
Decision Making in Non-Stationary Environments with
Policy-Augmented Search

Ava Pettet
†

Vanderbilt University

Nashville, USA

ava.pettet@vanderbilt.edu

Yunuo Zhang
†

Vanderbilt University

Nashville, USA

yunuo.zhang@vanderbilt.edu

Baiting Luo

Vanderbilt University

Nashville, USA

baiting.luo@vanderbilt.edu

Kyle Wray

Stanford University

Stanford, USA

kyle.hollins.wray@gmail.com

Hendrik Baier

Eindhoven University of Technology

Eindhoven, Netherlands

h.baier@tue.nl

Aron Laszka

Pennsylvania State University

University Park, USA

aron.laszka@psu.edu

Abhishek Dubey

Vanderbilt University

Nashville, USA

abhishek.dubey@vanderbilt.edu

Ayan Mukhopadhyay

Vanderbilt University

Nashville, USA

ayan.mukhopadhyay@vanderbilt.edu

ABSTRACT
Sequential decision-making under uncertainty is present in many

important problems. Two popular approaches for tackling such

problems are reinforcement learning and online search (e.g., Monte

Carlo tree search). While the former learns a policy by interacting

with the environment (typically done before execution), the latter

uses a generative model of the environment to sample promising

action trajectories at decision time. Decision-making is particularly

challenging in non-stationary environments, where the environ-

ment in which an agent operates can change over time. Both ap-

proaches have shortcomings in such settings—on the one hand,

policies learned before execution become stale when the environ-

ment changes and relearning takes both time and computational

effort. Online search, on the other hand, can return sub-optimal

actions when there are limitations on allowed runtime. In this

paper, we introduce Policy-Augmented Monte Carlo tree search (PA-

MCTS), which combines action-value estimates from an out-of-date

policy with an online search using an up-to-date model of the envi-

ronment. We prove theoretical results showing conditions under

which PA-MCTS selects the one-step optimal action and also bound

the error accrued while following PA-MCTS as a policy. We com-

pare and contrast our approach with AlphaZero, another hybrid

planning approach, and Deep Q Learning on several OpenAI Gym

environments. Through extensive experiments, we show that under

non-stationary settings with limited time constraints, PA-MCTS

outperforms these baselines.

KEYWORDS
Sequential Decision-Making, Non-Stationary Environments, Monte

Carlo Tree Search

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative

Commons Attribution 4.0 International (CC-BY 4.0) licence.

ACM Reference Format:
Ava Pettet

†
, Yunuo Zhang

†
, Baiting Luo, Kyle Wray, Hendrik Baier, Aron

Laszka, Abhishek Dubey, and Ayan Mukhopadhyay. 2024. Decision Making

in Non-Stationary Environments with Policy-Augmented Search. In Proc.
of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,

29 pages.

1 INTRODUCTION
Sequential decision-making is present in many important problem

domains, such as autonomous driving [3], emergency response [17],

andmedical diagnosis [2]. An open challenge in such settings is non-

stationary environments, where the dynamics of the environment

can change over time. A decision agent must adapt to these changes

to avoid taking sub-optimal actions. Two well-known approaches

for sequential decision-making are reinforcement learning (RL) and

online planning [13]. In RL approaches, an agent learns a policy

𝜋 , i.e., a mapping from states to actions, through interacting with

the environment. The learning can also take place before execution

using environmental models. Once a policy is learned, it can be

invoked nearly instantaneously at decision time. Deep RL methods,

which use a neural network as a function approximator for the

policy, have achieved state-of-the-art performance in many applica-

tions [13, 22]. However, when faced with non-stationary environ-

ments, a policy can become stale and result in sub-optimal decisions.

Moreover, retraining the policy on the new environment takes time

and considerable computational effort, particularly in problems

with complex state-action spaces. While RL algorithms have been

designed to operate in non-stationary environments [6, 19], there

is a delay between when a change is detected and when the learn-

ing framework converges to the updated policy. Depending on the

problem setting, such delays might be very expensive.

An alternative approach is using algorithms such as Monte Carlo

tree search (MCTS) to perform online planning. These approaches

†
These authors contributed equally to this work

perform their computation at decision time using high-fidelity mod-

els of the current environment to find promising action trajectories.

These models can be updated as soon as environmental changes

are detected, and such changes can be immediately incorporated

into decision-making (assuming that the generative model used

to build the search tree can be updated quickly). MCTS has been

proven to converge to optimal actions given enough computation

time [14], but convergence can be slow for domains with large

state-action spaces. The slow convergence is a potential issue for

problem settings with tight constraints on the time allowed for

decision-making; e.g., in emergency response, when an incident

occurs, any time used for decision-making increases the overall

response time [20].

As we point out, both RL and MCTS have weaknesses when

applied individually to complex decision-making problems in non-

stationary environments. We argue that a hybrid decision-making

approach that integrates RL and online planning can combine their

strengths while mitigating their individual weaknesses in non-

stationary environments. The intuition is that if the environment

has not changed too much between when an optimal policy was

learned and when a decision needs to be made, the policy can still

provide useful information for decision-making. Similar hybrid

approaches have been explored and have achieved state-of-the-

art performance in many domains. For example, AlphaZero [23]

integrates a policy and value network within a modified MCTS,

and has achieved state-of-the-art performance in games such as Go.

However, to the best of our knowledge, such a hybrid approach has

not been developed specifically for non-stationary environments.

In this paper, we show how hybrid approaches can combine

offline learning and online search for decision-making in non-

stationary environments.We present a novel hybrid decision-making

approach, called Policy-Augmented Monte Carlo tree search (PA-

MCTS). Our approach is remarkably simple—it combines a policy’s

action-value estimates with the returns generated by MCTSwithout
changing either of the two approaches, i.e., the combination occurs

entirely outside the online search tree. Specifically, we make the

following contributions:

(1) Conceptually, our core contribution is the idea that offline

planning and online search can be combined for decision-

making in non-stationary environments.

(2) We present two algorithms to operationalize the proposed

idea. The first approach, our core algorithmic contribution,

is a novel algorithm that combines a (relatively) stale policy

with MCTS after the search, i.e., completely outside the tree.

We present several theoretical results for the proposed ap-

proach. Second, we show how existing hybrid approaches,

e.g., AlphaZero can also be used for decision-making in non-

stationary environments.

(3) We validate our approach using four open-source environ-

ments from OpenAI Gym and compare it with other state-

of-the-art approaches. We show that PA-MCTS results in

two distinct advantages—first, given a specific computational

budget, our framework converges to significantly better deci-

sions than standard MCTS; and second, online search makes

our approach significantly more robust to environmental

changes than standard state-of-the-art approaches.

2 BACKGROUND
Motivating Environments: Consider the problem of proactively

allocating ambulances in a city in anticipation of accidents, modeled

as an MDP [18]. Now, consider that the city experiences unexpected

congestion, changing the underlying MDP’s transition function.

First responders cannot wait to re-train a new policy, and a sub-

optimal policy can waste invaluable time to respond to emergency

situations. Abstraction of such a problem can be modeled in simpler

settings such as toy environments in OpenAI Gym [4]. For example,

in the cartpole environment, a rigid pole is attached to a cart via a

hinge. The cart canmove freely on a bounded, frictionless horizontal

track and the agent (i.e., the controller) can apply a force to the cart

parallel to the track in either direction. The goal of the controller

is to balance the pole as long as possible. Non-stationarity can be

induced by varying the gravitational constant or themass of the cart.

Similarly, the Frozen Lake environment involves an agent trying

to cross a frozen lake from a start position to a goal position (pre-

determined) without falling into any holes (we show a schematic

of the environment in Fig. 1). However, the slippery nature of the

surface results in the agent not always moving in the intended

direction. Here, non-stationarity can be induced by changing the

coefficient of friction on the surface, thereby changing how the

agent moves. In all settings, we explore how the agent can quickly

adapt to the updated environment.

Monte Carlo Tree Search: Our approach is based on Monte

Carlo Tree Search (MCTS), an anytime search algorithm that builds

a search tree in an incremental and asymmetric manner [5, 8, 14].

MCTS represents environment states by nodes, with the current

state being the root node. Actions that result in a transition from

one state to another are represented as edges between nodes. The

fundamental idea of MCTS is to bias the search toward actions that

appear promising. To determinewhich actions are promising,MCTS

uses a modelM𝑡 of the environment at the current decision epoch 𝑡

to simulate a rollout (commonly a randomly sampled possible future

trajectory) to the end of the planning horizon. A tree policy, such
as the commonly used Upper Confidence bound for Trees (UCT)

algorithm [14], then uses the averaged returns of these rollouts as

estimates𝐺𝑡 (𝑠, 𝑎) for the value of each action 𝑎 at each state 𝑠 , and

biases the exploration of future rollouts towards higher estimated

returns. MCTS is proven to converge to the optimal action given

infinite time [14]. However, the number of iterations required can

become impractical as the state-action space of the environment

grows.

AlphaZero: One of the most well-known approaches that com-

bine the strengths of MCTS-based planning and deep learning is

AlphaZero [24], which has shown state-of-the-art performance in

games such as Chess and Go. AlphaZero consists of a neural net-

work to estimate the value of states and MCTS is used as a means

for policy improvement. While AlphaZero was not designed as a

framework for decision-making in non-stationary environments,

we hypothesize that it is particularly suited to such environments.

We refer readers to the seminal work by Silver et al. [24] for a

comprehensive description of the AlphaZero framework. While we

show experimental results against AlphaZero as a baseline, we reit-

erate that showing that AlphaZero can be used as a decision-making

tool for non-stationary environments is one of our contributions.

3 MARKOV DECISION PROCESSES IN
NON-STATIONARY SETTINGS

Markov decision processes (MDP) provide a general framework

for sequential decision-making under uncertainty. An MDP can be

defined by the tuple (S,A, 𝑃 (𝑠, 𝑎), 𝑟 (𝑠, 𝑎)), where S is a finite state

space, A is a discrete action-space, 𝑃 (𝑠′ | 𝑠, 𝑎) is the probability
of reaching state 𝑠′ when taking action 𝑎 in state 𝑠 , and 𝑟 (𝑠, 𝑎) is
the scalar reward when action 𝑎 is taken in state 𝑠 . The goal of an

agent is to learn a policy 𝜋 that maps states to actions (or, more

generally, states to a distribution over actions) that can maximize a

specified utility function. Typically, the utility function is simply

the expected cumulative reward, also called the return, which is

defined as E𝑃 [
∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝜋 (𝑠))], where 𝛾 denotes the discount

factor that weighs immediate rewards more than future rewards.

We are interested in settings where the environment with which

the agent interacts changes over time. Specifically, we consider an

agent that is trained on a specific task given a particular setting,

but is executed in an environment where the underlying MDP’s

transition function has been modified; e.g., consider the problem of

emergency response described in Section 2).

We point out that our interest lies in problem settings where

learning a new policy immediately is infeasible in practice. In com-

plex real-world tasks, learning a new policy takes time, and deci-

sions must be made as the policy is being updated based on the

new environmental conditions. We are interested in understand-

ing how agents can optimize decision-making during such delays,

i.e., between when a change is detected in the environment and

when the agent learns a new (near-optimal) policy. One way to

model such a problem is a non-stationary Markov decision pro-

cess (NSMDP) [15]. An NSMDP, as defined by Lecarpentier and

Rachelson [2019], can be viewed as a stationary MDP where the

state space is extended with a temporal dimension. Depending on

whether the task is episodic and whether the agent is allowed to

explore along the temporal axis, this enhancement can be trivial or

difficult [15].

The rate of change in the transition function is typically bounded

in an NSMDP by assuming Lipschitz continuity [15], which as-

sumes that the function changes smoothly over time. However,

some situations can cause abrupt, large changes to the dynamics

of the environment. We propose a new approach to bound the

non-stationarity of an MDP by instead considering an upper bound

on the total change in the transition function between training

and execution; we refer to such a setting as transition-bounded
non-stationary Markov decision processes (T-NSMDP). Consider the

transition probability function 𝑃𝑡 (𝑠′ | 𝑠, 𝑎), where the subscript 𝑡
denotes the time step under consideration. Now, consider that the

environment undergoes some change between time steps 0 and 𝑡 .

We assume that:

∀𝑠, 𝑎 :

∑︁
𝑠′∈𝑆

��𝑃𝑡 (𝑠′ | 𝑎, 𝑠) − 𝑃0 (𝑠′ | 𝑎, 𝑠)
�� ≤ 𝜂 (1)

where 𝑡 ∈ T (i.e., some point in time after the original policy

was learned), and 𝜂 ∈ R+ is a scalar bound. In other words, the

total change in the transition function (cumulated over all states

𝑠 ∈ S and actions 𝑎 ∈ A) between the updated environmental

conditions and the original environmental conditions is bounded

by 𝜂. We also point out that while our problem definition is agnostic

to whether the change is continuous or discrete (we could define

an analogous setting for continuous-time MDPs), our algorithm

only tackles discrete changes for now.

A

G

H H

H
0 1 2 3 4

0

1

2

3

4

Frozen Lake Scenario

Figure 1: The Frozen Lake environment involves an agent trying
to cross a frozen lake from a start position to a goal position (pre-
determined) without falling into any holes

We demonstrate how Eq. (1) can be applied in practice using

the Frozen Lake environment described earlier. At each state, the

agent has four actions, i.e., the direction in which it chooses to

move. Consider that in the original environment at time 0, the

lake is only marginally slippery such that the agent can always

go in the direction it intends. Let us consider an arbitrary state

𝑠 (2,1) which denotes that the agent is in cell (2, 1) (refer to the

Fig. 1 on the left where each cell is marked with a number). In the

original environment, if the agent seeks to go right (takes action

𝑎
right

), then 𝑃0 (𝑠 (3,1) | 𝑎
right

, 𝑠 (2,1)) = 1, i.e., the agent always

moves right if it intends to do so. Now, at time 𝑡 , consider that lake

becomes more slippery, and the agent may not always move in

the intended direction due to the slippery nature of the surface.

Let us assume that the agent moves in the intended direction with

a probability of 1/3 and in each of its perpendicular directions

with the same probability (i.e., from cell (2,1), if the agent seeks

to go right, it can now end up in cells (3,1), (2,0), or (2,2) with

equal probability). In that case, by equation Eq. (1), we can quantify

the amount of change1 to be | 𝑃𝑡 (𝑠 (3,1) | 𝑎right, 𝑠 (2,1)) − 𝑃0 (𝑠 (3,1) |
𝑎
right

, 𝑠 (2,1)) | + | 𝑃𝑡 (𝑠 (2,0) | 𝑎right, 𝑠 (2,1))−𝑃0 (𝑠 (2,0) | 𝑎right, 𝑠 (2,1)) |
+ | 𝑃𝑡 (𝑠 (3,3) | 𝑎

right
, 𝑠 (2,1)) − 𝑃0 (𝑠 (3,3) | 𝑎

right
, 𝑠 (2,1)) | + | 𝑃𝑡 (𝑠6 |

𝑎
right

, 𝑠 (2,1)) − 𝑃0 (𝑠 (2,2) | 𝑎
right

, 𝑠 (2,1)) | = 1.33. A similar bound

can be computed for the Cartpole environment where the agent is

trained in a setting with a certain mass, but the mass of the cart

changes in the updated environment.

Hypothesis:Having described an example of how the bounds in

a T-NSMDP can be computed, we now present our key hypothesis.

Let 𝑠0 ∈ S and 𝑎0 ∈ A denote the initial state and an action

(respectively) at time step 0. Consider the action-value function 𝑄 ,

represented as𝑄𝜋 (𝑠, 𝑎) = E𝑃 {𝑅(𝑠0, 𝑎0) +
∑∞
𝑡=1 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 = 𝜋 (𝑠𝑡))},
which measures the value of a state 𝑠 and an action 𝑎 under policy

1
we show this for one particular state as an example, the same bound applies across

all state-action pairs.

𝜋 . Our key hypothesis is that with small changes in the transition

function, the 𝑄 function under an optimal policy does not change

much, i.e., “good” actions remain valuable, and “bad” actions do

not suddenly become promising. It is trivial to see that there are

exceptions to our hypothesis and its rather simplified explanation;

if the 𝑄 function stayed the same as before, there would not be

any need for the agent to adapt to changes in the environment.

However, we show that the change in𝑄 is bounded with respect to

the change in 𝑃 :

Theorem 1. If ∀𝑠, 𝑎 : ∑𝑠′∈𝑆 |𝑃𝑡 (𝑠′ | 𝑎, 𝑠) − 𝑃0 (𝑠′ | 𝑎, 𝑠) | ≤ 𝜂, and

∀𝑠, 𝑎 : |𝑟 (𝑠, 𝑎) | ≤ 𝑅, and the discount factor 𝛾 < 1, then |𝑄𝜋∗
0

0
(𝑠, 𝑎) −

𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) | ≤ 𝜖 ∀𝑠, 𝑎, where 𝜖 =
𝛾 ·𝜂 ·𝑅
(1−𝛾)2 (The proof is presented in the

appendix).

Theorem 1 considers two environments, one at time 0 and the

other at time 𝑡 ; then, under the assumptions that Eq. (1) holds, the re-

wards are bounded, and𝛾 < 1, the difference in the optimal Q values

(in the old and new environment) is also bounded. While this bound

is admittedly loose and can be large in many settings, it serves as

the basis for algorithmic decision-making in non-stationary set-

tings if the environment has not changed much. Specifically, if the

optimal Q has not changed significantly, then we can leverage it to

inform decision-making even when the environment has changed.

Problem Statement: Our goal is to find optimal actions (i.e.,

actions that maximize the temporally discounted sum of future re-

wards) at execution time 𝑡 assuming the following: (1) we are given

an optimal action-value function 𝑄
𝜋∗
0

0
(𝑠, 𝑎) for time step 0, which

might have been learned under different environmental conditions

than those at execution time 𝑡 ; (2) any such change in the transition

probabilities between when 𝑄
𝜋∗
0

0
(𝑠, 𝑎) was learned and time 𝑡 are

bounded by 𝜂 (Eq. (1)); (3) we are given a black-box simulator that

is updated to accurately model the environment at execution time

𝑡 (we relax this assumption in our experiments); and (4) there is

a limited computational budget at execution time that prevents

learning an optimal policy.

4 POLICY AUGMENTED MONTE CARO TREE
SEARCH

Recall that MCTS is proven to converge to the optimal action given

infinite time [14]. The convergence also holds true for an environ-

ment that has changed—this consideration is actually meaningless

for a purely online approach such as MCTS, assuming that the gen-

erative model that is used to build the tree has been updated based

on environmental changes. On the other hand, a trained policy

has exactly the opposite advantage (and disadvantage): while it

can be invoked in constant time during decision-making, it cannot

accommodate environmental changes without re-training, which

is computationally expensive. We raise the following question: can
the advantages of online search procedures (e.g., MCTS) be combined
with those of policy learning (e.g., reinforcement learning) to tackle
discrete changes in the environment?

Our approach presents a natural solution to this question. Policy-
Augmented Monte Carlo Tree Search (PA-MCTS) addresses this chal-

lenge by integrating an online search with 𝑄-values learned on the

environment at an earlier decision epoch, even if the environment

has changed. Rather than selecting an action based on the highest

expected return estimated by the online search, PA-MCTS instead

chooses the action that maximizes a convex combination of the

previously learned 𝑄-values and the MCTS estimates 𝐺 :

argmax

𝑎∈A𝑠

𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎) (2)

where 𝑄
𝜋∗
0

0
(𝑠, 𝑎) is the optimal

2 𝑄-function previously learned by

the decision agent. Note that this combination happens entirely out-
side the tree.3 The hyper-parameter 𝛼 , chosen such that 0 ≤ 𝛼 ≤ 1,

controls the tradeoff between the learned𝑄-values and the expected

returns generated through MCTS estimates: if 𝛼 = 1, PA-MCTS

reduces to the standard Q-learning action selection policy using

the previous 𝑄 values: argmax𝑎∈A𝑠
𝑄
𝜋∗
0

0
(𝑠, 𝑎). If 𝛼 = 0, it reduces

to standard MCTS. We essentially seek to balance the dichotomy

between using low-variance but biased estimates through𝑄
𝜋∗
0

0
(gen-

erated using an older environment) and potentially high-variance

but unbiased estimates through 𝐺𝑡 (generated using the current

environment). If 𝛼 ∈ (0, 1), then both estimates are considered.

Note that we refer to the action-value from the 𝑄-function as “esti-

mates” due to the change in the environment. We hypothesize that

when the error in 𝑄-values is bounded by 𝜖 (as described in The-

orem 1), 𝑄
𝜋∗
0

0
likely embeds useful information about the updated

environment. The PA-MCTS algorithm essentially uses Eq. (2) for

decision-making. We present the algorithm in the appendix.

4.1 Theoretical Analysis
We prove three properties of PA-MCTS: (1) the conditions under

which PA-MCTS will return the optimal one-step action, (2) the

conditions under which PA-MCTS will choose an action with a

higher estimated return than either MCTS or selection using 𝑄-

values 𝑄
𝜋∗
0

0
, and (3) a bound on the total deviation of the expected

return from an optimal (updated) policy when following PA-MCTS.

We begin by defining some additional notation and detailing our

assumptions.

Let 𝑎∗𝑡 := argmax𝑎∈A𝑠
𝑄𝜋∗

𝑡 (𝑠, 𝑎) be the optimal action at an

arbitrary time step 𝑡 . Let 𝑎′𝑡 := argmax𝑎∈A𝑠\{𝑎∗𝑡 } 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) denote
the second best action at an arbitrary time step 𝑡 (we assume that

there are no ties in 𝑄-values for any actions at a given state). Let

𝜓𝑡 (𝑠) := 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) − 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡); for a state 𝑠 , 𝜓𝑡 (𝑠) denotes the
difference in 𝑄 values when taking actions 𝑎∗𝑡 and 𝑎

′
𝑡 at time 𝑡 and

following the optimal policy 𝜋∗𝑡 thereafter.
4
Finally, while MCTS

is guaranteed to converge to the optimal expected returns for a

given state and action given infinite time, actions must be taken

after a limited time in practice. Let 𝛿 denote the bound on the

error of the values estimated by MCTS when it is stopped, i.e.,

|𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝐺𝑡 (𝑠, 𝑎) |∞ ≤ 𝛿 ∀ 𝑡 ∈ T .

2
In principle, we do not require the optimal𝑄-function. As we show in the experiments,

an approximation also works well in practice.

3
We also explored approaches to use the learned Q-values inside the tree, but the

proposed approach performed at least as well and simplifies (to some degree) the

theoretical analysis.

4
Recall that the optimal policy is indexed with the time step as the environment might

change in our setting, i.e., 𝜋∗
𝑡 denotes the optimal policy given the environmental

conditions at time step 𝑡 .

We first present Theorem 2, which describes the conditions with

respect to 𝜖 , 𝛿 , and𝜓𝑡 (𝑠) under which PA-MCTS returns the optimal

one-step action.

Theorem 2. If 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓𝑡 (𝑠)
2

, PA-MCTS is guaranteed
to select the optimal action at time step 𝑡 in state 𝑠 . (The proof is
presented in the appendix).

Theorem 2 essentially shows that PA-MCTS is guaranteed to

choose the optimal action if the sum of 𝛼-weighted errors is low

enough that the decision agent can differentiate between the best

and the next best action. While𝜓𝑡 (𝑠) is not observable at decision
time, we can find the relationship between𝜓𝑡 (𝑠) and𝜓0 (𝑠):

Corollary 2.1. 𝜓𝑡 (𝑠) ≤ 𝜓0 (𝑠) + 2𝜖

Using Corollary 2.1, we substitute𝜓𝑡 (𝑠) in terms of𝜓0 (𝑠) (which
can be computed at decision time using known 𝑄

𝜋∗
0

0
values) in

Theorem 2. Then, we can determine when PA-MCTS will select the

optimal action using information that can be computed at decision

time:

Corollary 2.2. If 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓0 (𝑠)
2

+ 𝜖 , PA-MCTS is guar-
anteed to select the optimal action at decision epoch 𝑡 .

Using 0 ≤ 𝛼 ≤ 1, Corollary 2.2 can be rearranged to solve for 𝛼 :

Corollary 2.3. PA-MCTS will choose the optimal one-step action
if { −𝛿

𝜖−𝛿 ≤ 𝛼 ≤ 𝜓0 (𝑠)
2(𝜖−𝛿) + 1 if 𝜖 > 𝛿

−𝛿
𝜖−𝛿 ≥ 𝛼 ≥ 𝜓0 (𝑠)

2(𝜖−𝛿) + 1 if 𝜖 < 𝛿 .

Therefore, given 𝜖 and 𝛿 , a decision agent can determine what

values of the hyperparameter 𝛼 (if any) would guarantee that PA-

MCTS chooses the optimal action at decision time.

Theorem 2 guarantees the conditions under which PA-MCTSwill

choose the optimal action. We now seek to answer a more practical

question: when does PA-MCTS choose a one-step action with a

higher 𝑄
𝜋∗
𝑡

𝑡 value than MCTS or the learned policy in isolation?

First, we list conditions under which PA-MCTS chooses a better

action than pure MCTS:

Proposition 1. If PA-MCTS and MCTS choose different actions,

PA-MCTS’s chosen action will have a higher 𝑄𝜋∗
𝑡

𝑡 value than MCTS

if 2𝜖 ≤ 𝜁𝑚𝑡 , where5 𝜁𝑚𝑡 := (𝑄𝜋∗
0

0
(𝑠, 𝑎) + 𝐺𝑡 (𝑠, 𝑎)) − (𝑄𝜋∗

0

0
(𝑠, 𝑎𝑚) +

𝐺𝑡 (𝑠, 𝑎𝑚)), 𝑎 := argmax𝑎∈A𝑠
𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎), and

𝑎𝑚 := argmax𝑎∈A𝑠
𝐺𝑡 (𝑠, 𝑎). (The proof is presented in the appendix).

Since 𝜁𝑚𝑡 is constructed from terms that can be computed at

decision time, Proposition 1 can be used by the decision agent to

determine if it should use PA-MCTS or MCTS when they choose

different actions at decision time. A similar statement can be made

regarding action selection using 𝑄
𝜋∗
0

0
.

Proposition 2. If the action chosen by PA-MCTS is different

than argmax𝑎 𝑄
𝜋∗
0

0
(𝑠, 𝑎) at state 𝑠 , then PA-MCTS’s chosen action

will have a higher 𝑄𝜋∗
𝑡

𝑡 value than selection through 𝑄
𝜋∗
0

0
-values

5
the superscript𝑚 in 𝜁𝑚𝑡 represents the bounds with respect to MCTS and is not an

index.

if 2𝛿 ≤ 𝜁
𝑞
𝑡 where6 𝜁

𝑞
𝑡 := (𝑄𝜋∗

0

0
(𝑠, 𝑎) + 𝐺𝑡 (𝑠, 𝑎)) − (𝑄𝜋∗

0

0
(𝑠, 𝑎𝑔) +

𝐺𝑡 (𝑠, 𝑎𝑔)), 𝑎 := argmax𝑎∈A𝑠
𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎), and

𝑎𝑔 := argmax𝑎∈A𝑠
𝑄
𝜋∗
0

0
(𝑠, 𝑎). (The proof is presented in the appen-

dix).

Using Propositions 1 and 2, we can determine the conditions

under which PA-MCTS chooses an action that is better than either

of its constituent policies. The above propositions consider only

one decision epoch. However, typically, training a new policy takes

time, which might consist of several decision epochs. Therefore,

we compute the total error in the expected return when following

PA-MCTS compared to an optimal (updated) policy.

Theorem 3. When PA-MCTS is used for sequential decision mak-
ing, the maximum difference between the return from an optimal
policy and the return from following PA-MCTS is at most 2(𝛼𝜖−𝛼𝛿+𝛿)

1−𝛾 .
(The proof is presented in the appendix).

4.2 Experiment Setting
Environments:We use the following four open-source environ-

ments from OpenAI Gym [4] to validate our approach:

(1) Cart Pole: In this classic control problem, a pole is attached

by an un-actuated joint to a cart, which moves on a friction-

less track. A pendulum is placed upright on the cart. The

agent’s goal is to balance the pole by applying forces either

to the left or the right direction on the cart. For the cart

pole environment, we set our original environment with

gravitational constant g as 9.8m/s
2
and the mass of the pole

as 0.1 kg. Both parameters are then varied to induce non-

stationarity in the state-action transition function.

(2) Frozen Lake: In the frozen lake problem, an agent must tra-

verse from a starting position to the goal position by avoiding

holes. The agent moves on a slippery surface (we describe

the setting in section 3). We introduce non-stationary by

making the surface more slippery; in our experiments, we

refer to a problem instance of the frozen lake environment

by the vector 𝑝1, 𝑝2, 𝑝3, where 𝑝1 denotes the probability

with which the agent moves in the intended direction, and

𝑝2 and 𝑝3 denote the probabilities of moving in directions

perpendicular to the intended direction. For the frozen lake

environment, we treat the “original environment” as one

with perfect agent movement, i.e., deterministic movement.

(3) Cliff Walking: In the cliff walking environment, an agent

must find a path from the start position to the goal position

from start to goal while avoiding falling off a cliff. While the

setting is similar to the frozen lake environment, here, the

agent incurs a penalty for each step that it takes, thereby

presenting the explicit dichotomy of choosing between an

optimal path (with respect to discounted rewards) and a safe

path. Similar to the frozen lake environment, the original

environment involves deterministic agent movement.

(4) Lunar Lander: This environment presents a rocket trajec-

tory optimization problem. The agent must control a rocket

and land safely on a known landing pad. While landing

6
Again, the superscript 𝑞 only denotes bounds with respect to the𝑄-values and is not

an index.

outside the pad is possible, the agent incurs a penalty. The

agent’s action at each time step involves firing one of the

three engines (main, right, and left) at full throttle or not

doing anything. Here, the original environment does not in-

volve anywind.We inducewind to simulate non-stationarity;

the agent, therefore, must adjust its actions according to the

power of the wind.

Baseline approaches and implementation: We implement Alp-

haZero, a reinforcement learning (RL) agent using a Double Deep

Q-Network (DDQN) [26], and standard MCTS as our baseline ap-

proaches. We reiterate that we do not treat AlphaZero as a baseline
per se since our broader conceptual idea of using hybrid approaches

to combat non-stationarity subsumes it. Nonetheless, we compare

PA-MCTS with AlphaZero, and show that our proposed approach

outperforms AlphaZero. We implement MCTS and PA-MCTS using

UCT [14] as the tree policy. Our implementation is in Python [27]

and available at https://github.com/scope-lab-vu/PAMCTS
Hardware: We run experiments on the Chameleon testbed [11]

on 4 Linux systems with 32-96 logical processors and 528 GB RAM.

We train AlphaZero using the Google Cloud Platform on a Linux

system with 128 logical processors and 528 GB RAM.

Hyper-Parameters:We implement the neural networks in Ten-

sorFlow [1]. For the RL agent, the Double DQN has 3 hidden layers

with ReLU activation, and the output layer has a linear activation.

We use a Boltzmann Q Policy and train the network with the Adam

Optimizer[12] with a learning rate of 10
−3

for 300,000 steps while

minimizing the mean absolute error of the network. For AlphaZero,

we use 5 hidden layers with ReLU activation and appropriate output

layers (e.g., softmax for the policy and dense layer for the value

function). For both PA-MCTS and AlphaZero, we set the discount

factor as 0.99, maximum tree depth as 500 (though this is rarely

reached), and the exploration parameter 𝑐 = 50 (after tuning on

holdout data). A more detailed description of the hyper-parameters

is presented in the appendix.

4.3 Results
Comprehensive results for all environments and all settings we

use to induce non-stationarity are presented in Table 1. Below, we

dive deeper into the cart pole environment to analyze the results

in depth and evaluate the nuances of PA-MCTS. Similar analysis

for the other environments can be found in the appendix.

Stationary setting: We train both the AlphaZero network and

the DDQN with 𝑔 = 9.8m/s
2
and𝑚 = 1.0 kg and evaluate all the

approaches in the same environmental settings. We present PA-

MCTS and DDQN results in Fig. 2 (different color lines represent

different 𝛼 used by PA-MCTS) and the comparison with AlphaZero

in Fig. 5 (the left-most sub-graph shows the stationary setting). We

observe that under stationary conditions, both AlphaZero and the

DDQN (which is a special case of PA-MCTS with 𝛼 = 1.0) outper-

form standard MCTS and PA-MCTS with 𝛼 ∈ {0.25, 0.5, 0.75}. This
result is expected, as offline learning is able to leverage potentially

thousands of training episodes to learn an optimal policy. However,

we do note that PA-MCTS (for 0 < 𝛼 < 1) is able to leverage the

information stored in the policy to converge significantly faster

than standard MCTS. We compute each result by averaging across

30 samples.

Non-stationary setting: To add non-stationarity to the cart pole

environment, we modify 𝑔 from 9.8m/s
2
to 20, 50, and 500m/s

2

(we present results in Fig. 2; additional experiments which modify

the mass of the cart are shown in the appendix). We have several

important findings. First, we observe as the change in the environ-

ment increases, the performance of the DDQN policy in isolation

(trained on the original environment) degrades as hypothesized—in

fact, it achieves almost 0 utility for 𝑔 ∈ {50, 500}. Second, we again
observe that PA-MCTS converges significantly faster than standard

MCTS for all values of 𝑔 (with appropriate 𝛼); it actually achieves

optimal performance except when 𝑔 = 500m/s
2
. The reader might

wonder about how to choose the optimal 𝛼 and the performance of

AlphaZero, which we show below.

Choosing the optimal 𝛼 : During execution, the agent must

choose actions relatively quickly. Therefore, even when updated

generative models of the system are available, it is unlikely that

the agent would be able to afford the time to compute extensive

simulations across a range of 𝛼 values to select the optimal one.

We provide an empirical approach to alleviate this concern. First,

we run simulations for various iteration counts of MCTS in a wide

array of environmental conditions. For each setting, we show the

optimal 𝛼 in Fig. 3. For example, the top rows of the heatmap show

that when the environment has not changed much, it is better for

the agent to rely more on the trained policy (i.e., 𝛼 is typically

above 0.5). On the other hand, consider the bottom-right cell in the

heatmap, which shows that if the environment changes a lot, the

agent must rely more on the online search, as expected. We point

out another interesting finding—it turns out that PA-MCTS, with

limited MCTS iterations, is able to approximate the optimal choice

of 𝛼 fairly well, i.e., observe that the column with iterations=25

(or even with iterations=10) is almost similar to the column with

iterations=100. We use this finding to guide the selection of 𝛼 . We

hypothesize that the agent can use the updated generative models

to perform a hyper-parameter sweep of 𝛼 with a small number of

MCTS iterations; the sweep can be run in parallel for each 𝛼 and in

our setting takes only 80 seconds (much smaller than re-training

the policy, as we show below). Then, for execution, the agent can

choose the 𝛼 value that provides the highest expected discounted

return.

Comparison with AlphaZero: We use the proposed selec-

tion strategy to tune 𝛼 and compare our results with AlphaZero

(presented in Fig. 5). First, we observe that except for a drastic en-

vironmental change (𝑔 = 500m/s
2
), both AlphaZero and PA-MCTS

(with 𝛼-selection) converge to the optimal policy. However, we

see that PA-MCTS (with 𝛼-selection) converges significantly faster

than AlphaZero; indeed, when 𝑔 = 50m/s
2
, PA-MCTS takes about

a third of the number iterations that AlphaZero takes to converge.

In real-world settings, faster convergence is potentially invaluable.

Runtime Comparison:We also explore whether re-training the

policies by using the updated environmental model is computation-

ally cheaper than executing PA-MCTS. Table 2 shows the calculated

average PA-MCTS execution time for different iteration counts

(with 𝛼-selection), and the retraining time for the DDQN network

and the Alphazero network. For a fair comparison, we do not re-

train DDQN and AlphaZero from scratch and update the existing

networks, which is considerably faster than training from scratch,

Environment Setting DDQN MCTS AlphaZero PA-MCTS

Cartpole

(varying 𝑔)

g = 9.8 2500.0 ± 0.0 846.456±43.228 2403.261±35.946 2500.0±0.0
g = 20 2500.0±0.0 918.022±46.554 2278.90±52.9 2500.0±0.0
g = 50 22.061±0.729 778.511±44.90 1920.261±78.547 2500.0±0.0
g = 500 7.083±0.126 111.578±17.705 626.178±80.091 954.656±90.150

Cartpole

(varying𝑚)

m = 0.1 2500.0 ± 0.0 846.456±43.228 2403.261±35.946 2500.0±0.0
m = 1.0 500.0±0.0 892.956±42.674 1340.006±86.713 2500.0±0.0
m = 1.2 1249.661±90.587 802.905±30.748 2093.411±65.519 1715.783±68.101
m = 1.3 475.35±67.96 904.078±38.404 1346.433±86.238 904.078±38.404
m = 1.5 2.0±0.0 2.0±0.0 2.0±0.0 2.0±0.0

Frozen Lake

[1.000, 1.000, 1.000] 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0±0.0
[0.833, 0.083, 0.083] 0.830 ± 0.012 0.806 ± 0.012 0.809±0.013 0.830±0.012
[0.633, 0.183, 0.183] 0.522 ± 0.016 0.56 ± 0.017 0.523±0.017 0.587±0.016
[0.433, 0.283, 0.283] 0.26 ± 0.014 0.764 ± 0.013 0.235±0.014 0.796±0.013
[0.333, 0.333, 0.333] 0.12 ± 0.01 0.866 ± 0.01 0.114±0.011 0.936±0.009

Cliff Walking

0.0 0.88 ± 0.00 0.869 ± 0.001 0.874 ± 0.00 0.88 ± 0.00
0.1 0.291 ± 0.016 0.7 ± 0.011 0.27 ± 0.014 0.7 ± 0.011
0.2 0.102 ± 0.011 0.459 ± 0.015 0.081 ± 0.009 0.459 ± 0.015
0.3 0.034 ± 0.006 0.173 ± 0.012 0.012 ± 0.004 0.173 ± 0.012

Lunar Lander

0.0 256.034±2.939 -76.867±3.792 -286.325 ± 16.759 256.034 ± 2.939
10.0 241.676±4.956 -79.745±4.697 -250.502 ± 14.967 241.676 ± 4.955
15.0 192.877±9.25 -94.906±6.440 -255.377 ± 13.234 192.877 ± 9.25
20.0 113.431±14.113 -119.177±8.654 -253.276 ± 11.086 113.43 ± 14.113

Table 1: Results for all four environments with varying levels of non-stationarity. For each environment, the degree of change increases from
top to bottom. We observe that PA-MCTS comprehensively outperforms the baseline approaches, including AlphaZero.

25 50 75 100 200 300
0

1,000

2,000

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Gravity = 9.8

25 50 75 100 200 300
0

1,000

2,000

Iterations

Gravity = 20.0

25 50 75 100 200 300
0

1,000

2,000

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Gravity = 50.0

25 50 75 100 200 300
0

1,000

2,000

Iterations

Gravity = 500.0

Alpha=0.00 Alpha=0.25 Alpha=0.50 Alpha=0.75 Alpha=1.00

Figure 2: We show the cumulative reward obtained by PA-MCTS, standard MCTS (𝛼 = 0), and DQN (𝛼 = 1) for different environmental changes.
Note that as the environment changes, DQN achieves close to 0 rewards. PA-MCTS outperforms both baseline approaches.

Figure 3: We show the optimal 𝛼 for varying MCTS iterations and
environmental conditions.

k8 d8 kyy8y Ryy jyy
y

8yy

Ryyy

R8yy

kyyy

k8yy

Ai2`�iBQMb

*
mK

mH
�i

Bp
2

_
2r

�`
/

S�@J*ha ;`�pBiv4NX3- �HT?�4yXy

k8 d8 kyy8y Ryy jyy
Ai2`�iBQMb

S�@J*ha ;`�pBiv4NX3- �HT?�4RXy

k8 8y d8 Ryy kyy jyy
Ai2`�iBQMb

�HT?�x2`Q

k8 d8 kyy8y Ryy jyy
Ai2`�iBQMb

S�@J*ha ;`�pBiv4NX3- �HT?�4RXy

8y Ryy jyyd8 kyyk8
y

8yy

Ryyy

R8yy

kyyy

k8yy

Ai2`�iBQMb

*
mK

mH
�i

Bp
2

_
2r

�`
/

S�@J*ha ;`�pBiv4kyXy- �HT?�4yXy

8y Ryy jyyd8 kyyk8
Ai2`�iBQMb

S�@J*ha ;`�pBiv4kyXy- �HT?�4RXy

k8 8y d8 Ryy kyy jyy
Ai2`�iBQMb

�HT?�x2`Q

k8 d8 jyy8y Ryy kyy
Ai2`�iBQMb

S�@J*ha ;`�pBiv4kyXy- �HT?�4yXd8

d8 kyyk8 8y Ryy jyy
y

8yy

Ryyy

R8yy

kyyy

k8yy

Ai2`�iBQMb

*
mK

mH
�i

Bp
2

_
2r

�`
/

S�@J*ha ;`�pBiv48yXy- �HT?�4yXy

k8 8y d8 kyy jyyRyy
Ai2`�iBQMb

S�@J*ha ;`�pBiv48yXy- �HT?�4RXy

k8 8y d8 Ryy kyy jyy
Ai2`�iBQMb

�HT?�x2`Q

8y Ryy jyyd8 kyyk8
Ai2`�iBQMb

S�@J*ha ;`�pBiv48yXy- �HT?�4yX8

8y Ryy jyyd8k8 kyy
y

8yy

Ryyy

R8yy

kyyy

k8yy

Ai2`�iBQMb

*
mK

mH
�i

Bp
2

_
2r

�`
/

S�@J*ha ;`�pBiv48yyXy- �HT?�4yXk8

k8 8y d8 Ryy kyy jyy
Ai2`�iBQMb

�HT?�x2`Q

k8 8y Ryy jyyd8 kyy
Ai2`�iBQMb

S�@J*ha ;`�pBiv48yyXy- �HT?�4yXy

8y Ryy jyyd8 kyyk8
Ai2`�iBQMb

S�@J*ha ;`�pBiv48yyXy- �HT?�4RXy

MQBb24y MQBb24yXR MQBb24RXy MQBb24RyXy

Figure 4: The performance of PA-MCTS and AlphaZero under vary-
ing levels of noise with 𝑔 = 500m/s2. PA-MCTS outperforms Alp-
haZero in most settings.

given the updated environment. We show that it is significantly

faster to run PA-MCTS than re-training DDQN or AlphaZero.

Noisy settings: In practice, it is difficult to update the environmen-

tal model to reflect the exact changes in the non-stationary envi-

ronment. While the generative models can be updated online using

updated sensor measurements, such measurements can be noisy,

thereby resulting in a noisy model. To simulate such conditions,

we repeat the entire pipeline by adding noise in the updated envi-

ronmental model, e.g., the agent perceives that 𝑔 = 𝑔true ± N(0, 𝜎),
(where N denotes a Gaussian distribution) for different values of

𝜎 . Note that during execution, the agent must operate under 𝑔true,

thereby making this situation particularly challenging. We show

extensive results for this setting in the appendix but present the key

results in Fig. 4. We see that even under noisy settings, PA-MCTS is

able to leverage the old policy and outperforms AlphaZero (it also

outperforms standard MCTS and DDQN by a large margin, which

we show in the appendix).

5 RELATEDWORK
Sequential decision-making in non-stationary environments has

been studied from several perspectives. Satia and Lave Jr [21] and

White III and Eldeib [28] consider transition matrices constrained

within a pre-specified polytope. One of the earliest works in this

domain, by Satia and Lave [21], constrains the state transition func-

tion among a set of predefined distributions. White and Eldeib [28]

consider imprecise transition probabilities by representing the tran-

sition function by a finite set of linear inequalities. In both formu-

lations, the transition matrix is constrained within a pre-specified

polytope. However, as pointed out by Iyengar [10], they do not

Method Iterations Execution Time (in seconds)

PA-MCTS 5 2.57

PA-MCTS 10 4.35

PA-MCTS 15 3.51

PA-MCTS 25 9.60

PA-MCTS 50 25.50

PA-MCTS 100 48.73

PA-MCTS 200 100.0

PA-MCTS 300 248.8

Re-Train DQN 200,000 steps 430.0

Re-Train AlphaZero NA 31,800

Table 2: We show the computation time for running PA-MCTS (with
𝛼-selection and re-training DQN and AlphaZero (by updating the
existing networks instead of training from scratch for a fair com-
parison). Even under these settings, we show that PA-MCTS is sig-
nificantly faster.

discuss how such polytopes can be constructed. Iyengar [10] intro-

duces the idea of robust MDPs using the concept of uncertain priors,

where the transition function can change within a set of functions

due to uncertainty. Later, Lecarpentier and Rachelson [15] intro-

duce Non-Stationary Markov Decision Processes (NSMDP), which

extend robust MDPs by allowing uncertainty in the reward model

in addition to the transition function and use a stronger Lipschitz

formulation for the set of possible transition and reward functions.

Choi et al. [7] introduce hidden-mode MDPs, which consider a

formal model for representing changes in the environment, con-

fined with a set of modes. A broader notion of non-stationarity is

introduced by Lecarpentier and Rachelson [15], who consider that

both the reward function and the transition function can change

over time and that the rate of change is bounded through Lips-

chitz continuity. Our formulation is inspired by that of Lecarpentier

and Rachelson [15]. The key difference in our formulation is the

representation of that change.

We also point out that decision-making by an agent that is trained

on one task (or environmental conditions) and subsequently pro-

vided with another task has also been explored in the domains

of transfer learning [16] and lifelong reinforcement learning [25].

However, we specifically look at settings where “learning” a new

policy is not feasible, or even when it is feasible, decisions must be

taken while the updated policy is being learned. Finally, we recog-

nize that approaches combining model-based online search with

learning methods have been explored—for example, AlphaZero in-

tegrates MCTS with a policy iteration framework [24], while the

Search with Amortized Value Estimates (SAVE) algorithm com-

bines model-free Q-learning with MCTS [9]. To the best of our

knowledge, our work is the first that develop such an approach for

non-stationary environments.

6 CONCLUSION
We explore sequential decision-making in non-stationary environ-

ments, where the decision-maker faces the dilemma of choosing

between accurate but obsolete state-action values from a learning-

based approach and unbiased but high-variance estimates from

an online search. We present a novel approach, Policy Augmented

25 50 75 100 200 300
0

1,000

2,000

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Gravity = 9.8

25 50 75 100 200 300
0

1,000

2,000

Iterations

Gravity = 20.0

25 50 75 100 200 300
0

1,000

2,000

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Gravity = 50.0

25 50 75 100 200 300
0

1,000

2,000

Iterations

Gravity = 500.0

pamcts alphazero

Figure 5: We compare PA-MCTS with 𝛼-selection with AlphaZero. While both approaches find the optimal policy, PA-MCTS converges
significantly faster.

MCTS (PA-MCTS), that combines the strengths of reinforcement

learning and online planning in non-stationary environments. We

present theoretical results characterizing the performance of MCTS,

demonstrating that there is a range of values that will work well in

practice. We also present bounds on the error accrued by following

PA-MCTS as a policy for sequential decision-making. Through ex-

tensive experiments on open-source environments, we show that

PA-MCTS outperforms the baselines in terms of performance and

convergence time.

ACKNOWLEDGMENTS
This material is based upon work sponsored by the National Science

Foundation (NSF) under Grant CNS-2238815 and by the Defense

Advanced Research Projects Agency (DARPA). We also acknowl-

edge Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not neces-

sarily reflect the views of the NSF, or the DARPA. Results presented

in this paper were obtained using the Chameleon testbed supported

by the National Science Foundation.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Turgay Ayer, Oguzhan Alagoz, and Natasha K Stout. 2012. OR Forum—A POMDP

approach to personalize mammography screening decisions. Operations Research
60, 5 (2012), 1019–1034.

[3] Maxime Bouton, Alireza Nakhaei, Kikuo Fujimura, and Mykel J Kochenderfer.

2019. Safe reinforcement learning with scene decomposition for navigating

complex urban environments. In 2019 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 1469–1476.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv preprint
arXiv:1606.01540 (2016).

[5] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. 2012. A survey of Monte Carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in Games 4, 1 (2012), 1–43.
[6] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. 2019. Non-stationary

reinforcement learning: The blessing of (more) optimism. Available at SSRN
3397818 (2019).

[7] Samuel PM Choi, Dit-Yan Yeung, and Nevin L Zhang. 2000. Hidden-mode Markov

decision processes for nonstationary sequential decision making. In Sequence
Learning. Springer, 264–287.

[8] Rémi Coulom. 2006. Efficient selectivity and backup operators in Monte-Carlo

tree search. In International Conference on Computers and Games (CG). Springer,
72–83.

[9] Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias Pfaff, Theo-

phane Weber, Lars Buesing, and Peter W Battaglia. 2019. Combining Q-Learning

and Search with Amortized Value Estimates. In International Conference on Learn-
ing Representations.

[10] Garud N Iyengar. 2005. Robust dynamic programming. Mathematics of Operations
Research 30, 2 (2005), 257–280.

[11] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,

Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,

Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons

Learned from the Chameleon Testbed. In USENIX Annual Technical Conference.
USENIX Association.

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[13] Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. 2022. Algorithms for

decision making. MIT Press.

[14] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based Monte-Carlo planning.

In 17th European Conference on Machine Learning (ECML). Springer, 282–293.
[15] Erwan Lecarpentier and Emmanuel Rachelson. 2019. Non-stationary Markov

decision processes, a worst-case approach using model-based reinforcement

learning. Advances in Neural Information Processing Systems 32 (2019), 7216–

7225.

[16] Leandro L Minku. 2019. Transfer learning in non-stationary environments. In

Learning from Data Streams in Evolving Environments. Springer, 13–37.
[17] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and

Yevgeniy Vorobeychik. 2019. An online decision-theoretic pipeline for responder

dispatch. In ACM/IEEE International Conference on Cyber-Physical Systems. 185–
196.

[18] Ayan Mukhopadhyay, Zilin Wang, and Yevgeniy Vorobeychik. 2018. A deci-

sion theoretic framework for emergency responder dispatch. In Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 588–596.

[19] Ronald Ortner, Pratik Gajane, and Peter Auer. 2020. Variational regret bounds for

reinforcement learning. In 35th Uncertainty in Artificial Intelligence Conference,
Vol. 115. 81–90.

[20] Geoffrey Pettet, Ayan Mukhopadhyay, Mykel J. Kochenderfer, and Abhishek

Dubey. 2021. Hierarchical Planning for Dynamic Resource Allocation in Smart

and Connected Communities. ACMTransactions on Cyber-Physical Systems (2021).
arXiv:2107.01292 [cs.MA]

[21] Jay K Satia and Roy E Lave Jr. 1973. Markovian decision processes with uncertain

transition probabilities. Operations Research 21, 3 (1973), 728–740.

[22] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, et al. 2016. Mastering

the game of Go with deep neural networks and tree search. Nature 529, 7587
(Jan. 2016), 484–489.

[23] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-

pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general

reinforcement learning algorithm that masters chess, shogi, and Go through self-

play. Science 362, 6419 (2018), 1140–1144. https://doi.org/10.1126/science.aar6404
arXiv:https://www.science.org/doi/pdf/10.1126/science.aar6404

[24] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-

pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general

reinforcement learning algorithm that masters chess, shogi, and Go through

self-play. Science 362, 6419 (2018), 1140–1144.
[25] Daniel L Silver, Qiang Yang, and Lianghao Li. 2013. Lifelong machine learning

systems: Beyond learning algorithms. In 2013 AAAI Spring Symposium Series.
49–55.

[26] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement

learning with double Q-learning. In 30th AAAI Conference on Artificial Intelligence
(AAAI), Vol. 30. 2094–2100.

[27] Guido Van Rossum and Fred L Drake Jr. 1995. Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam.

[28] Chelsea C White III and Hany K Eldeib. 1994. Markov decision processes with

imprecise transition probabilities. Operations Research 42, 4 (1994), 739–749.

[29] Kyle Hollins Wray. 2019. Abstractions in reasoning for long-term autonomy. Ph.D.
Dissertation. University of Massachusetts Libraries.

https://www.tensorflow.org/
https://arxiv.org/abs/2107.01292
https://doi.org/10.1126/science.aar6404
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aar6404

Appendices

A EXTENDED THEORETICAL ANALYSIS
This appendix contains detailed proofs for each of the theorems, propositions, and corollaries described in Section 4.2 of the main text.

Theorem1. If ∀𝑠, 𝑎 : ∑𝑠′∈𝑆 |𝑃𝑡 (𝑠′ | 𝑎, 𝑠) − 𝑃0 (𝑠′ | 𝑎, 𝑠) | ≤ 𝜂,∀𝑠, 𝑎 : |𝑟 (𝑠, 𝑎) | ≤ 𝑅, and the discount factor𝛾 < 1, then |𝑄𝜋∗
0

0
(𝑠, 𝑎)−𝑄𝜋∗

𝑡

𝑡 (𝑠, 𝑎) | ≤
𝜖 ∀𝑠, 𝑎, where 𝜖 =

𝛾 ·𝜂 ·𝑅
(1−𝛾)2 .

Proof. Our goal is to find an upper bound 𝜖 on the difference between the action values before a change in the environment’s transition

probabilities and after, i.e.:

∀𝑠, 𝑎 :

��𝑄 ′ (𝑠, 𝑎) −𝑄 (𝑠, 𝑎)
�� ≤ 𝜖

where 𝑄 compactly represents the action-value function in the original environment using an optimal policy (i.e., 𝑄 := 𝑄
𝜋∗
0

0
) and 𝑄 ′

represents the action-value function in an updated environment at time step 𝑡 ∈ T (i.e., 𝑄 ′
:= 𝑄

𝜋∗
𝑡

𝑡).

Let 𝑉𝑛 (𝑠) be the value of state 𝑠 if we terminate the environment after 𝑛 steps (following the optimal policy until step 𝑛). Similarly, let

𝑄𝑛 (𝑠, 𝑎) be the 𝑄 (𝑠, 𝑎) if we terminate the environment after 𝑛 steps.

For 𝑛 = 1, |𝑉 ′
𝑛 (𝑠) −𝑉𝑛 (𝑠) | = 0 and |𝑄 ′

𝑛 (𝑠, 𝑎) −𝑄𝑛 (𝑠, 𝑎) | = 0, since we can assume immediate rewards are the same.

Let 𝜅𝑛−1 = max𝑠 |𝑉 ′
𝑛−1 (𝑠) −𝑉𝑛−1 (𝑠) | (i.e., 𝜅𝑛−1 is the upper bound in the difference of the value).

For an arbitrary 𝑛, we can bound the action-value function 𝑄 as follows

��𝑄 ′
𝑛 (𝑠, 𝑎) − 𝑄𝑛 (𝑠, 𝑎)

�� = �����
[
𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) · 𝑉 ′
𝑛−1 (𝑠′)

]
−
[
𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′

𝑇 (𝑠, 𝑎, 𝑠′) · 𝑉𝑛−1 (𝑠′)
] �����

= 𝛾

�����∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) · 𝑉 ′
𝑛−1 (𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′) · 𝑉𝑛−1 (𝑠′)

�����
= 𝛾

�����∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) ·
(
𝑉 ′
𝑛−1 (𝑠′) − 𝑉𝑛−1 (𝑠′)

)
+𝑇 ′ (𝑠, 𝑎, 𝑠′) · 𝑉𝑛−1 (𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′) · 𝑉𝑛−1 (𝑠′)

�����
= 𝛾

�����∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) ·
(
𝑉 ′
𝑛−1 (𝑠′) − 𝑉𝑛−1 (𝑠′)

)
+𝑉𝑛−1 (𝑠′) ·

(
𝑇 ′ (𝑠, 𝑎, 𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′)

) �����
= 𝛾

�����∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) ·
(
𝑉 ′
𝑛−1 (𝑠′) − 𝑉𝑛−1 (𝑠′)

)
+
∑︁
𝑠′

𝑉𝑛−1 (𝑠′) ·
(
𝑇 ′ (𝑠, 𝑎, 𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′)

) �����
≤ 𝛾

�����∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) ·
(
𝑉 ′
𝑛−1 (𝑠′) − 𝑉𝑛−1 (𝑠′)

) ����� + 𝛾
�����∑︁
𝑠′

𝑉𝑛−1 (𝑠′) ·
(
𝑇 ′ (𝑠, 𝑎, 𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′)

) �����
≤ 𝛾

∑︁
𝑠′

��𝑇 ′ (𝑠, 𝑎, 𝑠′) ·
(
𝑉 ′
𝑛−1 (𝑠′) − 𝑉𝑛−1 (𝑠′)

) �� + 𝛾 ∑︁
𝑠′

��𝑉𝑛−1 (𝑠′) · (𝑇 ′ (𝑠, 𝑎, 𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′)
) ��

= 𝛾
∑︁
𝑠′

��𝑇 ′ (𝑠, 𝑎, 𝑠′)
�� · ��𝑉 ′

𝑛−1 (𝑠′) − 𝑉𝑛−1 (𝑠′)
�� + 𝛾 ∑︁

𝑠′

��𝑉𝑛−1 (𝑠′) �� · ��𝑇 ′ (𝑠, 𝑎, 𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′)
��

≤ 𝛾
∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) · 𝜅𝑛−1 + 𝛾
∑︁
𝑠′

𝑅

1 − 𝛾
·
��𝑇 ′ (𝑠, 𝑎, 𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′)

��
= 𝛾 · 𝜅𝑛−1

∑︁
𝑠′

𝑇 ′ (𝑠, 𝑎, 𝑠′) + 𝛾 𝑅

1 − 𝛾

∑︁
𝑠′

��𝑇 ′ (𝑠, 𝑎, 𝑠′) − 𝑇 (𝑠, 𝑎, 𝑠′)
��

≤ 𝛾 · 𝜅𝑛−1 · 1 + 𝛾
𝑅

1 − 𝛾
𝜖

= 𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]

We can also bound the value function 𝑉 . First, assume that 𝑉 ′
𝑛 (𝑠) ≥ 𝑉𝑛 (𝑠), then for an arbitrary 𝑛, we have��𝑉 ′

𝑛 (𝑠) −𝑉𝑛 (𝑠)
�� = 𝑉 ′

𝑛 (𝑠) −𝑉𝑛 (𝑠)
= max

𝑎
𝑄 ′
𝑛 (𝑠, 𝑎) −max

𝑎
𝑄𝑛 (𝑠, 𝑎)

= max

𝑎

[
𝑄 ′
𝑛 (𝑠, 𝑎) −𝑄𝑛 (𝑠, 𝑎) +𝑄𝑛 (𝑠, 𝑎)

]
−max

𝑎
𝑄𝑛 (𝑠, 𝑎)

≤ max

𝑎

[
𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]
+𝑄𝑛 (𝑠, 𝑎)

]
−max

𝑎
𝑄𝑛 (𝑠, 𝑎)

= 𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]
+max

𝑎
𝑄𝑛 (𝑠, 𝑎) −max

𝑎
𝑄𝑛 (𝑠, 𝑎)

≤ 𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]
Second, assume that 𝑉 ′

𝑛 (𝑠) < 𝑉𝑛 (𝑠), then for an arbitrary 𝑛, we have��𝑉 ′
𝑛 (𝑠) −𝑉𝑛 (𝑠)

�� = 𝑉𝑛 (𝑠) −𝑉 ′
𝑛 (𝑠)

= max

𝑎
𝑄𝑛 (𝑠, 𝑎) −max

𝑎
𝑄 ′
𝑛 (𝑠, 𝑎)

= max

𝑎
𝑄𝑛 (𝑠, 𝑎) −max

𝑎

[
𝑄 ′
𝑛 (𝑠, 𝑎) −𝑄𝑛 (𝑠, 𝑎) +𝑄𝑛 (𝑠, 𝑎)

]
≤ max

𝑎
𝑄𝑛 (𝑠, 𝑎) −max

𝑎

[
−𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]
+𝑄𝑛 (𝑠, 𝑎)

]
= max

𝑎
𝑄𝑛 (𝑠, 𝑎) + 𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]
−max

𝑎
𝑄𝑛 (𝑠, 𝑎)

≤ 𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]
Thus, |𝑉 ′

𝑛 (𝑠) −𝑉𝑛 (𝑠) | ≤ 𝛾

[
𝜖 𝑅
1−𝛾 + 𝜅𝑛−1

]
in both cases.

Therefore,

𝜅𝑛 ≤ 𝛾

[
𝜖

𝑅

1 − 𝛾
+ 𝜅𝑛−1

]
𝜅𝑛 ≤ 𝛾

(
𝜖

𝑅

1 − 𝛾
+ 𝛾

(
𝜖

𝑅

1 − 𝛾
+ 𝛾

(
𝜖

𝑅

1 − 𝛾
+ . . .

)))
︸ ︷︷ ︸

𝑛 terms, plus 𝜅0=0

Hence,

𝜅𝑛 ≤
𝑛∑︁
𝑖=1

𝛾𝑖𝜖
𝑅

1 − 𝛾

= 𝛾 · 𝜖 𝑅

1 − 𝛾

𝑛−1∑︁
𝑖=0

𝛾𝑖

≤ 𝛾 · 𝜖 𝑅

1 − 𝛾

∞∑︁
𝑖=0

𝛾𝑖

= 𝛾 · 𝜖 𝑅

1 − 𝛾
· 1

1 − 𝛾

=
𝛾 · 𝜖 · 𝑅
(1 − 𝛾)2

□

Theorem 2. If 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓𝑡

2
, PA-MCTS is guaranteed to select the optimal action at time step 𝑡 .

Proof. PA-MCTS is guaranteed to select the optimal action when the following inequality holds:

𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎′𝑡) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎′𝑡) ≤ 𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎∗𝑡) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎∗𝑡) (3)

Recall that 𝛿 denotes the bound on the error of the values estimated by MCTS when it is stopped, i.e., |𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝐺𝑡 (𝑠, 𝑎) |∞ ≤ 𝛿 ∀ 𝑡 ∈ T .

Using this definition and Theorem 1, 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) can be bounded with respect to the estimates 𝑄
𝜋∗
0

0
(𝑠, 𝑎) and 𝐺𝑡 (𝑠, 𝑎):

𝑄
𝜋∗
0

0
(𝑠, 𝑎) − 𝜖 ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) ≤ 𝑄
𝜋∗
0

0
(𝑠, 𝑎) + 𝜖

𝐺𝑡 (𝑠, 𝑎) − 𝛿 ≤ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) ≤ 𝐺𝑡 (𝑠, 𝑎) + 𝛿

(4)

By substituting 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) for 𝑄𝜋∗
0

0
and 𝐺𝑡 in Eq. (3) by using inequalities in Eq. (4) and rearranging, we can find the conditions under

which PA-MCTS chooses the optimal action (recall that𝜓𝑡 (𝑠) := 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡)):

𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎′𝑡) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎′𝑡) ≤ 𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎∗𝑡) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎∗𝑡)

⇒ 𝛼 (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) + 𝜖) + (1 − 𝛼) (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) + 𝛿) ≤ 𝛼 (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) − 𝜖) + (1 − 𝛼) (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) − 𝛿)

⇒ 2(𝛼𝜖 + (1 − 𝛼)𝛿) ≤ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡)
⇒ 2(𝛼𝜖 + (1 − 𝛼)𝛿) ≤ 𝜓𝑡

⇒ 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓𝑡

2

□

Corollary 2.1.𝜓𝑡 ≤ 𝜓0 + 2𝜖

Proof. It is important to note that the optimal and second best actions with respect to𝑄
𝜋∗
0

0
and𝑄

𝜋∗
𝑡

𝑡 may not be the same, i.e., it is possible

that 𝑎∗
0
≠ 𝑎∗𝑡 and 𝑎

′
0
≠ 𝑎′𝑡 . There exist the following cases depending on the relationship between 𝑎′

0
and 𝑎′𝑡 :

• If 𝑎′
0
= 𝑎′𝑡 , we first upper bound 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡). We know that for any action 𝑎 ∈ A

𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) ≤ 𝑄
𝜋∗
0

0
(𝑠, 𝑎∗

0
) + 𝜖

Therefore,

𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) ≤ 𝑄
𝜋∗
0

0
(𝑠, 𝑎∗

0
) + 𝜖 (5)

We can then simply use the definition of 𝜖 to lower bound 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) :

𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) ≥ 𝑄
𝜋∗
0

0
(𝑠, 𝑎′

0
) − 𝜖 (6)

Finally, by combining Eq. (5) and Eq. (6), we can upper bound𝜓𝑡

𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) ≤ (𝑄𝜋∗
0

0
(𝑠, 𝑎∗

0
) + 𝜖) − (𝑄𝜋∗

0

0
(𝑠, 𝑎′

0
) − 𝜖)

⇒ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) ≤ 𝑄
𝜋∗
0

0
(𝑠, 𝑎∗

0
) −𝑄

𝜋∗
0

0
(𝑠, 𝑎′

0
) + 2𝜖

⇒ 𝜓𝑡 ≤ 𝜓0 + 2𝜖

• If 𝑎′
0
= 𝑎∗𝑡 , i.e., the second best action at time step 0 became the optimal action at time step 𝑡 , then this implies that 𝑎∗

0
≠ 𝑎∗𝑡 . This

implies:

𝜓𝑡 ≤ 2𝜖

as it would otherwise be impossible for the optimal action at timestep 0 to become sub-optimal at timestep 𝑡 . Since𝜓0 is positive by

definition, this implies that𝜓𝑡 ≤ 𝜓0 + 2𝜖

• If 𝑎′
0
∉ {𝑎∗𝑡 , 𝑎′𝑡 }, then it follows from the definition of 𝑎′𝑡 that 𝑄

𝜋∗
0

0
(𝑠, 𝑎′𝑡) ≤ 𝑄

𝜋∗
0

0
(𝑠, 𝑎′

0
) and 𝑄𝜋∗

𝑡

𝑡 (𝑠, 𝑎′𝑡) ≥ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′
0
).

Let us assume that 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) < 𝑄
𝜋∗
0

0
(𝑠, 𝑎′

0
) − 𝜖 . Then, by substituting 𝑄

𝜋∗
0

0
(𝑠, 𝑎′

0
) − 𝜖 for 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎′
0
) using Eq. (4), this implies that

𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) < 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎′
0
). This is a contradiction given the above inequalities. Therefore, through proof by contradiction, 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎′𝑡) ≥
𝑄
𝜋∗
0

0
(𝑠, 𝑎′

0
) − 𝜖 . Similar to the 𝑎′

0
= 𝑎′𝑡 case above, we can combine this with the upper bound in Eq. (5) to find that

𝜓𝑡 ≤ 2𝜖

In each case,𝜓𝑡 ≤ 2𝜖 . □

Corollary 2.2. If 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓0

2
+ 𝜖 , PA-MCTS is guaranteed to select the optimal action at decision epoch 𝑡 .

Proof. Using Corollary 2.1, we substitute𝜓𝑡 in terms of𝜓0 in Theorem 2.

𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓𝑡

2

⇒ 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓0 + 2𝜖

2

⇒ 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓0

2

+ 𝜖

□

Corollary 2.3. PA-MCTS will choose the optimal one-step action if{ −𝛿
𝜖−𝛿 ≤ 𝛼 ≤ 𝜓0

2(𝜖−𝛿) + 1 if 𝜖 > 𝛿

−𝛿
𝜖−𝛿 ≥ 𝛼 ≥ 𝜓0

2(𝜖−𝛿) + 1 if 𝜖 < 𝛿 .

Proof. Using 0 ≤ 𝛼 ≤ 1, Corollary 2.2 can be rearranged to solve for 𝛼 :

0 ≤ 𝛼𝜖 + (1 − 𝛼)𝛿 ≤ 𝜓0

2

+ 𝜖

⇒ 0 ≤ 𝛼𝜖 − 𝛼𝛿 + 𝛿 ≤ 𝜓0

2

+ 𝜖

⇒ − 𝛿 ≤ 𝛼𝜖 − 𝛼𝛿 ≤ 𝜓0

2

+ 𝜖 − 𝛿

⇒
{ −𝛿
𝜖−𝛿 ≤ 𝛼 ≤ 𝜓0

2(𝜖−𝛿) + 1 if 𝜖 > 𝛿

−𝛿
𝜖−𝛿 ≥ 𝛼 ≥ 𝜓0

2(𝜖−𝛿) + 1 if 𝜖 < 𝛿 .

□

Proposition 1. If PA-MCTS and MCTS choose different actions, PA-MCTS’s chosen action will have a higher 𝑄𝜋∗
𝑡

𝑡 value than MCTS

if 2𝜖 ≤ 𝜁𝑚𝑡 , where7 𝜁𝑚𝑡 := (𝑄𝜋∗
0

0
(𝑠, 𝑎) + 𝐺𝑡 (𝑠, 𝑎)) − (𝑄𝜋∗

0

0
(𝑠, 𝑎𝑚) + 𝐺𝑡 (𝑠, 𝑎𝑚)), 𝑎 := argmax𝑎∈A𝑠

𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎), and

𝑎𝑚 := argmax𝑎∈A𝑠
𝐺𝑡 (𝑠, 𝑎).

Proof. PA-MCTS’s chosen action 𝑎 has a higher 𝑄
𝜋∗
𝑡

𝑡 value than MCTS’s chosen action 𝑎𝑚 when

0 ≤ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑚) (7)

If PA-MCTS and MCTS choose different actions, then it must be that𝐺𝑡 (𝑠, 𝑎𝑚) ≥ 𝐺𝑡 (𝑠, 𝑎) and 𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎𝑚) + (1−𝛼)𝐺𝑡 (𝑠, 𝑎𝑚) ≤ 𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎) +

(1 − 𝛼)𝐺𝑡 (𝑠, 𝑎). Then, we can bound 𝑄
𝜋∗
𝑡

𝑡 with respect to 𝑄
𝜋∗
0

0
and 𝜖 :

𝑄
𝜋∗
0

0
(𝑠, 𝑎) −𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑚) − 2𝜖 ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑚)

Next, we rewrite this bound in terms of 𝜁𝑚𝑡 and 𝜖 :

𝑄
𝜋∗
0

0
(𝑠, 𝑎) −𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑚) − 2𝜖 ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑚)

⇒ 𝑄
𝜋∗
0

0
(𝑠, 𝑎) −𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑚) − 2𝜖 +𝐺𝑡 (𝑠, 𝑎𝑚) −𝐺𝑡 (𝑠, 𝑎𝑚) ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑚) (8)

⇒ 𝑄
𝜋∗
0

0
(𝑠, 𝑎) −𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑚) − 2𝜖 +𝐺𝑡 (𝑠, 𝑎) −𝐺𝑡 (𝑠, 𝑎𝑚) ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑚) (9)

⇒ (𝑄𝜋∗
0

0
(𝑠, 𝑎) +𝐺𝑡 (𝑠, 𝑎)) − (𝑄𝜋∗

0

0
(𝑠, 𝑎𝑚) +𝐺𝑡 (𝑠, 𝑎𝑚)) − 2𝜖 ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑚) (10)

⇒ 𝜁𝑚𝑡 − 2𝜖 ≤ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑚)

where in Eq. (8) we add and subtract𝐺𝑡 (𝑠, 𝑎𝑚) to the left hand side, in Eq. (9) we use𝐺𝑡 (𝑠, 𝑎𝑚) ≥ 𝐺𝑡 (𝑠, 𝑎) to substitute𝐺𝑡 (𝑠, 𝑎) for𝐺𝑡 (𝑠, 𝑎𝑚),
and in Eq. (10) we rearrange the left hand side.

Therefore, it follows from Eq. (7) that PA-MCTS chooses an action with higher 𝑄
𝜋∗
𝑡

𝑡 value when 0 < 𝜁𝑚𝑡 − 2𝜖 , i.e., 2𝜖 ≤ 𝜁𝑚𝑡 . □

7
The superscript𝑚 in 𝜁𝑚𝑡 represents the bounds with respect to MCTS and is not an index.

Proposition 2. If the action 𝑎 chosen by PA-MCTS is different than 𝑎𝑔 := argmax𝑎∈A𝑠
𝑄
𝜋∗
0

0
(𝑠, 𝑎) at state 𝑠 , then PA-MCTS’s chosen

action 𝑎 will have a higher 𝑄𝜋∗
𝑡

𝑡 value than action 𝑎𝑔 if 2𝛿 ≤ 𝜁
𝑞
𝑡 where8 𝜁

𝑞
𝑡 := (𝑄𝜋∗

0

0
(𝑠, 𝑎) + 𝐺𝑡 (𝑠, 𝑎)) − (𝑄𝜋∗

0

0
(𝑠, 𝑎𝑔) + 𝐺𝑡 (𝑠, 𝑎𝑔)), 𝑎 :=

argmax𝑎∈A𝑠
𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎), and 𝑎𝑔 := argmax𝑎∈A𝑠

𝑄
𝜋∗
0

0
(𝑠, 𝑎).

Proof. PA-MCTS’s chosen action 𝑎 has a higher 𝑄
𝜋∗
𝑡

𝑡 value than the action selected through 𝑄
𝜋∗
0

0
-values 𝑎𝑔 when

0 ≤ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑔) (11)

If PA-MCTS and action selection through𝑄
𝜋∗
0

0
-values choose different actions, then it must be that𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑔) ≥ 𝑄

𝜋∗
0

0
(𝑠, 𝑎) and 𝛼𝑄𝜋∗

0

0
(𝑠, 𝑎𝑔)+

(1 − 𝛼)𝐺𝑡 (𝑠, 𝑎𝑔) ≤ 𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎). Then, we can bound 𝑄

𝜋∗
𝑡

𝑡 with respect to 𝐺𝑡 and 𝛿 :

𝐺𝑡 (𝑠, 𝑎) −𝐺𝑡 (𝑠, 𝑎𝑔) − 2𝛿 ≤ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑔)

Next, we can rewrite this bound in terms of 𝜁
𝑞
𝑡 and 𝛿 :

𝐺𝑡 (𝑠, 𝑎) −𝐺𝑡 (𝑠, 𝑎𝑔) − 2𝛿 ≤ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑔)

⇒ 𝐺𝑡 (𝑠, 𝑎) −𝐺𝑡 (𝑠, 𝑎𝑔) − 2𝛿 +𝑄𝜋∗
0

0
(𝑠, 𝑎𝑔) −𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑔) ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑔) (12)

⇒ 𝐺𝑡 (𝑠, 𝑎) −𝐺𝑡 (𝑠, 𝑎𝑔) − 2𝛿 +𝑄𝜋∗
0

0
(𝑠, 𝑎) −𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑔) ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑔) (13)

⇒ (𝑄𝜋∗
0

0
(𝑠, 𝑎) +𝐺𝑡 (𝑠, 𝑎)) − (𝑄𝜋∗

0

0
(𝑠, 𝑎𝑔) +𝐺𝑡 (𝑠, 𝑎𝑔)) − 2𝛿 ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑔) (14)

⇒ 𝜁
𝑔
𝑡 − 2𝛿 ≤ 𝑄

𝜋∗
𝑡

𝑡 (𝑠, 𝑎) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎𝑔)

where in Eq. (12) we introduce 𝑄
𝜋∗
0

0
(𝑠, 𝑎𝑔) by adding zero to the left hand side, in Eq. (13) we use 𝑄

𝜋∗
0

0
(𝑠, 𝑎𝑔) ≥ 𝑄

𝜋∗
0

0
(𝑠, 𝑎) to substitute

𝑄
𝜋∗
0

0
(𝑠, 𝑎) for 𝑄𝜋∗

0

0
(𝑠, 𝑎𝑔), and in Eq. (14) we rearrange the left hand side.

Therefore, it follows from Eq. (11) that PA-MCTS chooses an action with higher 𝑄
𝜋∗
𝑡

𝑡 value when 0 < 𝜁
𝑔
𝑡 − 2𝛿 , i.e., 2𝛿 ≤ 𝜁

𝑔
𝑡 . □

Theorem 3. When PA-MCTS is used for sequential decision making, the maximum difference between the return from an optimal policy and
the return from following PA-MCTS is at most 2(𝛼𝜖−𝛼𝛿+𝛿)

1−𝛾 .

Proof. The proof closely follows prior work by Wray [29]. Let A′
𝑠 denote the set of actions that can be taken by PA-MCTS in state 𝑠 at

any decision epoch. Given 𝜖 , 𝛿 , and 𝑎 ∈ A′
𝑠 , it must be that

𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎) ≥ 𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎∗𝑡) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎∗𝑡) (15)

for 𝑎 to be chosen by PA-MCTS. We can substitute 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) for 𝑄𝜋∗
0

0
and 𝐺𝑡 in Eq. (15) to get

𝛼𝑄
𝜋∗
0

0
(𝑠, 𝑎) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎) ≥ 𝛼𝑄

𝜋∗
0

0
(𝑠, 𝑎∗𝑡) + (1 − 𝛼)𝐺𝑡 (𝑠, 𝑎∗𝑡)

⇒ 𝛼 (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎) + 𝜖) + (1 − 𝛼) (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎) + 𝛿) ≥ 𝛼 (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) − 𝜖) + (1 − 𝛼) (𝑄𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) − 𝛿)

⇒ 2(𝛼𝜖 + (1 − 𝛼)𝛿) ≥ 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎∗𝑡) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎)

⇒ 2(𝛼𝜖 + (1 − 𝛼)𝛿) ≥ 𝑉
𝜋∗
𝑡

𝑡 (𝑠) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎)
where

𝑉 𝜋
𝑡 (𝑠) = 𝑅𝑡 (𝑠, 𝜋 (𝑠)) + 𝛾

∑︁
𝑠′∈S

𝑃𝑡 (𝑠′ |𝑠, 𝑎)𝑉 𝜋 (𝑠′) (16)

where 𝑅𝑡 (𝑠, 𝑎) is the reward for taking action 𝑎 at 𝑠 at time step 𝑡 , 𝜋 (𝑠) is policy 𝜋 ’s distribution over actions given 𝑠 , 𝛾 is discount factor, and

𝑃𝑡 (𝑠′ |𝑠, 𝑎) is the probability of reaching state 𝑠′ when taking 𝑎 at 𝑠 at time step 𝑡 . From Eq. (16), the optimal value function can be expressed

as 𝑉
𝜋∗
𝑡

𝑡 (𝑠) = argmax𝑎 𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎).
Therefore

A′
𝑠 = {𝑎 ∈ A𝑠 |𝑉

𝜋∗
𝑡

𝑡 (𝑠) −𝑄
𝜋∗
𝑡

𝑡 (𝑠, 𝑎) ≤ 2(𝛼𝜖 + (1 − 𝛼)𝛿)}

Now, let 𝑉
�̃�,𝑘
𝑡 (𝑠) be 𝑘 applications of Eq. (16) following PA-MCTS’s policy �̃� , i.e., �̃� ∈ Π′

where Π′ = {𝜋 |𝜋 (𝑠) ∈ A′
𝑠 ,∀𝑠 ∈ S}. Also let

𝑄
𝜋∗
𝑡 ,𝑘

𝑡 (𝑠, �̃� (𝑠)) be a one-step action deviation following �̃� , after which an optimal policy 𝜋∗𝑡 is followed for the remaining 𝑘 − 1 iterations.

8
Again, the superscript 𝑞 only denotes bounds with respect to the𝑄-values and is not an index.

Next, we show that for any state 𝑠 ∈ S:

𝑉
�̃�,𝑘
𝑡 (𝑠) ≥ 𝑉

𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) −
𝑘∑︁

𝜏=0

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿) (17)

by induction on 𝑘 iterations of Eq. (16).

Base Case: At 𝑘 = 0, by the definition of �̃� (𝑠) ∈ A′
𝑠 , we have:

𝑉
𝜋∗
𝑡 ,0

𝑡 (𝑠) −𝑄
𝜋∗
𝑡 ,0

𝑡 (𝑠, �̃� (𝑠)) ≤ 2(𝛼𝜖 + (1 − 𝛼)𝛿)

⇒ 𝑉
𝜋∗
𝑡 ,0

𝑡 (𝑠) − 𝑅𝑡 (𝑠, �̃� (𝑠)) ≤ 2(𝛼𝜖 + (1 − 𝛼)𝛿)

⇒ 𝑉
𝜋∗
𝑡 ,0

𝑡 (𝑠) −𝑉
�̃�,0
𝑡 (𝑠) ≤ 2(𝛼𝜖 + (1 − 𝛼)𝛿)

⇒ 𝑉
�̃�,0
𝑡 (𝑠) ≥ 𝑉

𝜋∗
𝑡 ,0

𝑡 (𝑠) − 2(𝛼𝜖 + (1 − 𝛼)𝛿)
Induction Step: Assume for 𝑘 − 1 the induction hypothesis:

𝑉
�̃�,𝑘−1
𝑡 (𝑠) ≥ 𝑉

𝜋∗
𝑡 ,𝑘−1

𝑡 (𝑠) −
𝑘−1∑︁
𝜏=0

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿)

is true. We now show that Eq. (17) is true for 𝑘 :

𝑉
�̃�,𝑘
𝑡 (𝑠) = 𝑅𝑡 (𝑠, �̃� (𝑠)) + 𝛾

∑︁
𝑠′∈S

𝑃𝑡 (𝑠′ |𝑠, 𝑎)𝑉 �̃�,𝑘−1 (𝑠′) (18)

⇒ 𝑉
�̃�,𝑘
𝑡 (𝑠) ≥ 𝑅𝑡 (𝑠, �̃� (𝑠)) + 𝛾

∑︁
𝑠′∈S

𝑃𝑡 (𝑠′ |𝑠, 𝑎) (𝑉 𝜋∗
𝑡 ,𝑘−1 (𝑠′) −

𝑘−1∑︁
𝜏=0

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿)) (19)

⇒ 𝑉
�̃�,𝑘
𝑡 (𝑠) ≥ (𝑅𝑡 (𝑠, �̃� (𝑠)) + 𝛾

∑︁
𝑠′∈S

𝑃𝑡 (𝑠′ |𝑠, 𝑎)𝑉 𝜋∗
𝑡 ,𝑘−1 (𝑠′)) −

𝑘−1∑︁
𝜏=0

𝛾𝜏+12(𝛼𝜖 + (1 − 𝛼)𝛿)) (20)

⇒ 𝑉
�̃�,𝑘
𝑡 (𝑠) ≥ 𝑄

𝜋∗
𝑡 ,𝑘

𝑡 (𝑠, �̃� (𝑠)) −
𝑘−1∑︁
𝜏=0

𝛾𝜏+12(𝛼𝜖 + (1 − 𝛼)𝛿)) (21)

⇒ 𝑉
�̃�,𝑘
𝑡 (𝑠) ≥ 𝑄

𝜋∗
𝑡 ,𝑘

𝑡 (𝑠, �̃� (𝑠)) −
𝑘∑︁

𝜏=1

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿))

where Eq. (18) is by Eq. (16), Eq. (19) is by the induction hypothesis, Eq. (20) is by rewriting and normalizing, and Eq. (21) is by the definition

of 𝑄
𝜋∗
𝑡 ,𝑘

𝑡 .

By the definition of A′
𝑠 , we have 𝑉

𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) − 𝑄
𝜋∗
𝑡 ,𝑘

𝑡 (𝑠, �̃� (𝑠) ≤ 2(𝛼𝜖 + (1 − 𝛼)𝛿). By rearranging this, applying to 𝑄
𝜋∗
𝑡 ,𝑘

𝑡 and grouping

2(𝛼𝜖 + (1 − 𝛼)𝛿) in the sum, we find

𝑉
�̃�,𝑘
𝑡 (𝑠) ≥ 𝑉

𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) − 2(𝛼𝜖 + (1 − 𝛼)𝛿) −
𝑡∑︁

𝜏=1

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿)

= 𝑉
𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) −
𝑡∑︁

𝜏=0

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿)

Thus, by induction on 𝑘 , we have shown that Eq. (17) is true for all 𝑘 . Finally let 𝑘 → ∞ and evaluate Eq. (17):

𝑉
�̃�,𝑘
𝑡 (𝑠) ≥ 𝑉

𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) −
𝑡∑︁

𝜏=0

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿) (22)

≥ 𝑉
𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) −
∞∑︁
𝜏=0

𝛾𝜏2(𝛼𝜖 + (1 − 𝛼)𝛿) (23)

≥ 𝑉
𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) − 2(𝛼𝜖 + (1 − 𝛼)𝛿)
1 − 𝛾

(24)

𝑉
𝜋∗
𝑡 ,𝑘

𝑡 (𝑠) −𝑉
�̃�,𝑘
𝑡 (𝑠) ≤ 2(𝛼𝜖 + (1 − 𝛼)𝛿)

1 − 𝛾
(25)

where Eq. (22) is by Eq. (17), Eq. (23) is by 𝛾 ∈ [0, 1) and 2(𝛼𝜖 + (1 − 𝛼)𝛿) ≥ 0, Eq. (24) is by geometric series, and Eq. (25) is by rearranging.

□

B EXPERIMENTAL RESULTS ON THE CARTPOLE ENVIRONMENT
In the main text, we present results on decision-making in non-stationary settings by varying the gravity parameter in the cartpole

environment. To gather more robust results, we also vary the total mass of the cartpole system by increasing the mass of the pole. We fix

gravity=9.8m/s
2
and the mass of the cart as 1kg, but we vary the mass of the pole among {0.1kg, 1.0kg, 1.2kg, 1.3kg, 1.5kg}; note that as the

mass of the pole increases, the total mass of the system under consideration (i.e., the mass of the cart and the pole) also increases. We keep

all other hyper-parameters the same as the experiments where gravity is changed (shown in the main text).

B.1 Stationary Environment
The results for the stationary Environment are the same as the stationary environment for the gravity experiments. We present the results in

the main text (Fig. 2 in the main text). We compute each result by averaging across 30 samples.

B.2 Non-Stationary Environment

25 50 75 100 200 300
0

1,000

2,000

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Mass of Pole = 1.0

25 50 75 100 200 300
0

1,000

2,000

Iterations

Mass of Pole = 1.2

25 50 75 100 200 300
0

1,000

2,000

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Mass of Pole = 1.3

25 50 75 100 200 300
0

1,000

2,000

Iterations

Mass of Pole = 1.5

Alpha=0.0 Alpha=0.25 Alpha=0.5 Alpha=0.75 Alpha=1.0

Figure 6: We show the average cumulative reward obtained by PA-MCTS, standard MCTS (𝛼 = 0) , and DDQN (𝛼 = 1) for different environmental
changes. The mass of the pole changes among {0.1kg, 1.0kg, 1.2kg, 1.3kg, 1.5kg}

We represent the non-stationary environment here by changing the mass of the pole on the cart. We show the results in Fig. 6. We vary

the mass of the pole among {0.1kg, 1.0kg, 1.2kg, 1.3kg, 1.5kg}. Each 𝛼 value used for PA-MCTS is represented by a different color. For each

setting, we vary MCTS iterations among { 25, 50, 75, 100, 200, 300 } on 30 samples (test episodes). As Fig. 6 shows, DDQN achieves maximum

reward in the stationary setting but its performance deteriorates under non-stationarity. We observe that PA-MCTS, given appropriate 𝛼 ,

achieves significantly higher reward than both standard MCTS and DDQN under non-stationary settings. Also, as we observe in the setting

where gravity is changed, PA-MCTS converges significantly faster than standard MCTS by leveraging the pre-trained policy. Finally, we

observe that all approaches (PA-MCTS, standard MCTS, and DDQN) achieve close to 0 utility when the mass of the pole is set to 1.5kg,

presumably because it is extremely difficult to balance the pole in this setting.

B.3 Choosing the Optimal 𝛼
We propose selecting 𝛼 as before, i.e., we observe how PA-MCTS performs under different computational constraints set by the number

of MCTS iterations. Again, we observe that the optimal 𝛼 for 100 MCTS iterations is well approximated (almost perfectly) by 25 MCTS

iterations. We show the results in Fig. 7.

Figure 7: Cartpole Alpha Selection Changing Mass of the Pole among 1.0kg, 1.2kg, 1.3kg, 1.5kg
.

B.4 Comparison with Alphazero
We use the proposed 𝛼-selection strategy to find the optimal alpha value for a given non-stationary setting, i.e., for each mass of the pole.

Then, we compare PA-MCTS with the optimal 𝛼 with Alphazero and present results in Fig. 8. Both AlphaZero and PA-MCTS achieve 0 utility

when mass=1.5kg. When mass=1.0kg, we see that PA-MCTS outperforms AlphaZero by converging significantly faster. When mass=1.2kg,

we see that AlphaZero slightly outperforms PA-MCTS.

25 50 75 100 200 300
0

1,000

2,000

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Mass of Pole = 1.0

25 50 75 100 200 300
0

1,000

2,000

Iterations

Mass of Pole = 1.2

PAMCTS Alphazero

Figure 8: We compare between the results of PA-MCTS with optimal alpha and the results of Alphazero

B.5 Noisy settings
We now consider the setting that in practice, it is difficult to observe the environmental change exactly. As a result, we add noise between the

environmental change and how the agent perceives the change. We introduce Gaussian noise (with 0 mean and varying standard deviation)

Figure 9: The performance of PA-MCTS and AlphaZero under varying levels of noise with mass of pole = 1.0kg, 1.2kg. PA-MCTS converges
faster than Alphazero with small MCTS iterations.

in the mass, i.e., the agent perceives a noisy mass during simulation but the true non-stationary mass is used for execution. We show the

results in Fig. 9. We observe that even under noisy settings, PA-MCTS achieves higher rewards than AlphaZero in most cases, especially

when the agent can afford low computational time for making decisions.

B.6 Hardware
The experiments were conducted on Chameleon testbed [11] on 4 Linux systems with 32-96 logical processors and 528 GB RAM.

B.7 Extensive Results for Noisy Settings Changing Gravity
In the main text, due to the space limitation, we only showed partial results for the noisy settings where gravity is changed. Here, we present

complete results (for each value of updated gravity) with noisy settings. We show the extensive comparison results between PA-MCTS,

Alphazero, Standard MCTS, and DDQN (as shown in Fig. 10). We observe that (as in the main text), PA-MCTS outperforms the baselines

even under noisy settings.

C EXPERIMENTAL RESULTS ON THE FROZENLAKE ENVIRONMENT
We also conduct experiments using the Frozenlake Environment. The goal of the agent is to travel on a slippery surface (a frozen lake) from

a pre-defined starting position to a pre-defined goal position without falling into any holes. Due to the slippery nature of the surface, the

agent does not always move in the intended direction. We introduce non-stationarity by changing the probability of moving toward the

desired direction. We vary this probability and set the probability of moving in the two perpendicular directions as equal. We represent an

environment by a tuple of three probabilities which shows the [probability to move towards the desired direction, probability to
move towards the first perpendicular direction, probability to move towards the second perpendicular direction], e.g., [1, 0, 0]
refers to the stationary setting, where the surface is not slippery and the agent moves in its desired direction with certainty (i.e., probability

of 1) and there are no chances of the agent moving in directions perpendicular to its desired direction (denoted by the two 0 entries). Given

this setting, note that we can calculate 𝜂 (the amount of change in the probability transition function as defined in the main text); 𝜂𝑚𝑖𝑛 = 0,

when there is no change, i.e., the updated environment is the same as the stationary environment ([1, 0, 0]), and 𝜂𝑚𝑎𝑥 = 1.333 when the

updated environment is denoted by [0.333, 0.333, 0.333]. We show the environments we use for testing in Table 3. We choose non-stationary

environments by uniformly sampling 𝜂 value from 𝜂𝑚𝑖𝑛 to 𝜂𝑚𝑎𝑥 . We use a 3x3 map for Frozen Lake, with position indices from 0 to 8 as

Figure 10: We compare the performance of PA-MCTS, Alphazero, Standard MCTS, DDQN for noise among 0.0, 0.1, 1, 10 with different gravity
values among 9.8𝑚/𝑠2, 20.0𝑚/𝑠2, 50.0𝑚/𝑠2, 500.0𝑚/𝑠2

.

shown in the main text. The agent starts from cell 0, the goal is set at cell 8, and there are holes in cells 1 and 6. We show a schematic of the

environment in Fig. 11.

As Table 3 shows, we choose probability distributions based upon uniformly sampling 𝜂 value from 𝜂𝑚𝑖𝑛 to 𝜂𝑚𝑎𝑥 . The map used for this

experiment is a 3x3 map, with position index from 0 to 8 and 0 is the start position, 8 is the destination, and position index 1 and 6 are holes.

A

G

H

H
0 1 2 3

0

1

2

3

Frozen Lake Scenario

Figure 11: The test environment for the FrozenLake experiments. The agent must traverse from cell (0,2) to cell (2,0) without falling into cell
(0,0) and cell (1,2). However, under slippery conditions, the agent does not always move in the desired direction.

probability distribution 𝜂

[1.0, 0.0, 0.0] 0

[0.933, 0.033, 0.033] 0.2

[0.833, 0.083, 0.083] 0.4

[0.733, 0.133, 0.133] 0.6

[0.633, 0.183, 0.183] 0.8

[0.533, 0.233, 0.233] 1.0

[0.433, 0.283, 0.283] 1.2

[0.333, 0.333, 0.333] 1.333

Table 3: Probability distribution of the testing environments and corresponding 𝜂

C.1 Stationary Environment
As described above, the stationary environment corresponds to the setting [1, 0, 0], i.e., the lake is not slippery. As we see in Fig. 12 shows,

standard MCTS, PA-MCTS (with all values of 𝛼) and DDQN can achieve maximum rewards. We compute each result by averaging across 100

samples.

C.2 Non-Stationary Environment
We also show results in non-stationary settings results in Fig. 12. We use different colors to represent different environments. We show results

for five settings in the figure to make the plot readable (the results are consistent across the other settings). Like the cartpole environment,

we observe that the performance of the DDQN deteriorates as the environment changes.

This behavior is expected, as actions that are favorable in the non-slippery setting can now lead the agent to a hole. We also see that

for most settings, PA-MCTS achieves the optimal utility. In some settings, while PA-MCTS does not achieve the highest possible utility, it

outperforms both standard MCTS and DDQN given the optimal 𝛼 (we discuss how to tune 𝛼 below).

C.3 Choosing the optimal 𝛼
As we describe in the main text, during execution, the agent needs to pick an optimal 𝛼 quickly. Similar to the cartpole environment, we

leverage the finding that the agent can approximate the performance of different values of 𝛼 by using a small number of PA-MCTS iterations.

We show the results in Fig. 13; note that PA-MCTS with 25 iterations approximates the optimal 𝛼 with 500 iterations (naturally, this approach

is not optimal; we hypothesize that the 𝛼-selection mechanism can be operated in parallel even after an initial 𝛼 is chosen, and the agent can

update the parameters over time).

C.4 Comparison with Alphazero
Finally, we use the proposed 𝛼-selection strategy to select the optimal 𝛼 value for different environment settings. Then, we compare PA-

MCTS with Alphazero. Fig. 14 shows that as the non-stationary environment deviates further and further from the stationary environment,

Alphazero performs significantly worse than PA-MCTS. We hypothesize this loss of performance is due to the fact that AlphaZero uses a

pre-trained DDQN (on the stationary environment) to simulate rollouts, whereas PA-MCTS uses actual rollouts as it grows the search tree.

25 50 100 200 500 1000 1500 2000 3000 4000 5000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [1.000’, ’0.000’, ’0.000’]

25 50 100 200 500 1000 1500 2000 3000 4000 5000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [0.833’, ’0.083’, ’0.083]

25 50 100 200 500 1000 1500 2000 3000 4000 5000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’0.633’, ’0.183’, ’0.183’]

25 50 100 200 500 1000 1500 2000 3000 4000 5000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’0.433’, ’0.283’, ’0.283’]

25 50 100 200 500 1000 1500 2000 3000 4000 5000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’0.333’, ’0.333’, ’0.333’]

Alpha=0.00 Alpha=0.25 Alpha=0.50 Alpha=0.75 Alpha=1.00

Figure 12: We show the cumulative reward obtained by PA-MCTS, standard MCTS (𝛼 = 0) , and DDQN (𝛼 = 1 for different environmental
changes.

C.5 Time Constraints
Finally, we explore the time taken to run PA-MCTS (with 𝛼-selection, i.e., the additional time to tune 𝛼 is included in the computational

time we report) in comparison with the baseline approaches. Again, we point out that for a fair comparison, we re-train both DDQN and

AlphaZero starting from the network trained on the stationary setting; we observed that this method significantly reduces the training time

Figure 13: Frozenlake Alpha Selection for different probability distributions
.

than re-training from scratch. We present the results in Table 4. Also, to be fair to the AlphaZero framework, we create 100 data generating

processes in parallel to feed into its re-training procedure (we leverage Apache Kafka to achieve this framework). For the DDQN, we use a

maximum of 1,000,000 million steps or stop the training if the network converges. For PA-MCTS, we run 𝛼-selection in parallel. As we see, it

is significantly faster to run PA-MCTS than re-training the networks.

Method Iterations Execution Time (in seconds)

PA-MCTS 5 0.001

PA-MCTS 10 0.002

PA-MCTS 15 0.005

PA-MCTS 25 0.006

PA-MCTS 50 0.007

PA-MCTS 100 0.012

PA-MCTS 200 0.029

PA-MCTS 500 0.08

PA-MCTS 1000 0.3

PA-MCTS 1500 0.41

PA-MCTS 2000 0.645

PA-MCTS 3000 0.856

Re-Train DDQN 1,000,000 steps 1865.75

Re-Train AlphaZero NA 3900

Table 4: Execution time of PA-MCTS (with 𝛼-selection) with varying MCTS iterations in comparison with DDQN and AlphaZero. We observe
that PA-MCTS is significantly faster.

C.6 Hardware
The experiments were conducted on Chameleon testbed [11] on 4 Linux systems with 32-96 logical processors and 528 GB RAM.

D EXPERIMENTAL RESULTS ON THE CLIFF WALKING ENVIRONMENT
We also conduct experiments on the CliffWalking Environment. The environment has 48 possible states. Instead of CliffWalking implemented

by OpenAI Gymnasium [4], which only has deterministic transition functions, we implement our own Cliff Walking environment, which

has stochastic transition functions (our code is available through the supplementary material). We show a schematic of the environment in

Fig. 15; cell 36 is the start position, and state 47 is defined as the goal position. States in 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, shown in brown

color in Fig. 15 are defined as cliff region. Unlike OpenAI Gymnasium version [4], our environment ends when the agent falls off to a cliff, or

the agent reaches the goal position. The agent receives a reward only if it reaches the goal position, and the corresponding reward is related

25 50 100 200 500 1000 1500 2000 3000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’1.000’, ’0.000’, ’0.000’]

25 50 100 200 500 1000 1500 2000 3000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’0.833’, ’0.083’, ’0.083’]

25 50 100 200 500 1000 1500 2000 3000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’0.633’, ’0.183’, ’0.183’]

25 50 100 200 500 1000 1500 2000 3000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’0.433’, ’0.283’, ’0.283’]

25 50 100 200 500 1000 1500 2000 3000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Prob distribution = [’0.333’, ’0.333’, ’0.333’]

pamcts alphazero

Figure 14: Comparison of PA-MCTS with Alphazero; we see that PA-MCTS comprehensively outperforms Alphazero in non-stationary settings.

to how many steps the agent takes to reach the goal position from the start position. The fewer steps the agent takes, the more reward is

received. For instance, the agent receives more reward by choosing path [36, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 47] than choosing

path [36, 24, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 23, 35, 47]. We introduce a slippery nature in this environment in the same manner as the

Frozen Lake environment, with one critical difference to account for the fact that the hill has a specific location. If the slippery factor is 0.1,

then there is a 0.1 probability that the agent goes to the cell below its current location (except when it explicitly wants to go down, in which

case it always goes down).

A GH H H H H H H H H H
0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

Cliff Walking Scenario

Figure 15: The test environment for the Cliff Walking experiments. The agent must traverse from cell (1,0) to cell (10,0) without falling into the
cliff. Under Slippery conditions, the agent does not always go in the desired direction.

25 50 75 100 200 500 1000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Slippery = 0.0

25 50 75 100 200 500 1000
0

0.5

1

Iterations

Slippery = 0.1

25 50 75 100 200 500 1000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Slippery = 0.2

25 50 75 100 200 500 1000
0

0.5

1

Iterations

Slippery = 0.3

Alpha=0.00 Alpha=0.25 Alpha=0.50 Alpha=0.75 Alpha=1.00

Figure 16: We show the cumulative reward obtained by PA-MCTS, standard MCTS (𝛼 = 0), and DDQN (𝛼 = 1) for different slippery levels among
0.0, 0.1, 0.2, 0.3

D.1 Stationary Environment
The stationary environment is defined as the slippery factor is 0, i.e. the environment is not slippery. As we see in Fig. 16, both PA-MCTS

and DDQN can achieve maximum rewards. There is some noise in the performance of standard MCTS. We believe this randomness could be

alleviated by introducing more iterations.We compute each result by averaging across 100 samples.

D.2 Non-Stationary Environment
In Fig. 16, we also show results in non-stationary settings. We use different colors to represent different 𝛼 values used for PA-MCTS. Similar

to the Frozen Lake environment, the performance of the DDQN deteriorates as the environment changes. This behavior is expected, as

actions that are favorable in the non-slippery setting can now lead the agent to the cliff region. As the surface becomes more slippery, we

observe that using standard MCTS is better than leveraging learned Q-values. Indeed, PA-MCTS selects 0 as the optimal 𝛼 , disregarding the

learned Q-values. This shows the robustness of PA-MCTS, i.e., when the learned Q-values are not useful, it reverts to a fully online search.

D.3 Choosing the optimal 𝛼
During execution, the agent needs to pick an optimal 𝛼 quickly. Similar to previous environments, we utilize the observation that the

agent can emulate the performance outcomes from various 𝛼 values by executing a limited count of PA-MCTS iterations. The outcomes

are displayed in Fig. 17. For a stationary environment, counting on DDQN could give a maximum cumulative reward. In non-stationary

environments, the selection is more biased towards 𝑎𝑙𝑝ℎ𝑎 = 0.0, as the optimal path chosen by DDQN becomes risky. Given 50 iterations,

MCTS results become more reliable.

Figure 17: Cliff Walking Alpha Selection for different Slippery Levels
.

D.4 Comparison with Alphazero
We compare PA-MCTS with Alphazero after we use the proposed 𝛼-selection strategy to find the optimal 𝛼 value for different environment

settings. In Fig. 18, as slippery becomes nonzero, alphazero performance becomes significantly worse than PA-MCTS. This is reasonable as

Alphazero selects actions in UCT by selecting actions preferred by those in stationary settings.

D.5 Time Constraints
As in previous environments, we explore the time taken to run PA-MCTS (with 𝛼-selection) and compare it with the time to retrain DDQN

and Alphazero. We show the results in Table 5. We retrain DDQN and Alphazero that were previously trained in the stationary environment

setting. For alphazero network, we create 60 data-generating processes in parallel to feed into its re-training procedure. For DDQN, we use a

maximum of 100,000 steps to stop the training. As we did previously, we run 𝛼-selection in parallel, and running PA-MCTS is significantly

faster than retraining the networks.

D.6 Hardware
The experiments were conducted on Chameleon testbed [11] on 4 Linux systems with 32-96 logical processors and 528 GB RAM.

25 50 75 100 200 500 1000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Slippery = 0.0

25 50 75 100 200 500 1000
0

0.5

1

Iterations

Slippery = 0.1

25 50 75 100 200 500 1000
0

0.5

1

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

Slippery = 0.2

25 50 75 100 200 500 1000
0

0.5

1

Iterations

Slippery = 0.3

pamcts alphazero

Figure 18: Comparison of PA-MCTS with Alphazero; we see that PA-MCTS comprehensively outperforms Alphazero in non-stationary settings.

Method Iterations Execution Time (in seconds)

PA-MCTS 5 0.019

PA-MCTS 10 0.032

PA-MCTS 15 0.038

PA-MCTS 20 0.392

PA-MCTS 25 0.401

PA-MCTS 50 0.071

PA-MCTS 100 0.113

PA-MCTS 200 0.218

PA-MCTS 500 0.570

PA-MCTS 1000 0.919

Re-Train DDQN 100,000 steps 2916.864

Re-Train AlphaZero NA 6097.156

Table 5: Execution time of PA-MCTS (with 𝛼-selection) with varying MCTS iterations in comparison with DQN and AlphaZero. We observe that
PA-MCTS is significantly faster.

E EXPERIMENTAL RESULTS ON THE LUNAR LANDER ENVIRONMENT
We also evaluated our approach on the Lunar Lander Environment from OpenAI Gymnasium [4]. In this setting, the agent must control the

lunar module by firing the main engine upwards or the side engines to steer left or right. We use the discrete version of the environment.

The state is an 8-dimensional vector: the coordinates of the lander, its linear velocities in its angle, its angular velocity, and two booleans that

represent whether each leg is in contact with the ground or not. We change the windpower parameter in order to represent uncertainty in

this environment.

Figure 19: The test environment for the Lunar Lander Environment. The agent must land within a given viewpoint without crashing the body.

10 25 50 75 100 200
−200

0

200

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

wind power = 0.0

10 25 50 75 100 200
−200

0

200

Iterations

wind power = 10.0

10 25 50 75 100 200
−200

0

200

Iterations

C
um

ul
at

iv
e

R
ew

ar
d

wind power = 15.0

10 25 50 75 100 200
−200

0

200

Iterations

wind power = 20.0

Alpha=0.00 Alpha=0.25 Alpha=0.50 Alpha=0.75 Alpha=1.00

Figure 20: We show the cumulative reward obtained by PA-MCTS, standard MCTS (𝛼 = 0), and DDQN (𝛼 = 1) for changing wind power among
{0.0, 10.0, 15.0, 20.0}.

E.1 Stationary Environment
The stationary setting in this environment has no wind, i.e., the wind power is set to 0. As Fig. 20 shows, both DDQN and PA-MCTS with

higher 𝛼 value can achieve relatively high cumulative reward. We compute each result by averaging across 30 samples.

E.2 Non-Stationary Environment
We show results for different wind power values in Fig. 20 as well. We use different colors to represent different 𝛼 values used for PA-MCTS.

As the results suggest, it is challenging to use MCTS with a limited number of iterations to find near-optimal actions. This environment

serves as the other end of the spectrum (with respect to cliff walking), where MCTS is not particularly useful given limited computational

budget. In this case, relying on learned Q-values is the best course of action. Below, we show that PA-MCTS indeed selects a very high 𝛼 ,

therefore relying more on the learned Q-values.

E.3 Choosing the optimal 𝛼
As we expected, since the limited number of iterations can not fully explore the future trajectory of the agent, PA-MCTS relies more on the

predictions from trained DDQN.

Figure 21: Lunar Lander Alpha Selection for different Wind Power
.

E.4 Comparison with Alphazero
We deployed Alphazero training with 90 parallel running data-generating processes that feed data to the training process for 96 hours.

However, in our setting, the AlphaZero network, even with multiple hyperparameters, did not converge and showed worse results than

DDQN

E.5 Hardware
The experiments were conducted on Chameleon testbed [11] on 4 Linux systems with 32-96 logical processors and 528 GB RAM.

	Abstract
	1 Introduction
	2 Background
	3 Markov Decision Processes in Non-Stationary Settings
	4 Policy Augmented Monte Caro Tree Search
	4.1 Theoretical Analysis
	4.2 Experiment Setting
	4.3 Results

	5 Related Work
	6 Conclusion
	References
	A Extended Theoretical Analysis
	B Experimental Results on the CartPole Environment
	B.1 Stationary Environment
	B.2 Non-Stationary Environment
	B.3 Choosing the Optimal Lg
	B.4 Comparison with Alphazero
	B.5 Noisy settings
	B.6 Hardware
	B.7 Extensive Results for Noisy Settings Changing Gravity

	C Experimental Results on the FrozenLake Environment
	C.1 Stationary Environment
	C.2 Non-Stationary Environment
	C.3 Choosing the optimal Lg
	C.4 Comparison with Alphazero
	C.5 Time Constraints
	C.6 Hardware

	D Experimental Results on the Cliff Walking Environment
	D.1 Stationary Environment
	D.2 Non-Stationary Environment
	D.3 Choosing the optimal Lg
	D.4 Comparison with Alphazero
	D.5 Time Constraints
	D.6 Hardware

	E Experimental Results on the Lunar Lander Environment
	E.1 Stationary Environment
	E.2 Non-Stationary Environment
	E.3 Choosing the optimal Lg
	E.4 Comparison with Alphazero
	E.5 Hardware

