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Abstract—Designing effective emergency response manage-
ment (ERM) systems to respond to incidents such as road
accidents is a major problem faced by communities. In addi-
tion to responding to frequent incidents each day (about 240
million emergency medical services calls and over 5 million
road accidents in the US each year), these systems also support
response during natural hazards. Recently, there has been a
consistent interest in building decision support and optimization
tools that can help emergency responders provide more efficient
and effective response. This includes a number of principled
subsystems that implement early incident detection, incident
likelihood forecasting and strategic resource allocation and dis-
patch policies. In this paper, we highlight the key challenges and
provide an overview of the approach developed by our team in
collaboration with our community partners.

Index Terms—emergency response, decision making under
uncertainty, cyber-physical systems

I. INTRODUCTION

Designing effective emergency response management
(ERM) systems to oversee incidents such as road accidents
and fires is a challenge faced by communities across the
globe. These systems must efficiently manage resources such
as ambulances to respond quickly to incidents so that human
and financial losses are minimized [1], [2]. Over the last
several decades, much attention has been given to studying
emergency incidents and response, but emergency incidents
still cause thousands of deaths and injuries and result in losses
worth billions of dollars each year [3].

A fundamental shift in how these systems is operated has
begun in the last decade. Critically, the use of deep learn-
ing methods and statistical methods that provide principled
uncertainty-aware decision support systems are now being
applied to this domain [4], [5]. These methods typically
include five major components: (1) data curation components
that clean and merge environmental features like traffic and
weather, (2) statistical models that provide fine-grained inci-
dent likelihood forecasting, (3) resource allocation algorithms
that dynamically optimize the spatial locations of responders
and depots to improve response effectiveness, (4) algorithms
that can provide early incident information by extracting
insights from crowd-sourced data, and (5) algorithms for
providing dispatch recommendations across the region, includ-
ing support for coordination across multiple agencies in the
community.
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Fig. 1. ERM System Pipeline: historical data from different sources are used
to design predictive models for incidents and the environment, which in turn
are used to create allocation and response models. Events can be extracted
using text and video data to expedite reporting and aid response.

Together, the goal of these components is to enable the
agencies to (1) coordinate information and decisions between
the many agencies involved with emergency response, (2)
Collect, analyze and understand historical inefficiencies by
creating data models using the diverse and high volume data
generated from these events, (3) learn incident forecasting
models that can generalize across large geographic areas, have
high spatial-temporal resolution, and handle high data sparsity,
(4) detect and report incidents automatically as quickly as
possible, even from uncertain data-streams such as Waze and
Twitter, and (5) dynamically adapt resource allocation and
dispatch approaches, even if the environment in which the
emergencies occur changes.

However, these goals are difficult to achieve, especially
considering the following challenges. Principled emergency
response systems need to account for the differing dynamics
and variability of incidents. For example, the agencies have
to respond to both daily incidents and large-scale disasters
(e.g. natural hazards and man-made attacks) despite great
variability in scales of impact for different categories of inci-
dents. Disasters and security attacks can hinder operations and
communications, which make centralized planning and cloud-
based deployments infeasible. In fact, the emergency response
pipelines must be robust to any communication outage. Also,
to improve allocation and response, agencies require incident
forecasts over fine spatial and temporal resolutions. However,
learning incident prediction models at high resolutions is
extremely difficult due to data sparsity [8].

Further, situational awareness during response requires in-
formation from heterogeneous data sources, e.g. weather,
traffic, Twitter, Waze, 911 calls, historical emergency data,
and real-time crowdsourced data (e.g. near real-time road
flooding). However, integrating varying forms of data into real-
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TABLE I
SUMMARY OF CHALLENGES WHEN DESIGNING AND DEPLOYING AN EMERGENCY RESPONSE MANAGEMENT FRAMEWORK.

Challenge Description Contribution

Coordina-
tion

ERM requires coordination between multiple agencies
and decision makers, each with their own objectives.
Each decision maker often has access to only incomplete
information, and coordination must happen quickly while
a situation is unfolding.

ERM requires coordination across jurisdictions and agencies. We have
shown that response times to incidents decrease when resources dedicated
to a sub-region of a city “help” other regions in response [6]. The strategy
for such coordinated response is an open challenge.

Data
Collection

It is difficult to collect, integrate, and preprocess the
eclectic data that forms the foundation for emergency
response systems. Much of the data has high volume and
velocity, and is from diverse sources. This large set of data
must then be narrowed down to a set of useful features.

We have compiled and released WildfireDB, the first comprehensive
and open-source dataset that relates fires with relevant covariates [7].
We have also designed data collection and feature engineering
pipelines for road accident data [8].

Incident
Forecasting

Incident occurrence is difficult to model due to incidents’
inherent randomness and high sparsity. We have also
shown that Incident models are sensitive to spatial-
temporal resolution, which makes high-fidelity models
challenging to learn.

We have developed an incident prediction pipeline that combines
sparsity mitigation techniques with various statistical and learning
based forecasting models [8]. We
integrate this pipeline directly with decision making approaches to
evaluate the end-to-end performance of each model.

Incident
Detection

Fast incident detection is critical for timely response, but
traditional reporting methods have time delays.
Crowdsourced datastreams (e.g. Waze) provide an
opportunity for early identification, but are noisy and
uncertain.

We have developed CROME, a novel practitioner-centered incident
detection approach using crowdsourced data [9].

Dynamic
Environm
ents

The environments in which ERM systems operate change
over both long and short time scales. ERM systems must
adapt to this nonstationarity.

We have developed scalable online planning approaches that can
adapt to nonstationary environments, such as our hierarchical
ambulance allocation framework [6].

Commun-
ications

Many emergency incidents cause failures in communication
networks. ERM systems must be robust to communication
loss to maintain service in such situations.

We have developed a partially decentralized approach to ambulance
allocation that allows ambulances to operate with limited
communication [10].

time incident detection models is highly non-trivial, especially
when data exhibits noise and uncertainty [9], [11], [12].
Lastly, it is critical that any learning procedure designed for
emergency response be adaptive. That is, it should be able to
provide recommendations even if the traffic patterns, housing
density and the distribution of large events in the community
change.

In this paper, we describe some of these challenges and de-
scribe the approaches developed by our team to address them
(see Table I)12. Figure 1 presents our overall ERM pipeline.
In particular, section II discusses the challenges involved in
collecting and processing data for ERM systems. Section III
presents our framework for using this sparse incident data to
create useful incident forecasting models. Section IV discusses
how to use crowdsourced data to detect incidents quickly.
Section V discusses the challenges in designing adaptive
resource allocation and dispatch techniques that are robust
to communication failures. Finally, section VI discusses open
research questions that require further study.

II. DATA COLLECTION AND INTEGRATION

A. Challenges in data processing

The collection of diverse, high-volume geospatial data can
pose challenges for designing effective emergency response
management systems. Traditional desktop computers can be
quickly overwhelmed by large volumes of geospatial data,
necessitating the use of server computers with large amounts

1Our work has primarily focused on motor vehicle crashes, however, the
approach we take is generalizable and apply to other incidents (except crime
as it has different dynamics [13]) that are responded to by our partners.

2For a comprehensive review of the state-of-the-art, please see our survey
on incident prediction, resource allocation, and dispatch models [4].

of main memory, a cluster of desktop computers, or cloud
computing resources. These resources can be financially pro-
hibitive to smaller government organizations. Thus, precise
programs are essential to minimize costs. These programs will
inevitably contain spatial operations or queries to a spatial
database. Spatial Operations and queries to spatial databases
are computationally expensive, most notably spatial range,
join, and k-nearest neighbor operations [14]. In an emergency
response system, a variety of geospatial data formats (vector
and raster) may arise, necessitating complex solutions: NoSQL
data-stores or complex data structures, which can add addi-
tional processing time for the CPU [15].

To illustrate the problem, consider the context of wildfire
response. Data regarding fire occurrence and relevant features
are often collected and stored by different agencies and
sources. Importantly, such data is usually stored in different
data models. For example, while fire occurrence data is usually
stored in the vector form, information about vegetation, fuel,
and topographic features is available in a raster model. These
two data models use different storage mechanisms and compu-
tational methods that make it difficult to combine them. Also,
collecting information about all relevant features through high
spatial and temporal periods is challenging and mining such
large-scale feature data is a massive computational bottleneck.
To tackle such issues, we designed WildfireDB, a collection
of over 17 million data points that capture fire spread in
continental United States in the last decade [7]. Our data
generation, to a large extent, is based on work on large-
scale vector and raster analysis [16], and uses a principled
algorithmic approach to merge large-scale raster and vector
data. WildfireDB can be used to model the spread of wildfires
and inform response strategies [17]. We manage incident data



collection and joins in a similar manner.

B. Data Sources

Relevant and accurate data is essential for performant
statistical models. In our work in incident forecasting, we
have relied on four primary types of data: automobile in-
cidents, roadway geometry, traffic, and weather data. Past
automobile accidents are relevant to the forecasting of future
incidents because segments with a high recent incident rate
are more likely to have incidents in the future [18]–[20].
Spatial roadway features like lanes, speed limit, and road
intersections often signify different driver behavior and, along
with segment shape, are effective predictors of automobile
incidents [21]–[23]. Weather data is valuable as precipitation,
visibility, snowfall, and light levels can potentially alter driver
behavior and is a valuable predictor of accident rates [18],
[24], [25]. Traffic data is critical because it gives information
about how drivers behave on roadways through speed and free-
flow speed. Traffic data also adds congestion, a measurement
we have found to be one of the most predictive features.

III. INCIDENT FORECASTING

Incident forecasting is necessary to understand the future
demand of emergency resources in a given region, which is
critical for a proactive ERM system. Road accident prediction
is well studied in the literature, and a variety of modeling
approaches having been applied in the domain. These include
statistical models such as hierarchical Poisson Models [26],
[27] and zero-inflated models [28], [29]. In recent years, data
mining models such as neural networks [30]–[32] and support
vector machines [33], [34] have also been explored. We refer
interested readers to our survey on emergency response for a
detailed analysis of prior work in forecasting road accidents
(as well as allocation and dispatch techniques) [4].

A shortcoming of prior accident forecasting approaches
is their inability to deal with large data sparsity. Roadway
accident data is extremely sparse – we have observed more
than 99% sparsity on interstate highway segments in Tennessee
(a state in the USA with a total area of over 100,000 sq. km.)
when discretized into four hour time windows (more details
can be found in paper [8]). Even zero-inflated models, the
only class of statistical models that have been shown to work
fairly well on sparse spatial-temporal data, fail to perform
well when trained on these sparse roadway incidents. Prior
approaches are therefore ill-equiped to make accurate short-
term predictions, since as the temporal resolution increases,
the sparsity increases as well. While long-term predictions can
be useful to analyze policies (optimize road construction, for
example), short-term predictions are desirable for allocating
and dispatching responders.

To address these challenges, we have developed an incident
prediction pipeline that integrates various sparsity mitigation
and modeling techniques, as shown in figure 2. The pipeline
consists of five major stages: (1) clustering, (2) resampling,
(3) learning, (4) inference, and (5) integration with allocation
and dispatch algorithms. First, we use clustering to identify

Clustering Resampling

Learning Inference Allocation and
Dispatch

Data

Fig. 2. Overview of our incident prediction approach. We extract spatial
temporal information from a variety of data sources, focus on heterogeneity
not explicitly modeled in the feature space by identifying clusters, perform
resampling to address sparsity, and learn models on incident occurrence.

spatial segments with similar patterns of incident occurrence.
This aggregates the data for each cluster to avoid overfitting
on individual segments while capturing heterogeneity that is
not explicitly modeled in the feature space.

Next, we perform synthetic under- and over-sampling to
address sparsity by “balancing” the data. Naive synthetic
sampling performs poorly, however, as the relative frequencies
of incident occurrence vary significantly across clusters. We
address this by performing resampling such that the ratio
of accidents between each cluster is the same as in the
original dataset. Specifically, we start with the cluster having
the highest frequency of incident occurrence (cluster A, say)
and perform synthetic resampling such that the number of
positive data points (spatial segments in temporal windows
that have accidents) is the same as the number of negative
data points (spatial segments in temporal windows that do not
have accidents). We then apply resampling to the other clusters
such that the ratio of accident frequency for any given cluster
compared to cluster A is the same as in the original dataset.

After clustering and resampling, we apply and compare
various well-known spatial-temporal forecasting models to the
processed dataset, including logistic regression, zero-inflated
Poisson regression, random forests, and artificial neural net-
works. We use a suite of metrics to compare the performance
of each model. Conversations with first responders revealed
that ranking roadway segments based on relative risk is useful
for resource allocation. Therefore, we report the correlation
of each model’s marginal accident likelihood distribution over
space with the real accident distribution in addition to stan-
dard statistical metrics like F1-scores and accuracy. Another
important consideration is that these models are part of a
pipeline that informs allocation decision making algorithms.
Rather than only assess the models in isolation, we integrate
them with an allocation decision agent and report each model’s
final impact on response times to simulated incidents.

We evaluated the forecasting pipeline on three years of
road accident data from the interstate highway network of
Tennessee and found it can significantly reduce incident re-
sponse times compared to current approaches followed by
first responders [8]. An important result of our work is the
finding that standard statistical metrics like F1-score do not
give an accurate representation of each model’s performance
when integrated with the full ERM pipeline: when used for
resource allocation, the models which performed best in terms
of these metrics ended up reducing response times less than
models with ‘worse’ scores. This result highlights the need to



treat ERM pipelines holistically during both development and
deployment.

IV. INCIDENT DETECTION

Emergency response is highly dependent on the time of inci-
dent reporting. However, the traditional approach of receiving
incident reports (e.g., calling 911 in the USA) has time delays.
Crowdsourcing platforms such as Waze provide an opportu-
nity for early identification of incidents. However, detecting
incidents from crowdsourced data streams is difficult due to
the noise and uncertainty associated with such data. Further,
simply optimizing over detection accuracy can compromise
spatial-temporal localization of the inference, thereby making
such approaches infeasible for real-world deployment.

We designed CROME (Crowdsourced Multi-objective Event
Detection), that quantifies the relationship between the perfor-
mance metrics of incident classification (e.g., F1 score) and
the requirements of model practitioners (e.g., 1 km. radius
for incident detection) [9]. First, we show how crowdsourced
reports, ground-truth historical data, and other relevant de-
terminants such as traffic and weather can be used together
in a Convolutional Neural Network (CNN) architecture for
early detection of emergency incidents. However, naively
maximizing the accuracy of detection can harm emergency
response. For example, consider an approach that raises an
alert every time a report is received on the crowdsourcing
platform. While such an approach will correctly detect many
(if not most) ground-truth incidents, it will lead to wastage of
resources if a responder is dispatched on every alert. To tackle
this challenge, we use a Pareto optimization-based approach to
optimize the output of the CNN in tandem with practitioner-
centric parameters to balance detection accuracy and spatial-
temporal localization. We evaluated the efficacy of CROME
using crowdsourced data from Waze and traffic accident re-
ports from Nashville, TN, USA [9]. Our findings suggest that
CROME can detect more than 40% of the incidents earlier
than traditional mechanisms.

V. RESOURCE ALLOCATION AND DISPATCH

Once we have an understanding of when and where in-
cidents are likely to occur, the final stage of the ERM
pipeline is using forecasting models to make allocation and
dispatch decisions. Resource allocation (also referred to as
the stationing problem [10], [13]) is the problem of spatially
distributing resources such as ambulances in anticipation of
stochastic incidents, while the dispatch problem is determin-
ing which resource to send to an incident once a call for
service is received. The distinction between these problems
is not always clear, as allocation policies create the implicit
dispatching policy of sending the nearest available responder
to an incident (greedy dispatch). In fact, conversations with
emergency response agencies reveal that there are also legal
constraints on dispatching models – it is very difficult to judge
the severity of an incident from a call for service [10], so it is
imperative to follow this greedy strategy to ensure that if the
incident is severe, a responder arrives as quickly as possible.

Centralized Hierarchical Decentralized

Scalability

Assumptions Required for Coordination

Fig. 3. A spectrum of planning approaches for online ERM planning,
each with inherent tradeoffs. A centralized approach uses a monolithic state
representation. A decentralized approach segments the state-action space for
each individual agent, and each agent performs their own decision making.
A hierarchical approach segments the planning problem into sub-problems to
improve scalability without agents estimating other agents’ actions.

Since dispatching policies are constrained by policy, we focus
on solving the allocation problem.

A popular strategy used to plan under uncertainty is to learn
a policy, which is a general mapping from states of the envi-
ronment to actions that should be taken. Reinforcement Learn-
ing and Approximate Dynamic Programming are examples of
this approach, and have recently been applied to ambulance
allocation and similar resource allocation problems such as
ride-pooling [35]–[38]. Unfortunately, these methods are slow
to converge when applied to large-scale, practical problems.
This certainly applies to ERM – for example, a simple case
of just 20 responders and 30 potential waiting locations has
|R|!

(|R|−|V |)! = 30!
10! = 7.31e+ 25 possible assignments at each

decision point. Since urban environments are nonstationary,
a policy might be out of date by the time it is deployed.
Policies can also have issues adapting to failures that were
not considered during training.

An alternative to learning a policy is online planning: given
a model of the environment, heuristic search approaches such
as Monte-Carlo tree search (MCTS) can find promising actions
for the current system state. The environmental models can be
updated to reflect any detected changes, and the planner can
incorporate these updates into the decision making process
to adapt to a dynamic environment. Such an approach has
been applied to real-time control problems in domains such
as the smart grid [39], game playing [40], and autonomous
driving [41]. However, state-of-the-art MCTS approaches have
difficulty converging in a reasonable amount of time for prob-
lems with large state-action spaces such as responder alloca-
tion. Another consideration is that many emergency incidents
can cause failures in communication networks, so an allocation
strategy should be able to operate with limited communication.
Therefore, scalable online planning approaches that are robust
to communication outages are needed for ERM.

We have developed two approaches to tackle the problem of
scalable online resource allocation, as shown in figure 3. The
first is decentralized planning, where each resource builds its
own decision tree to independently determine its actions [10].
By limiting the state-action space for each resource to only



information relevant to the agent, the overall size of the state-
action space is significantly decreased and the approach scales
notably better than centralized approaches. A decentralized
approach also addresses partial communication losses: since
most mobile resources like ambulances are now equipped
with compute units, they can perform their individual plan-
ning locally, only needing to communicate sporadically for
coordination. Unfortunately, there is also a downside to decen-
tralization – during individual planning, resources must make
assumptions regarding the behavior of other resources, which
can lead to sub-optimal decisions when those assumptions do
not hold. This tradeoff is worthwhile for problems like ERM
that are difficult to solve tractably with centralized approaches.

The second approach we developed is hierarchical planning,
which leverages the spatial structure of the ERM environment
to split a large resource allocation system into smaller sub-
problems [6]. This decomposition drastically decreases the
overall complexity of the planning problem compared to a
centralized approach, but preserves the dependencies between
nearby resources unlike a decentralized approach. We created
a principled framework for solving the sub-problems and
tackling the interaction between them. First, the overall spatial
area is divided into regions using k-means clustering on
historical data of incident occurrence. A high-level planner
assigns responders to each region based on estimated waiting
times using a queueing approximation. Then, a low-level
planner solves the allocation problem within each sub-area in
parallel using MCTS. Compared to a decentralized framework,
a hierarchical approach is more reliant on communication
channels within a region and is less scalable, but better models
inter-resource dependencies.

We applied our decentralized and hierarchical planning
frameworks to the problem of dynamic ambulance allocation
in the city of Nashville, TN. We found that the decentralized
approach easily scaled to the full ERM system with reason-
able computation times, and reduced mean incident response
times compared to centralized planning [10]. The hierarchical
framework was also able to scale to the full system, and further
improved average response times compared to the decentral-
ized approach due to making fewer assumptions regarding the
agents’ interactions [6]. We also found that both approaches
are able to adapt to changes in the environment, such as large
shifts in the incident distribution or ambulance failures.

VI. RESEARCH OPPORTUNITIES AND DISCUSSIONS

While tremendous progress has been made in designing
emergency response management systems, the research area of
building and deploying efficient and effective ERM in practice
is still in its infancy. In this paper, we presented our recent
efforts as the first step in developing key ERM components in
collaboration with our community partners. There are many
open research problems and real-world challenges in this
exciting new area that need further studies.

Uncertainty and guarantee: Many current approaches have
been designed to be robust to uncertainty and noise in the
existing data. However, they barely deal with the uncertainty

from other services/systems or human behavior in the real
world, which could significantly affect the performance of
incidents prediction and resource allocation. It is an open
question of how to model the behaviors of a complex and
integrated system considering this real-world uncertainty and,
more importantly, providing run-time guarantees.

Robustness: Handling non-stationarity and environmental
disruptions that will very likely reduce the effectiveness of
the decision support algorithms are a key concern. In this
context, it is clear that the online tree search algorithms
are superior to a pure offline learning-based strategy that
relies on reinforcement learning or a neural network approach.
However, it is not yet clear if a combined approach that
bootstraps the tree search can lead to improved outcomes.
While preliminary experiments conducted by the team do
indicate that such an approach can help with non-stationarity,
further investigation is required.

Interaction with domain experts: Despite the increasing
intelligence in ERMs, there is still a high demand for inputs
and interaction from the domain experts, e.g., emergency
responders and city decision-makers. Two critical questions are
(1) how to support experts to use our systems (e.g., providing
requirements and domain knowledge), and then convert the
information to machine-understandable language, and (2) how
to help decision-makers interpret and trust the outcomes and
decisions made by the ERM systems?

Fairness and equity: As data-driven approaches, machine
learning models rely significantly on existing data. If un-
fairness exists in historical data, it is very challenging or
impossible to learn fair models without exogenous interven-
tion. Therefore, measuring and validating group fairness and
addressing equity when designing ERM pipelines is still an
important yet challenging future direction.

Practical Constraints: Another issue that is an opportunity
for further research is the integration of practical constraints
into the decision support procedures. Such dynamic con-
siderations include reduction in the number of ambulances
available, constraints on the maximum mileage that can be
put on a vehicle, road closures and reduced manpower. Recent
experiments by Ferber et.al. in [42] have shown that including
the decision outcomes in the prediction pipeline can lead to
improved forecasting models. Such considerations may also
be better in integrating various practical constraints that can
be encountered.
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