–2554.

[47] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization,
Journal of Machine Learning Research 13 (Feb) (2012) 281–305.

[48] C. J. Willmott, K. Matsuura, Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model perfor-
mance, Climate research 30 (1) (2005) 79–82.

[49] J. Canny, A computational approach to edge detection, IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8 (6) (1986) 679–
698. doi:10.1109/TPAMI.1986.4767851.

[50] J. Illingworth, J. Kittler, A survey of the hough transform, Computer vi-
sion, graphics, and image processing 44 (1) (1988) 87–116.

[51] K. McFall, Using visual lane detection to control steering in a self-driving
vehicle, in: Smart City 360°, Springer, 2016, pp. 861–873.

[52] C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation, in: European Conference on
Information Retrieval, Springer, 2005, pp. 345–359.

[53] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4) (1992)
279–292.

[54] L. Fridman, B. Jenik, B. Reimer, Arguing machines: Perceptioncontrol
system redundancy and edge case discovery in real-world autonomous
driving, arXiv preprint arXiv:1710.04459 (2017).

[55] G. Biswas, H. Khorasgani, G. Stanje, A. Dubey, S. Deb, S. Ghoshal, An
approach to mode and anomaly detection with spacecraft telemetry data,
International Journal of Prognostics and Health Management (2016).

[56] M. Davis, M. Smith, J. Canny, N. Good, S. King, R. Janakiraman, To-
wards context-aware face recognition, in: Proceedings of the 13th annual
ACM international conference on Multimedia, ACM, 2005, pp. 483–486.

[57] H. Cao, D. H. Hu, D. Shen, D. Jiang, J.-T. Sun, E. Chen, Q. Yang,
Context-aware query classification, in: Proceedings of the 32nd interna-
tional ACM SIGIR conference on Research and development in informa-
tion retrieval, ACM, 2009, pp. 3–10.

[58] A. G. Ozkil, Z. Fan, S. Dawids, H. Aanes, J. K. Kristensen, K. H. Chris-
tensen, Service robots for hospitals: A case study of transportation tasks
in a hospital, in: 2009 IEEE International Conference on Automation and
Logistics, IEEE, 2009, pp. 289–294.

[59] K. Bhasin, P. Clark, How amazon triggered a robot arms race, Bloomberg
Techology (2016).

[60] Raspberry Pi frequency management, https://www.
raspberrypi.org/documentation/hardware/raspberrypi/
frequency-management.md.

[61] G. Rodola, psutil documentation; 2017.
[62] iPerf: A tool for measuring network performance, https://iperf.fr/.
[63] G. A. Agha, Actors: A model of concurrent computation in distributed

systems., Tech. rep., Massachusetts Inst of Tech Cambridge Artificial In-
telligence Lab (1985).

[64] M.-W. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, An actor-based simu-
lation for studying uav coordination, in: 15th European Simulation Sym-
posium, 2005, p. 323.

[65] A. Dubey, G. Karsai, P. Volgyesi, M. Metelko, I. Madari, H. Tu, Y. Du,
S. Lukic, Device access abstractions for resilient information architec-
ture platform for smart grid, IEEE Embedded Systems Letters (2018) 1–
1doi:10.1109/LES.2018.2845854.

[66] N. Mahadevan, A. Dubey, G. Karsai, Model-based software health man-
agement for real-time systems, in: IEEE Aerospace Conference(AERO),
Vol. 00, 2011, pp. 1–18. doi:10.1109/AERO.2011.5747559.
URL doi.ieeecomputersociety.org/10.1109/AERO.2011.
5747559

[67] S. M. Pradhan, A. Dubey, A. Gokhale, M. Lehofer, Chariot: A domain
specific language for extensible cyber-physical systems, in: Proceedings
of the workshop on domain-specific modeling, ACM, 2015, pp. 9–16.

16

