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ABSTRACT
Strategic aggregation and utilization of electric vehicle batteries as
energy reservoirs to optimize and smoothen power grid demand
is highly beneficial to smart and connected communities, particu-
larly large office buildings, which often provide charging access to
their employees as part of facilities. Strategic aggregation involves
optimizing vehicle charging and discharging to reduce the overall
energy bought during peak use (i.e., when energy is more expen-
sive) and the building’s net peak demand, which is monitored over
an extended period (e.g., a month). This problem entails making
sequential decisions under exogenous uncertainty and involves
delayed and sparse rewards, a continuous action space, and the
complexity of ensuring generalization across diverse conditions.
Existing modeling paradigms, e.g., single-shot mixed integer linear
programming (MILP), and algorithmic approaches, e.g., heuristic-
based strategies, fall short in addressing real-time decision-making
under dynamic conditions, and traditional reinforcement learning
(RL) models struggle with large state-action spaces, multi-agent
settings, and the need for long-term reward optimization. To ad-
dress these challenges, we introduce a novel RL framework that
combines the Deep Deterministic Policy Gradient approach (DDPG)
with action masking and efficient MILP-driven policy guidance. Our
approach balances the exploration of continuous action spaces to
meet user charging demands. Using real-world data from a major
electric vehicle manufacturer, we show that our approach compre-
hensively outperforms many well-established baselines and several
scalable heuristic approaches, achieving significant cost savings
while meeting all charging requirements. Our results show that
the proposed approach is one of the first scalable and general ap-
proaches to solving the V2B energy management challenge.
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1 INTRODUCTION
The concept of vehicle-to-building (V2B) charging [7, 12] leverages
the ability of battery electric vehicles (EVs) to operate as both en-
ergy consumers and temporary storage units [24]. V2B systems are
particularly relevant in large office buildings, where EVs can be
aggregated to optimize energy consumption and reduce peak power
demand. By strategically controlling the charging and discharging
cycles of EVs, these systems ensure that vehicles meet users’ ex-
pected state-of-charge (SoC) requirements while minimizing the
energy bought during peak time-of-use (ToU) periods [25, 30] and
reducing the building’s peak power demand over a billing cycle.
Implementing this optimization process in practice becomes com-
plex due to the heterogeneity of charging infrastructures [17], the
uncertainty of EV arrival and departure times, and the need for a
careful balance between energy cost savings and ensuring that the
expected final state of charge (SoC) is kept close to user expectation.
Additionally, aligning V2B frameworks with complex electricity
pricing policies, including both energy and demand charges, adds
to the challenge [26, 28]. While prior work has largely modeled this
problem as a single-shot mixed-integer linear program [1, 3, 8, 14],
such approaches fail to capture the intricacies of real-time decision-
making in dynamic environments.

This sequential decision process can be modeled as a Markov
Decision Process (MDP); however, solving the MDP presents sev-
eral difficulties, including delayed and sparse rewards, a continuous



Figure 1: EVs and bidirectional chargers at the research site.

action space, and the need for effective long-term decision-making
under uncertainty. To address these challenges, we propose a novel
approach to solve this problem that combines the Deep Determin-
istic Policy Gradient (DDPG) with two key enhancements: action
masking and policy guidance through a mixed-integer linear pro-
gram (MILP). The DDPG algorithm allows us to optimize continu-
ous action spaces while accounting for uncertainties in EV arrival
times, SoC requirements, and fluctuating building energy demands.
By leveraging action masking, we adjust neural network actions
during training using domain-specific knowledge, limiting explo-
ration and guiding the RL agent toward more efficient and feasible
policies. The MILP component provides policy guidance during
training, steering the RL agent toward near-optimal solutions and
enhancing convergence in complex environments. Our approach
demonstrates strong generalization across diverse conditions and
offers a scalable solution for V2B energy management. Our team
includes a large EV manufacturing company that has access to a
building with fifteen heterogeneous chargers ( Figure 1 shows some
of the chargers), and we utilize the real-world charging patterns
and building energy data to validate our approach, demonstrating
its effectiveness in minimizing monthly energy bills over 9 months
(May 2023 - Jan 2024). The summary of our contributions is as
follows:

• Modeling the V2B problem as an MDP with continuous
action space: We model the V2B problem as a Markov Deci-
sion Process (MDP) that captures the dynamics of EV SoC levels,
varying arrival and departure times, and time-dependent elec-
tricity pricing. This formulation addresses delayed and sparse
rewards, continuous action spaces, and long-term goals to reduce
the monthly peak demand charge and energy costs.
• Solving the V2B sequential decision-making problem: We
present a reinforcement learning framework based on the Deep
Deterministic Policy Gradient (DDPG). We combine DDPG with
i) action masking that leverages domain knowledge and the struc-
ture of the V2B problem and ii) policy guidance based on solving
a deterministic MILP to aid the learning of the optimal policy.
• Validating with real-world data: We validate our proposed
approach using real-world data from a major electric vehicle
manufacturer. The model achieved significant cost savings over
nine months (May 2023–January 2024), meeting all user charging
demands. Our approach outperforms heuristics and prior work.

• Ablation Study: We perform a detailed ablation study to assess
the impact of individual techniques, which help us demonstrate
the model’s effectiveness.

2 PROBLEM FORMULATION
Charger and Time Intervals: Consider the building has 𝑁 het-
erogeneous chargers C = {𝐶1,𝐶2, . . . 𝐶𝑁 }. Each charger 𝐶𝑖 has
limits on the charging rate, minimum 𝐶𝑚𝑖𝑛

𝑖
and maximum 𝐶𝑚𝑎𝑥

𝑖
;

𝐶𝑚𝑖𝑛
𝑖

< 0 implies the charger𝐶𝑖 is bi-directional and can discharge
and 𝐶𝑚𝑖𝑛

𝑖
= 0 represents a unidirectional charger with no dis-

charging. We assume that all chargers are designed to be able
to charge at maximum rates simultaneously, i.e.,

∑𝑖=𝑁
𝑖=1 𝐶𝑚𝑎𝑥

𝑖
<

maximum rated capacity of the building. The planning horizon is
one billing period, usually a month, which we divide into equal-
sized fixed time intervals T = {𝑇1,𝑇2, . . . 𝑇𝑒𝑛𝑑 }, where𝑇𝑗−𝑇𝑗−1 = 𝛿

(we use 𝛿 = 0.25 hours). The choice of 𝛿 is user-specific and provides
a stable decision epoch, preventing rapid changes in the charging
rate.
Charging Power: Let us assume that the function P : C × T →
ℜ specifies the power consumed by the charger 𝐶𝑖 at time 𝑇𝑗 . If
the power is zero, the charger is not active, and if the power is
negative, the charger discharges, acting as an energy source. Note
that by construction 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ∈ [𝐶𝑚𝑖𝑛

𝑖
,𝐶𝑚𝑎𝑥

𝑖
]. Let us also assume

that function B : T → ℜ+ specifies the average building power
consumed in 𝛿 time interval. Given the charger and the building
power consumption, we can calculate the total cost for the billing
period. The parts of the total cost are based on the property type,
time of day, and state of the power grid and are based upon the
rules and regulations set by the local transmission system operator
(TSO) and distribution system operator (DSO). These parts include
energy expenses for building power and charging, which vary with
peak and off-peak hours, as well as demand charges based on the
peak power draw over a longer-term period.

Let the price of the energy consumed is given by 𝜃𝐸 : T → ℜ+
(in $/kWh). In practice, the Time-of-Use (TOU) electricity rates do
not vary continuously and are rather divided into two parts each
day, i.e., a peak and a non-peak period. Then, the total cost of the en-
ergy consumed is Θ𝐸 (P) =

∑𝑗=𝑒𝑛𝑑

𝑗=1

(∑𝑖=𝑁
𝑖=1 (𝑃 (𝐶𝑖 ,𝑇𝑗 )) + B(𝑇𝑗 )

)
×

𝜃𝐸 (𝑇𝑗 ) × 𝛿 . Effectively, Θ𝐸 is a function of charging power P =

{𝑃 (𝐶𝑖 ,𝑇𝑗 ) |𝐶𝑖 ∈ C,𝑇𝑗 ∈ T }.
Demand Charge: The demand charge is calculated using the maxi-
mum (peak) power consumed during any time interval in the billing
period, with the demand price denoted as 𝜃𝐷 (in $/kW). Let 𝑃𝑚𝑎𝑥 =

max𝑗=𝑒𝑛𝑑
𝑗=1 (∑𝑖=𝑁

𝑖=1 𝑃 (𝐶𝑖 ,𝑇𝑗 )) + B(𝑇𝑗 ) denote the maximum power
consumed. The demand charge is given byΘ𝐷 (P) = 𝜃𝐷 ×𝑃𝑚𝑎𝑥 ×𝛿 ,
which is a function of charging power P. Hence, the total cost of
energy bought from the power grid isΘ𝐸 (P)+Θ𝐷 (P). To minimize
the cost, we must reduce the net power usage when the cost 𝜃𝐸 is
high and manage the power peaks to ensure 𝑃𝑚𝑎𝑥 remains as low
as possible. Often, the demand charge is levied to ensure that the
industrial buildings do not put excess burden on the power grid.
In our problem, we use estimates of peak power and denoted it by
𝑃𝑚𝑎𝑥 . It is important to note that the demand charge is typically
applied during peak hours of the TOU electricity rate, as reflected
in our formulation.



Electric Vehicle Sessions: Assume that during the billing period
T , a set of electric vehicles, denoted as V , are serviced at the
building. Each EV𝑉 is characterized by its arrival timeA : V → T
and departure time D : V → T . Note that if the same vehicle
arrives more than once, we will treat it as a separate session. If the
EV arrives between time slots [𝑇𝑖−1,𝑇𝑖 ], we consider its effective
arrival time asA(𝑉 ) = 𝑇𝑖 . Similarly, if the vehicle departs between
[𝑇𝑗 ,𝑇𝑗+1], we consider its effective departure time as D(𝑉 ) = 𝑇𝑗 .
EV sessions are contiguous, i.e., EV is expected to remain at the site
between A(𝑉 ) and D(𝑉 ), for ∀𝑉 ∈ V . For each 𝑉 , we know the
initial state of charge SOC𝐼 : V →ℜ+ and the required final state
of charge (measured as a percentage of the battery capacity) SOC𝑅 :
V → ℜ+ upon arrival. SOC𝑚𝑖𝑛 : V → ℜ+ is the minimum
allowed SoC for the car i.e., the car cannot be discharged below this
value, and SOC𝑚𝑎𝑥 : V → ℜ+ is the maximum allowed SoC for
the car. The minimum andmaximum bounds are specified by the EV
manufacturer, considering the impact of charging and discharging
on battery health. CAP : V → ℜ+ denotes the vehicle’s battery
capacity in kWh. We track the current SoC of the EV using SOC,
where SOC : V × T → ℜ+ and it is defined later.
Charger Assignment: We define an EV assignment function 𝜂 :
V → C, where (𝑉 ∈ V) 𝜂 (𝑉 ) = 𝐶𝑖 indicates the charger assigned
to EV 𝑉 . Correspondingly, we also maintain a charger-EV occu-
pancy function 𝜙 : C × T → V , where 𝜙 (𝐶𝑖 ,𝑇𝑗 ) = 𝑉 , representing
the connection of charger 𝐶𝑖 with EV 𝑉 at time 𝑇𝑗 . The corre-
lation of these two functions can be expressed as 𝜙 (𝜂 (𝑉 ),𝑇𝑗 ) =
𝑉 , s.t. A(𝑉 ) ≤ 𝑇𝑗 ≤ D(𝑉 ) indicating that if EV 𝑉 is assigned to
charger 𝐶𝑖 through the function 𝜂, then at any time slot within its
stay duration, it is confirmed that EV 𝑉 is connected to charger 𝐶𝑖 .
If no EV is connected to the charger at time 𝑇𝑗 , the function may
return a ∅ denoting an inactive state, expressed as 𝜙 (𝐶𝑖 ,𝑇𝑗 ) = ∅ em-
phasizing the dynamic nature of the connection function. Note that
two vehicles cannot be connected to a charger simultaneously. We
consider a first-in, first-out policy that assigns EVs to bidirectional
chargers first. A comparison of other approaches is in Table 5 in
the appendix. We also maintain that once assigned to a charger, a
vehicle is connected to it until departure. For charging the EVs, we
approximate a linear charging profile as in prior work [23], and the
SoC is updated at time slot 𝑇𝑗 using the following equation:

SOC (𝑉 ,𝑇𝑗+1) = SOC (𝑉 ,𝑇𝑗 ) +
𝑃 (𝜂 (𝑉 ),𝑇𝑗 )×𝛿

CAP (𝑉 ) (1)

Feasibility: The set Feasible indicates the feasible solutions that
satisfy the following constraints:

∀𝐶𝑖 ∈ C,∀𝑇𝑗 ∈ T : 𝐶𝑚𝑖𝑛
𝑖 ≤ 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ≤ 𝐶𝑚𝑎𝑥

𝑖 (2)

∀𝐶𝑖 ∈ C,∀𝑇𝑗 ∈ T ,∀𝑉 ∈ V : SOC (𝑉 ,𝑇𝑗 ) ≥ SOC𝑚𝑖𝑛 (𝑉 ) (3)
∀𝐶𝑖 ∈ C,∀𝑇𝑗 ∈ T ,∀𝑉 ∈ V : SOC (𝑉 ,𝑇𝑗 ) ≤ SOC𝑚𝑎𝑥 (𝑉 ) (4)
∀𝑇𝑗 ∈ T :

∑
𝐶𝑖 ∈C 𝑃 (𝐶𝑖 ,𝑇𝑗 ) + B(𝑇𝑗 ) ≥ 0 (5)

Here, Constraint (2) guarantees a valid charging action range, Con-
straints (3 and 4) ensures that each EV’s SoC remains within an
acceptable range, and Constraint (5) ensures that discharging power
does not exceed building power.
Objectives: One of our objectives for the V2B problem is to mini-
mize the total cost over the billing period, incorporating the Time-
Of-Use (TOU) electricity rates and demand charges. This objective

is expressed as:
min

(𝜂,P) ∈Feasible
(Θ𝐸 (P) + Θ𝐷 (P)) (6)

The second objective ensures that vehicles are charged to their
requirement, SOC𝑅 , by the time they leave.

min
(𝜂,P)∈Feasible

∑
𝑉 ∈V max(SOC𝑅 (𝑉 ) − SOC (𝑉 ,D(𝑉 )), 0) (7)

The inner max function ensures EV users’ energy requirements are
met, even if overcharging occurs. However, in practical scenarios,
short stays may make meeting the SoC requirement impossible. To
address this, we reformulate the objectives into a multi-weighted
framework. The optimal charger assignment and actions are then
determined by optimizing these combined objectives.

3 RELATEDWORK
We highlight four major challenges of solving the V2B problem,
namely: 1) the uncertainty of vehicles and SoC requirements; 2)
Time-Of-Use(TOU) pricing, demand charge, and long-term rewards;
3) Heterogeneous chargers and continuous action spaces; and 4)
Tracking real-world states and transitions. Below, we briefly cover
prior work to tackle these challenges. A more detailed description of
prior work is presented in Table 4 of the appendix.
Uncertainty of vehicles and SoC requirements.Meta-heuristics
and Model Predictive Control (MPC) has been used to solve the
EV charging process, focusing on energy cost and user fairness in
single-site or vehicle-to-grid (V2G) systems [1, 3, 8, 14]. Studies by
Richardson et al. analyze EV charging strategies’ impact on grid sta-
bility, relevant to V2B systems [20]. Wang et al. proposed a demand
response framework for optimizing V2B systems amidst dynamic
energy pricing [26]. Additionally, O’Connell et al. utilized Mixed
Integer Linear Programming (MILP) to integrate renewable energy
sources into grids [16]. However, many of these methods focus on
unidirectional chargers and fail to fully account for all exogenous
sources of uncertainty (e.g., uncertain arrival and departure times).
Time of use pricing, demand charge, and long-term rewards.
Optimizing V2B is hard due to the lengths of billing periods. While
prior work (barring some exceptions [8]) optimize and plan for
single day horizons [1, 13, 21], they fail to work for longer periods.
Heterogeneous chargers and continuous action spaces. In
practice, buildings develop EV infrastructure gradually, leading to
heterogeneous chargers and a more complex action space. While
some prior work addresses charger heterogeneity [15, 29], it often
neglects long-term rewards (i.e., limit planning to a single day)
or fails to account for demand charge, missing the key real-world
constraint in the V2B problem. Tracking real-world state and
transition. Existing solutions validate their approach using sim-
ulations with limited interface with the real world (barring some
exceptions [8]), thereby making simplistic assumptions that limit
deployment.

4 OUR APPROACH
In this section, we discuss the different components in our frame-
work, shown in Figure 2a.

4.1 Markov Decision Process Model
We model the V2B problem as the following MDP.
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Figure 2: (a) Our framework relies on daily samples and an estimated monthly peak power. We use RL, i.e., DDPG, and extend
it with policy guidance and action masking, to learn a near-optimal policy. (b) At inference time, the model ingests data of
connected cars, charger states, building power, and the estimated monthly peak power to make decisions.

State. The complete state space for the problem can be described
using features that provide historical, current, and future estima-
tion at a given time 𝑇𝑗 , which includes parameters for each vehicle,
such as the current SoC, required SoC, departure time, and battery
capacity for each EV, along with SoC boundaries across all chargers.
Additionally, the current building power, time slot, day of the week,
past historical building power, and long-term peak power estima-
tion value are included, resulting in approximately 100 features. We
leverage domain-specific knowledge to abstract key information
from these features, reducing the state space to the 37 essential
state elements.

These features are: 1) The current time slot, 𝑇𝑗 . 2) The cur-
rent building power, denoted as 𝐵(𝑇𝑗 ). 3) The power gap between
the current building power and the estimated peak power for the
billing period, given by 𝑃𝑚𝑎𝑥 (𝑇𝑗 )−𝐵(𝑇𝑗 ), where 𝑃𝑚𝑎𝑥 (𝑇𝑗 ) indicates
the estimated peak power at 𝑇𝑗 , initialized from a value derived
from training data. This gap aids the RL model in estimating the
optimal peak power for demand charge reduction. 4) The mean
peak building power over the previous 7 days, 𝜇 (𝐵𝐻 (𝑇𝑗 )), where
𝐵𝐻 (𝑇𝑗 ) represents the list of peak building power for the previ-
ous 7 days. 5) The variance of the peak building power over the
previous 7 days, 𝜎2 (𝐵𝐻 (𝑇𝑗 )), helps inform the model about the
future building power use. 6) The day of the week for the current
time slot, 𝑇𝑗 , which helps the model distinguish daily patterns and
enhance generalization. 7) The number of EV arrivals up to time
slot 𝑇𝑗 , represented as |{𝑉 |𝑉 ∈ V, 𝐴(𝑉 ) ≤ 𝑇𝑗 }| for tracking EV
arrival status. 8) The energy needed by each EV connected to a
charger at time slot 𝑇𝑗 , given by [KWHR (𝐶𝑖 ,𝑇𝑗 )]𝐶𝑖 ∈C , and is ini-
tialized to 0. This represents the energy gap between required SoC
(SOC𝑅 ) and current SoC (SOC) of the EV 𝑉 = 𝜙 (𝐶𝑖 ,𝑇 ( 𝑗)), defined
as KWHR (𝐶𝑖 ,𝑇𝑗 ) = (SOC𝑅 (𝑉 ) − SOC (𝑉 ,𝑇𝑗 )) ×CAP(𝑉 ). 9) The re-
maining time until the departure of each EV connected to the charg-
ers is given by [𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 )]𝐶𝑖 ∈C , and is set to 0 when no cars are
connected. Each term is computed as 𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 ) = D(𝜙 (𝐶𝑖 ,𝑇𝑗 ))−𝑇𝑗 .

Actions.We define the set of actions A, which includes all ac-
tions at each time slot𝑇𝑗 with𝑇𝑖 ∈ T . In this MDP,A is continuous
and specifies the power of all chargers at each time slot 𝑇𝑗 , where
𝐴(𝑇𝑗 ) = [𝑃 (𝐶𝑖 ,𝑇𝑗 )]𝐶𝑖 ∈C .

State Transition. States are updated based on actions and EV
arrivals/departures at each time slot. To simulate these transitions,
we designed an environment simulator that provides and updates
states. The state transition function is given as: Trans(𝑆 (𝑇𝑗−1)
𝐴(𝑇𝑗−1)) ↦→ 𝑆 (𝑇𝑗 ), with the following steps:
(1) Initialize the estimated peak power, 𝑃𝑚𝑎𝑥 (𝑇0), which can be de-

rived fromhistorical data (detailed in Section 4) , and update it by
𝑃𝑚𝑎𝑥 (𝑇𝑗 ) = max(𝑃𝑚𝑎𝑥 (𝑇𝑗−1), B(𝑇𝑗−1) +

∑
𝐶𝑖 ∈C 𝑃 (𝐶𝑖 ,𝑇𝑗−1)),

which updates the estimated peak power depending on the
previous estimate and the last peak power.

(2) Update SoC of EVs connected to all chargers: SOC (𝜙 (Ci, Tj), Tj)
using action 𝐴(𝑇𝑗−1) according to Equation (1).

(3) Update the EV charger assignment 𝜙 (𝐶𝑖 ,𝑇𝑗 ) and 𝜂 (𝑉 ) by first
releasing chargers with departing EVs in the current time slot
𝑇𝑗 and then assigning new arrival EVs to idle chargers.

(4) Update the energy requirement of all EVs connected to a charger:
[KWHR (𝐶𝑖 ,𝑇𝑗 )]𝐶𝑖 ∈C by based on EV’s current SoCs.

(5) Update the remaining time of all EVs connected to chargers:
[𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 )]𝐶𝑖 ∈C at time slot 𝑇𝑗 .
Reward.We define the function Reward : S × A → ℜ, where

Reward (𝑆 (𝑇𝑗 ), 𝐴(𝑇𝑗 )) evaluates the reward for actions taken in a
specific state, focusing on minimizing the total bill while satisfying
SoC requirements. We express reward as 𝜆𝑆 · r1 + 𝜆𝐸 · r2 + 𝜆𝐷 · r3
where, r1 =

∑
𝐶𝑖 ∈C max(0,min(KWHR (𝐶𝑖 ,𝑇𝑗 ), 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ×𝛿)), r2 =

−𝑃 (𝐶𝑖 ,𝑇𝑗 ) ·𝛿 ·𝜃𝐸 (𝑇𝑗 ), and r3 = −max(0,B(𝑇𝑗 ) +
∑
𝐶𝑖 ∈C 𝑃 (𝐶𝑖 ,𝑇𝑗 ) −

𝑃𝑚𝑎𝑥 (𝑇𝑗 )) · 𝜃𝐷 . In this reward structure, r1 promotes actions that
charge EVs to reach their required SoC, as intended in Equation (7),
while r2 penalizes the energy cost for the charging actions taken.
The third component, r3, penalizes the increase in demand charges
if peak power increases, aligning with our objective in Eq. (6). These
functions use three coefficients, 𝜆𝑆 , 𝜆𝐸 , and 𝜆𝐷 to balance trade-offs.



4.2 Reinforcement Learning Approach
In this section, we describe the entire reinforcement learning pipeline.
We introduce the network structure, discuss how we use a simula-
tor to gather state features and describe the different techniques,
such as action masking and policy guidance, used to improve the
performance of the V2B problem.

To improve training efficiency, we address the challenge of long
state-action sequences by splitting the monthly dataset into daily
episodes. This allows the model to capture variations across dif-
ferent weekdays and learn more effectively from shorter episodes,
adapting more quickly to daily changes. By incorporating estimated
monthly peak power into the state features and reward function,
the approach still accounts for monthly demand charges, helping to
minimize long-term costs while staying aligned with our objective.

4.2.1 Enhanced Deep Deterministic Policy Gradient. Our approach
based on the DDPG framework [11] uses an actor network for
continuous actions. During training, we interact with the simu-
lator that provides state abstractions and transitions. To improve
RL performance in handling the limitations associated with large
continuous action spaces and long-term reward optimization, we in-
troduce action masking and policy guidance techniques. Details of
the enhanced approach are in Algorithm 2 in the appendix. Action
masking, denoted as Mask(𝑆 (𝑇𝑗 ), 𝐴(𝑇𝑗 )), refines the raw actions
generated by the actor network by enforcing action validity and
utilizing domain-specific knowledge, thereby improving policy per-
formance. Additionally, policy guidance incorporates the MILP
solver discussed earlier to provide optimal actions based on current
and future information. These optimal actions are stochastically
introduced during RL training into the replay buffer (i.e., tossing
a biased coin) to mix high-quality actions given a deterministic
trajectory with exploratory actions).

4.2.2 Action Masking. Action masking ensures that the policy ac-
tions generated by the actor network are feasible during DDPG
training. Findings from [4, 6] confirm that differentiable action
masking does not interfere with the policy gradient backpropaga-
tion process. As a result, the learning process remains effective,
while the imposed constraints on the action space prevent the
policy from exploring invalid actions, thereby improving training
efficiency and optimizing resource usage.

This procedure takes the RL raw action 𝐴(𝑇𝑗 ), an array of charg-
ing power [𝑃 (𝐶𝑖 ,𝑇𝑗 )]𝐶𝑖 ∈C for all chargers, processes it through
the following masking steps, and outputs the masked actions 𝐴′.
Before starting the procedure, we need to obtain the following state
features: the remaining power needed to reach the required SoC
for all connected EVs (KWHR), the time remaining for each EV
(𝜏𝑅 ), and the maximum (𝐶max) and minimum (𝐶min) power of all
chargers (line 1 in Algorithm 1). Also, for our case, since we work
with both unidirectional and bidirectional, we denote uniIdx and
biIdx as the indices for unidirectional and bidirectional chargers,
respectively. All of the masking techniques referenced below are
from Algorithm 1.
• Mask 1.We set the charging power 𝑃 (𝐶𝑖 ,𝑇𝑗 ) of charger 𝐶𝑖 to 0
if no EV is connected, i.e., 𝜏𝑅 (𝜙 (𝐶𝑖 ,𝑇𝑗 )) = 0. (line 2)
• Mask 2. Overcharging unidirectional chargers is not beneficial
since excess energy cannot be discharged. Thus, we limit the

Algorithm 1: Action Masking: Mask(𝑆 (𝑇𝑗 ), 𝐴(𝑇𝑗 )).
Input: state: 𝑆 (𝑇𝑗 ), action: 𝐴(𝑇𝑗 )
Output:Masked action: 𝐴′

1 Initializing: KWHR ← [KWHR (𝐶𝑖 ,𝑇𝑗 ) ]𝐶𝑖 ∈C;
𝜏𝑅 ← [𝜏𝑅 (𝜙 (𝐶𝑖 ,𝑇𝑗 ) ) ]𝐶𝑖 ∈C; 𝜖 ← 10−5;
𝐶𝑚𝑎𝑥 ← [𝐶𝑚𝑎𝑥

𝑖
]𝐶𝑖 ∈C; 𝐶𝑚𝑖𝑛 ← [𝐶𝑚𝑖𝑛

𝑖
]𝐶𝑖 ∈C

// Mask 1: Set action = 0 if no car is connected
2 𝐴′ ← 𝜏𝑅

𝜏𝑅+𝜖 × 𝐴(𝑇𝑗 )
// Mask 2: Stop charging when required SoC is reached for
uni-directional chargers

3 𝐴′𝑡𝑚𝑝 ← 𝐴′; 𝐴′ [uniIdx] ← min(𝐴′𝑡𝑚𝑝 ,
KWHR

𝛿
) [uniIdx]

// Mask 3: Enforce charging to the req. SoC before departure.

4 KW(𝑇𝑗 ) ← KWHR−(𝜏𝑅−1)×𝐶𝑚𝑎𝑥 ×𝛿
𝛿

KW(𝑇𝑗 ) ← min(KW(𝑇𝑗 ),𝐶𝑚𝑎𝑥 ) ; 𝐴′ ← max(𝐴′,KW(𝑇𝑗 ) )
// Mask 4: Bidirectional chargers discharge to req. SoC by departure.

5 KW∗ (𝑇𝑗 ) ← KWHR−(𝜏𝑅−1)×𝐶𝑚𝑖𝑛×𝛿
𝛿

KW∗ (𝑇𝑗 ) ← max(KW∗
𝑡 ,𝐶

𝑚𝑖𝑛 )
6 𝐴′𝑡𝑚𝑝 ← 𝐴′; 𝐴′ [biIdx] ← min(𝐴′𝑡𝑚𝑝 ,KW∗

𝑡 ) [biIdx]
// Mask 5: Power improvement strategy

7 powerGap← B(𝑇𝑗 ) − 𝑃𝑚𝑎𝑥 (𝑇𝑗 )
canIncrease← ReLU

(
min

(
KWHR

𝛿
,𝐶𝑚𝑎𝑥

)
− 𝐴′

)
8 toImprove← min (ReLU(powerGap − ∑

𝐴′ ),∑ canIncrease)
9 𝐴′ ← 𝐴′ + toImprove×canIncrease∑(canIncrease)+𝜖
// Mask 6: Do not discharge below building load

10 toImprove← max(−B(𝑇𝑗 ) −
∑(𝐴′ ), 0)

negAction← ReLU(𝐴′ × −1) × −1
11 𝐴′ ← 𝐴′ + toImprove×negAction∑(negAction)+𝜖

charging power to ensure the SoC of EVs connected to a unidi-
rectional charger remains within their required SoC. For each
connected EV, the actions are masked to the minimum of the cur-
rent charging power and the power needed to reach its required
SoC

(
KWHR

𝛿

)
(line 3).

• Mask 3. If necessary, we want to adjust actions such that it
forces charging to the required SoC before departure to minimize
missing SoC, as in Equation (7). We compute the critical power
KW∗ (𝑇𝑗 ), which is the minimum power required for all charg-
ers at time 𝑇𝑗 to reach the required SoC of the connected EVs
before departing (assuming maximum power 𝐶𝑚𝑎𝑥 is utilized
in subsequent time slots). The raw action is adjusted if it falls
below this value, especially in time slots leading up to the EV’s
departure (line 4).
• Mask 4. Thismask is symmetrical toMask 3 for force discharging.
Overcharging bidirectional EVs is only advantageous if excess
energy can be discharged during peak hours, but there is no
benefit to overcharging just before departure. Using this mask, we
force discharge EVs connected to bidirectional chargers, which
have excess energy, and they reach the required SoC by departure.
Here,KW∗ (𝑇𝑗 ) denotes the minimum power to discharge for all
chargers𝐶𝑖 ∈ C at time𝑇𝑗 to guarantee EV can reduce to required
SoC when departing (assuming the maximum discharging power
𝐶𝑚𝑖𝑛 is utilized subsequently) (lines 5, 6).



• Mask 5.We increase charging power while ensuring the masked
action stays within the estimated peak power 𝑃𝑚𝑎𝑥 (𝑇𝑗 ). This
aims to charge EVs as much as possible towards their required
SoC without raising demand charges, thereby avoiding forced
charging just before departure, which could elevate peak power.
We calculate the “power gap” between estimated peak power and
current building power, 𝑃𝑚𝑎𝑥 (𝑇𝑗 ) − B(𝑇𝑗 ). If the current power
sum (B(𝑇𝑗−1) +

∑
𝐶𝑖 ∈C 𝑃 (𝐶𝑖 ,𝑇𝑗−1)) is below this “power gap”,

we boost the current actions using the available “power” gap,
constrained by min

(
KWHR

𝛿
,𝐶𝑚𝑎𝑥

)
. (lines 7 to 9).

• Mask 6. We adjust the discharging power to prevent cumula-
tively discharging below the current building power B(𝑇𝑗 ), to
satisfy Constraint 5 by reducing the discharging power based on
the current actions (lines 10 to 11).

All of the action masking procedures utilize array computations and
differentiable operations, such as ReLU [19] andmaximum/minimum
operations, and the PyTorch framework [18].

4.2.3 Policy Guidance with MILP Solver. Note that for a fixed sam-
ple, i.e., a fixed set of EV arrivals and departures, the V2B problem
can be modeled as a single-shot mathematical program, i.e., a mixed-
integer linear program (MILP), which can solved efficiently (at least,
for our problem size) to retrieve the optimal actions. The objective
of the MILP is maximizing the multi-objective weighted sum of the
total rewards (detailed in Equations 6, (7)), and the other properties
of the V2B problem can be encoded as constraints. The fixed sam-
ple of arrivals and departures can be extracted from historical data.
Naturally, this modeling paradigm does not solve the V2B prob-
lem in general—EV arrivals and departures are not known ahead
of time—however, this strategy provides a set of optimal actions
that the learning module can learn to imitate. For our use case, the
MILP problem can be solved reasonably fast. For example, for a
planning horizon of a day with 15 cars, the problem size averages
800 variables and 1400 constraints and takes 0.05 seconds to solve.

We integrate a MILP solver based on CPLEX [2] to solve the
above V2B problem, this solver as a policy guidance sub-routine [10]
into the RL training process which feed with current state and the
future events to provide optimal next optimal charging action. Dur-
ing training, the MILP solver is stochastically triggered to generate
optimal actions based on the current state. These state-action tran-
sitions are added to the replay buffer with a predefined coefficient,
𝑅𝑃𝐺 (see Algorithm 2 in the appendix). The next optimal action
is obtained using MILP (S(Tj), remainEpisode), which accounts for
remaining events like EV arrivals, SoC requirements, and building
power. By blending MILP and RL actor network actions during
training, the RL agent explores a more effective action space, im-
proving performance in handling large continuous action spaces
and maximizing long-term reward.

4.2.4 Actor-Critic Network Structure. Both the actor and critic net-
works are fully connected, having two hidden layers with 96 neu-
rons each. Both feature a ReLU activation layer at the end. The critic
network outputs a single Q-value estimate, while the actor network
outputs the action, which represents the charging power of each
charger. To enhance convergence and improve generalization, we
normalize all state variables to be within [0, 1] before feeding them
into neural networks. Time slot 𝑇𝑗 is normalized by division with

the number of time slots in a day ( 24
𝛿
), while power-related variables

such as building power B(𝑇𝑗 ), estimated peak power 𝑃𝑚𝑎𝑥 (𝑇𝑗 ) are
scaled by their respective statistical values from training data. Fur-
thermore, we normalize the energy capacity 𝐶𝐴𝑃 (𝑉 ) of each car
by division with the maximum capacity among EVs,max(𝐶𝐴𝑃 (𝑉 )).
For the action 𝐴(𝑇𝑗 ) = [𝑃 (𝐶𝑖 ,𝑇𝑗 )]𝐶𝑖 ∈C , we constrain the output
within the range [−1, 1] using the tanh activation function. It is
finally translated into the charging power range [𝐶𝑚𝑖𝑛

𝑖
,𝐶𝑚𝑎𝑥

𝑖
] by

scaling the value using a constant factor.

4.2.5 Heuristics and Action Post Processing. To enhance the ease
of learning in this complex decision space, we use the RL model
on weekdays and the peak hours of TOU price within each billing
period (for both training and inference). For off-peak hours and
weekends, we use a heuristic based on the least laxity task sched-
uling algorithm (described in Section 5) for off-peak hours and
weekends to ensure EVs achieve the required SoC before depar-
ture, calculating the minimum charge needed for each time slot.
Off-peak hours offer lower electricity prices, allowing for higher EV
charging rates, and are excluded from demand charge calculations,
making heuristics effective for optimization. Similarly, weekends
see fewer EV arrivals and lower power demand, with TSOs ex-
cluding them from demand charge assessments. Following the EV
manufacturer guidelines, we limit charging to SoC boundaries by
clipping the actions of the learned policy within [𝑆𝑜𝐶min, 𝑆𝑜𝐶max]
through post-processing to satisfy Constraints (3) and (4)

4.3 Inference
During execution, our RL-based policy, which is a trained actor
network with the action masking procedure, operates at 𝛿 time
intervals to determine the charging power for all chargers. At each
time slot, the state features are generated from data captured from
the environment, including charger status (connected EV’s current
SoC, expected departure time, and SoC), the building’s current
power and charging rate limits. While we use the estimated peak
power 𝑃𝑚𝑎𝑥 as the state feature based on training samples, as shown
in Figure 2b, it can be replaced by any data-driven forecasting or
prediction model. Then, we input all the normalized state features,
as described in Section 4.1, into the trained RL model to get the
charging actions for the next time interval.

5 EXPERIMENTS AND ANALYSIS
To demonstrate the performance of our proposed approach, we
use data from our Nissan’s research laboratory. We evaluate our
approach against several baselines in terms of total bill and peak
shaving (demand charge savings).
Data Collection We collected real-world data from Nissan’s re-
search laboratory in Santa Clara, California, including building
power, EV charger usage, and EV telemetry, over a nine-month
period from May 2023 to January 2024. To model the distributions
of EV arrivals, SoC requirements, and building power fluctuations,
we used Poisson distribution based on historical data. Character-
istics of the datasets are shown in Appendix A.2. The number of
EVs arriving at the office on weekdays varies daily, illustrating the
inherent uncertainties. Arrival and departure hours relative to SoC
are depicted in Figure 4 in the appendix, which also presents the



distribution of peak power draw and corresponding hours. Main
environment parameters are provided in Table 8 in the appendix.
We sampled 1000 billing episodes for each month from May 2023
to January 2024.
Downsampling.We varied the number of training samples and
found that exceeding a certain limit increased computational de-
mands andworsened performance (see ablation study in Section 5.2).
To mitigate this, we applied k-means clustering [5] with 𝑘 = 5 based
on the optimal demand charge from the MILP solution, selecting
60 training samples and 50 testing samples per cluster to ensure
exclusivity. This approach is further evaluated in the ablation study.
The key characteristics of the training and testing data are shown
in Table 7 in the appendix.
Estimated Peak Power. To enhance training efficacy, we split
the monthly dataset into daily episodes for the model to learn
from varying weekday conditions. We include a monthly peak
power estimate for each month as an input feature derived from
optimal action sequences generated by the MILP solver, using the
lower bound of the 99% confidence interval from training data as a
conservative demand charge estimate. This input feature is further
tuned during RL training.
Hyperparameter Tuning. Hyperparameter tuning is performed
on the parameters outlined in Table 6 in the Appendix, which also
shows the parameters of the best models selected for each of the
nine months. To evaluate the model’s performance, we employ a
3-fold cross-validation approach, dividing the 60 monthly training
samples into 40 samples for training and 20 samples for evaluation.
Baseline Approaches. To evaluate the performance of our RL
approach, we compare it with various methods, including an op-
timal oracle solution, a real-world charging procedure (baseline
approach), and several proposed heuristic approaches. We provide
brief descriptions of the baselines here and present the detailed
descriptions in Appendix A.3.

• OptimalMILP Solver (MILP):Wemodel deterministic sequences
of EV arrivals and departures and solve the problem using the
MILP formulation with IBM ILOG CPLEX Optimization Stu-
dio [2]. The results serve as an upper bound for comparison,
as they utilize an oracle for optimality.
• Fast Charge (FC): This approach simulates current real-world
charging procedures, charging all connected EVs as quickly as
possible to SOC𝑚𝑎𝑥 .
• Trickle Charging (Trickle): The trickle charging approach
utilizes the trickle charging rate, defined as theminimum required
charge at each time slot: 𝑃 (𝐶𝑖 ,𝑇𝑗 ) = KWHR (𝐶𝑖 ,𝑇𝑗 )/𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 ),
to charge all EVs until they reach their required SoC.
• Trickle Least Laxity First (T-LLF): We define the Trickle LLF al-
gorithm (detailed in the Appendix) based on the Least Laxity First
approach, a dynamic priority-driven method for scheduling mul-
tiprocessor real-time tasks [9]. In EV charging, we define laxity as
the difference between the remaining time before departure and
the time required to reach the desired SoC at a constant charging
rate [27]. For an EV connected to charger 𝐶𝑖 at time slot 𝑇𝑗 , the
laxity value is computed as (D(𝑉 ) −𝑇𝑗 ) −KWHR (𝐶𝑖 ,𝑇𝑗 )/𝐶𝑚𝑎𝑥

𝑖
,

with 𝜙 (𝐶𝑖 ,𝑇𝑗 ) is the EV connected to 𝐶𝑖 . At each time slot, we
compute the “power gap” (as 𝑃𝑚𝑎𝑥 (𝑇𝑗 ) − B(𝑇𝑗 )), using the esti-
mated peak power and the current building power. This power

gap is allocated to all EVs by distributing the trickling charger
rate to those prioritized by their laxity.
• Trickle Early Deadline First (T-EDF): We propose the Trickle
EDF algorithm in a similar manner to Trickle LLF, with the only
difference being the prioritization method. Trickle EDF follows
the Early Deadline First approach (based on time of departure of
an EV), which was originally designed as a dynamic scheduling
algorithm for real-time systems [22].
• Charge First Least Laxity First (CF-LLF): We compute the
available “power gap”, as in Trickle LLF. Then we calculate the
sum of the trickle charging rates for all EVs at the current time
slot; if this sum is less than the available “power gap”, we have
capacity for overcharging. We first assign the charging rate for
all EVs to be their trickle charging rates, and then, we charge
EVs connected to bi-directional chargers to reach their maxi-
mum SoC, following the reverse order of their laxity until the
power gap is consumed. If the trickle sum exceeds the power gap,
bidirectional EVs are discharged, also based on reverse laxity, to
fill the negative gap before resuming the trickle charging. See
Algorithm 4 in the appendix.
• Charge First Deadline First (CF-EDF): This follows the same
procedure as Charge First LLF but utilizes a different prioritiza-
tion metric, focusing on the remaining time before EV departure.

5.1 Results
We evaluate all approaches using two metrics: 1) Peak Shaving: It
is the difference in demand charge between (i) the building’s power
usage (without any charging) and (ii) by adding charging the EVs
under the respective policies. Positive values indicate that the policy
reduced the demand charge by controlling the charging actions. 2)
Total Bill: The sum of electricity cost and demand charge over the
billing period, computed by Eq. (6). Note that missing SoC—the
energy shortfall between required and actual SoC at departure for
each EV—is a key metric in the V2B problem. Our RL model, with
action masking, applies force charging and discharging in Mask
2 and Mask 3 to ensure all EVs reach the required SoC before
departure, minimizing missing SoC. For fairness, we apply these
force procedures across all proposed heuristics, so wewill not report
this metric separately, as missing SoC is minimized for all EVs.

We assess the RL model’s long-term performance from May
2023 to January 2024, comparing it against baseline approaches
on 50 testing samples. Table 1 compares the total bill over nine
months across different policies. While MILP offers an oracle-based
optimal solution, it is impractical for real-world use and serves as
a performance upper bound. The results show that the trained RL
model consistently achieves the lowest total bills from May 2023
to January 2024 (except June 2023), outperforming other real-time
policies in eight of the nine months and significantly reducing
costs compared to the real-world Fast Charge procedure as detailed
in Table 1. Table 2 shows the peak shaving achieved by different
policies. Our RL approach achieves the highest peak shaving in eight
months, barring June. Additionally, heuristic approaches using the
First Charge logic, like First Charge LLF or EDF, consistently result
in relatively lower total bills and demand charges compared to other
heuristics. This indicates that the First Charge approach is effective



Table 1: Total bill of test set, best values are bold. MILP shows the optimal solution given an oracle input. Lower is better.

Policy MAY JUN JULY AUG SEP OCT NOV DEC JAN

MILP 6201.1±50 6713.3±61 7371.0±40 9308.9±51 7231.0±36 7640.6±66 6625.9±42 6079.8±54 6495.1±55
RL 6222.6±26 6857.1±122 7392.2±51 9363.3±81 7243.0±24 7696.3±71 6654.9±61 6243.7±158 6635.0±80

CF-LLF 6245.9±32 6843.4±42 7396.8±26 9435.8±47 7284.1±41 7742.1±48 6675.9±32 6261.8±99 6646.3±81
CF-EDF 6247.6±34 6849.6±48 7399.0±28 9436.1±47 7289.5±48 7747.6±49 6676.3±31 6276.6±87 6639.9±69
T-LLF 6310.7±66 6920.0±75 7432.6±34 9537.5±52 7326.9±48 7800.1±48 6796.9±46 6344.5±132 6670.3±79
T-EDF 6326.6±58 6920.0±56 7455.4±34 9543.0±54 7364.5±48 7819.7±57 6809.7±42 6356.4±88 6673.2±60
Trickle 6333.8±44 6955.6±46 7506.0±37 9570.8±53 7402.1±47 7844.1±60 6842.9±44 6393.1±60 6706.8±53
FC 6308.7±50 6968.6±72 7537.3±83 9541.7±61 7403.6±81 7804.0±69 6813.0±70 6646.9±144 6706.4±77

Table 2: Peak shaving on test set, best values in bold. MILP shows the optimal solution given an oracle input. Higher is better.

Policy MAY JUN JULY AUG SEP OCT NOV DEC JAN

MILP 52.4±46 147.0±59 19.1±32 194.6±58 24.8±31 94.5±67 120.5±52 103.9±49 77.9±59
RL 31.7±28 3.8±61 -1.7±46 140.3±97 13.1±14 39.8±72 92.6±67 -59.2±152 -61.2±77

CF-LLF 8.3±34 17.4±43 -6.3±21 67.9±41 -28.0±28 -6.5±38 71.1±37 -77.2±92 -72.4±83
CF-EDF 6.5±33 11.2±50 -8.5±24 67.5±41 -33.4±34 -12.0±40 70.7±38 -91.9±81 -65.9±68
T-LLF -56.7±62 -59.2±73 -42.1±40 -33.9±40 -70.9±42 -64.6±41 -50.1±38 -160.2±126 -96.6±76
T-EDF -72.6±54 -59.3±53 -64.9±30 -39.4±41 -108.5±38 -84.2±52 -62.8±37 -172.1±82 -99.5±58
Trickle -79.8±39 -94.9±46 -115.5±36 -67.1±34 -146.1±38 -108.6±48 -96.1±36 -208.8±53 -133.2±49
FC -57.1±46 -113.7±70 -151.3±85 -40.8±42 -155.1±73 -76.0±59 -70.8±72 -473.5±138 -140.3±76

Table 3: Ablation results for final total bill on three months. Lower is better.

RL RL\500 RL\C RL\F RL\E RL\P RL\A Random\A

20471.9±137 20494.8±174 20511.6±184 20594.1±181 21130.2±214 21157.0±204 21273.7±209 21627.3±180

in balancing the charging and discharging process, offering better
overall performance across all heuristics.

5.2 Ablation Study
We evaluate the contributions of key techniques in our approach
through ablation. For the ablation studies, we trained RL models
on monthly samples of three months, May to July 2023, and tested
their performance on the total bill. The ablations explored are: 1)
RL\500 , RL training with more (500) training samples. 2)RL\C , RL
training using 60 randomly selected samples from 1000 generated
samples. 3) RL\F , RL models trained using the complete set of 100
state features defined in Section 4.1. 4) RL\E, RL training where the
monthly estimated peak power is set to 0, removing the influence
of long-term peak power estimation. 5) RL\P, RL training without
policy guidance. 6) RL\A, RL training without action masking,
except for forced charging and discharging (Masks 2 and 3), which
are retained to minimize missed SoC. 7)Random\A , where actions
are randomly selected instead of using a trained actor network,
followed by action masking. We present the sum of the monthly
total bills from May to July 2023 for all approaches in the ablation
study in Table 3 and Appendix A.3. Next, we discuss the significance
of each ablated feature.

Downsampling.We evaluate the impact of downsampling us-
ing k-means clustering to generate 60 training samples from a pool

of 1000. The RL\500 approach, which uses 500 samples, showed no
improvement in performance but increased computational burden
during training. We also tested RL\C , where samples were ran-
domly selected instead of clustered, resulting in a performance drop.
These findings confirm that our downsampling method maintains
RL performance while improving efficiency.

State abstraction. We then examine the RL\F approach, which
performs worse, suggesting that condensing state features with
domain-specific knowledge improves training and leads to better
outcomes.

Policy guidance. The RL\P approach, which removes policy
guidance, results in decreased performance, highlighting its impor-
tance in optimizing actions during training. This guidance narrows
down the action exploration space, directing the model toward
better solutions.

Long-term prediction. The RL\E approach shows worse re-
sults, highlighting the importance of accurate long-term peak power
estimation during training. This value is used in action masking to
improve the charging actions without increasing the monthly peak
power and influences the reward function by penalizing actions
that raise peak power. When set to 0, the RL model fails to converge
to a good global optimum, emphasizing the critical role of peak
power estimation in achieving optimal performance.



Action Masking. Training without action masking procedure
in RL\A leads to a significant performance drop, demonstrating
its importance in improving RL performance. This also highlights
the challenge of training RL models with 15 chargers in a continu-
ous action space. Action masking incorporates heuristics to guide
actions, resulting in significant improvements.

RL actor network. To assess the impact of the actor network,
we replaced it with a random policy in the Random\A approach.
It generates random charging actions before passing through the
action masking. The poor performance shows that action masking
alone is insufficient, emphasizing the critical role of the actor net-
work in achieving optimal outcomes. Despite all proposed heuristics
(except Fast Charge) adhering to action masking constraints, in-
cluding forced charging and power improvements, the RL approach
consistently delivers better results, underscoring the importance of
the actor network.

6 CONCLUSION
We propose an RL-based approach to address V2B challenges in
smart buildings by optimizing charging power for mixed-mode EV
chargers. The goal is to minimize overall costs, including energy
bills and demand charges, while ensuring EVs reach their required
SoC. Our solution addresses key challenges such as multi-agent
decision-making, centralized control of up to 15 chargers, and con-
tinuous charging power adjustments, all aimed at minimizing the
total energy bill over a month. We evaluate our approach against
several heuristic algorithms in simulated V2B scenarios using real-
world data from an EV manufacturer. Results show that our trained
models effectively manage online EV charging, lowering monthly
total bills while meeting SoC requirements.
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A APPENDIX
A.1 Related Work
We provide a more detailed review of prior work here. Table 4
describes the key papers and summarizes their gaps.
Uncertainty of vehicles and SoC requirements. Prior work has
taken Mukherjee and Gupta defines this taking into consideration
different mobility aspects such as the arrival/departure time of an
EV at/from a charging station, trip history of EVs, and unplanned
departure of EVs [14]. Empirical studies, such as those by Richard-
son et al., have analyzed EV charging strategies and their impact
on grid stability, which are closely related to V2B systems [20].
The challenges of optimizing V2B systems, especially given the
dynamic nature of energy pricing and vehicle usage patterns, have
also been addressed by Wang et al., who proposed a demand re-
sponse framework for smart grids [26]. Additionally, O’Connell
et al. applied optimization algorithms, such as Mixed Integer Linear
Programming (MILP), to integrate renewable energy sources into
grid systems [16]. Other approaches, including meta-heuristics and
Model Predictive Control (MPC), have been explored to optimize
the smart EV charging process for electric vehicles (EVs), focusing
on energy cost and user fairness in single-site or vehicle-to-grid
(V2G) systems [1, 3, 8, 14]. However, many of these methods focus
on unidirectional chargers and fail to fully account for uncertainty
including, vehicle arrivals and departures [14].
Time of use pricing, demand charge, and long-term rewards.
Optimizing V2B is a complex problem, made more complex when
the lengths of billing periods set by TSOs are considered. Several
approaches [1, 13, 21] only optimize and plan for single-day hori-
zons. Lee et al. are able to achieve one-month planning horizons
while considering demand charge [8]. However, they assume a
homogeneous set of chargers. Thus preventing them from fully
realizing the effect of EVs on potential savings.
Heterogeneous chargers and continuous action spaces. Ap-
proaches that solve EV charging without considering the ability
of EVs to discharge ignore even more potential savings. How-
ever, addressing this introduces further complexity to the system.
Narayanan et al. works around the limitations of charger homo-
geneity by using Deep RL [15]. They consider SoC requirements
and address the mobility-aware needs of EVs. However, their ap-
proach does not consider long-term rewards, instead limiting their
planning to a single day. Improving upon these initial approaches,
Zhang et al. investigated federated RL for EV charger control, aim-
ing to maximize user benefits [29], and minimize electricity prices.
Their approach explores the continuous action space of charging
power and extends their planning horizon to an entire week. While
their approach includes both discharging and charging actions, they
fail to capture the idea of demand charge into their problem, which
is critical in the industrial context.
Tracking real-world state and transition. Existing approaches
validate their approaches using simulations that have limited in-
terface with the real world. Lee et al. utilizes an existing Adaptive
Charging Network (ACN) EV charging testbed along with a mobile
application to capture EV telemetry and charger behavior [8]. Thus,
they capture the complexity of real charging systems, including
battery charging behaviors.
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Figure 3: (Top) Arrival counts per day of the week across 8
months.Most of the cars arrive duringWednesday and Friday.
(Bottom) Peak building draw per day of the week across 8
months. Mondays and Fridays typically exhibit the highest
and lowest power draws.
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Figure 4: (Top) Distribution of EV hours and SoC for both ar-
rivals and departures across 8 months. (Bottom) Distribution
of peak building power draw against the hours of day it was
drawn and the TOU rates across the day. The majority of the
car arrivals and departure occur within high peak pricing
times and all of the peak power draw happens during peak
pricing time.

A.2 Complementary Figures
The characteristics of the training set are shown in Figure 3 and Fig-
ure 4. Figure 3 show the variations in arrival counts (top) and peak
building draw (bottom) across the different days of the week across
8 months. Most cars arrive on Wednesdays and Fridays while the
peak building draw is the least on Fridays. Figure 4 (top) show
distributions of car arrivals and departures hours against the EVs
arrival SoC and required SoC upon departure. Figure 4 (bottom)
show the distribution of peak power draw and the hour of day.
The line in red signifies the TOU rates across the day. All of the
cars arrive within peak hours, while the majority of them leave
within the peak hours. Finally, all off-the-peak power draws occur
at peak hours. The intersection of these arrivals, departures, and
peak power draw hours represents the potential space that our
policy can operate on.



Table 4: Comparison of state-of-the-art approaches for EV charging problem with our approach.

Reference Approach Objective Action Space Planning
Horizon

Discharge Mobility Req.
SoC

Demand
Charge

Ardakanian et al. [1] Distributed control
algorithm

EV charging Fair-
ness Allocation

Continuous power
rate of 2 chargers

Single day

Deilami et al. [3] Rule-based control Minimize energy
cost and grid energy
losses

Continuous power
rate

Permanent

Lee et al. [8] Scheduling algo-
rithm

Minimize demand
charge, total load
variation, and ca-
pacity distribution
fairness

Continuous power
rate of 80 chargers

Onemonth ✓ ✓

Mocanu et al. [13] Deep Q-learning,
Deep Policy Gradi-
ent

Minimize building
energy cost

Boolean decision for
turn on/off 3 devices

Single day ✓

Sadeghianpourhamami
et al. [21]

RL: off-policy value-
iteration

Minimize power
consumption and
unfinished charging

Boolean decision
(charge or not) on
50 charger stations

Single day ✓ ✓

Narayanan et al. [15] Deep RL: PPO Minimize energy
bill and satisfy user
QoS

Continuous power
rate of an EV and a
HVAC

Single day ✓ ✓ ✓

Zhang et al. [29] Federated RL: Soft
Actor and Critic

Maximize EV user
benefits and electric-
ity prices

Continuous power
rate of 3 chargers

One week ✓ ✓ ✓

Our Approach DDPG with action
masking and policy
guidance

Minimize demand
charge, electricity
cost and missing
SoC

Continuous power
rate of 15 chargers

Onemonth ✓ ✓ ✓ ✓

Environment Simulator.We process these training data into
input samples for our digital twin/environment simulator.Wemodel
a digital twin for the target environment and provide several in-
terfaces that allow both simulated and real-world components to
leverage our proposed approach. This allows us to investigate how
any action or decision can potentially impact the real world. There
are two main decisions that must be taken when solving the V2B
charging problem. (1) charger assignments and (2) charger actions.

Table 5: Charger Assignment and tiebreaker comparisons
with an MILP policy. Assigning to Bidirectional chargers
first and then breaking ties by assigining them to the EV that
departs later results in the lowest bill. Lower is better.

Assignment Tie Breaker Average Monthly Bill ($)

Bidirectional Departure 7037.178±957.869
Bidirectional Capacity 7037.180±958.867
Bidirectional Random 7037.647±958.656
Random Random 7038.770±971.310
Random Departure 7039.723±968.603
Random Capacity 7040.216±966.708

Unidirectional Random 7122.884±981.666
Unidirectional Departure 7123.066±981.620
Unidirectional Capacity 7123.073±981.612

Charger assignment. We consider a first-in, first-out policy
that assigns EVs to bidirectional chargers first, breaking ties as-
signing to later departing cars; a comparison of different policy
combinations is shown in Table 5. We observe that bidirectional
charging assignments outperform all other policies. Tie-breaking
strategies that prioritize later-departing vehicles show a marginal

advantage. While these assignment policies could be further opti-
mized, we chose to follow this heuristic and focus on the second
decision problem: determining charger actions. Charger actions.
We provide several policies with our simulator to compare our
proposed approach. Charger action policies receive a state of the
environment for a particular time and generate actions based on
this.

A.3 Additional Details on the Approach
Our proposed approach, as outlined in Algorithm 2, is based on
the DDPG algorithm [11], which utilizes an actor network to gen-
erate actions. Tuples of state, action, reward, and next state are
stored as transitions in the replay buffer (lines 9 to 12). During
training, we interact with the environment simulator. We provide
input from the training dataset. Table 7 shows the characteristics
of this dataset. The environment simulator abstracts state features
for the RL models and manages state transitions based on the func-
tion described in Section 4.1. In each training iteration, we batch
state transitions from the replay buffer for model training (line 13).
Specifically, DDPG maintains target networks for both the actor
and critic, which are used to generate the next state and compute
Q-values essential for calculating the critic loss during training.
The critic network is trained using gradient descent by minimizing
the mean squared error between predicted Q-values and target Q-
values derived from the Bellman equation (lines 14-16). The critic
learns Q-values for state-action pairs, which are then used to train
the actor network through a policy gradient approach (lines 17 and
18). The updates to the target networks are delayed to stabilize the
training process (lines 18-19).

To improve RL performance in handling the limitations asso-
ciated with large continuous action spaces and long-term reward
optimization, we introduce action masking and policy guidance



Algorithm 2: Improved DDPG with Action Masking and
Policy Guidance.
Input: Initial policy parameters for actor network 𝜁𝑎 , critic

parameters 𝜁𝑐 , target network parameters 𝜁 ′𝑎, 𝜁 ′𝑐
Training parameters: actionNoise, 𝑅𝑃𝐺 , bufferSize, batchSize,
maximum iterations:𝑀 , training steps: trainStep; target network
update steps: updateStep
Output: Trained policy 𝜋𝜁𝑎

1 Initialize replay buffer BF; step← 0
2 for 1 to𝑀 do
3 Input a sample into simulator to generate initial state 𝑠0
4 for each time slot𝑇𝑗 ∈ T do

// Introducing policy guidance stochastically.
5 randomValue← 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑒𝑡𝑤𝑒𝑒𝑛 (0, 1)
6 if randomValue ≤ 𝑅𝑃𝐺 then
7 Get action 𝐴(𝑇𝑗 ) by rerunning the MILP solver:

𝐴(𝑇𝑗 ) ← MILP (𝑆 (𝑇𝑗 ), remainEpisode)
8 else
9 Get masked action using current policy, actionNoise:

10 𝐴(𝑇𝑗 ) ← Mask
(
𝑆 (𝑇𝑗 ), 𝜋 (𝑆 (𝑇𝑗 ) |𝜁𝑎 ) ) + actionNoise

)
11 State transition 𝑆 (𝑇𝑗+1 ) ← Trans (𝑆 (𝑇𝑗 ), 𝐴(𝑇𝑗 ) )
12 Get the action reward 𝑅 (𝑇𝑗 ) ← Reward (𝑆 (𝑇𝑗 ), 𝐴(𝑇𝑗 ) )
13 Store transition (𝑆 (𝑇𝑗 ), 𝐴(𝑇𝑗 ), 𝑅 (𝑇𝑗 ), 𝑆 (𝑇𝑗+1 ) ) in BF
14 if step mod trainStep == 0 then
15 Sample batch (𝑆 (𝑇𝑖 ), 𝐴(𝑇𝑖 ), 𝑅 (𝑇𝑖 ), 𝑆 (𝑇𝑖+1 ) from BF
16 Get masked actions using target actor network:
17 𝐴(𝑇𝑖+1 ) ← Mask (𝑆 (𝑇𝑖+1 ), 𝜋 ′ (𝑆 (𝑇𝑖+1 ) |𝜁 ′𝑎 ) )
18 Set target 𝑦𝑖 ← 𝑅 (𝑇𝑗 ) + 𝛾𝑄 ′ (𝑆 (𝑇𝑖+1 ), 𝐴(𝑇𝑖+1 ) |𝜁 ′𝑐 )
19 Update critic network by minimizing the loss:

𝐿 ← 1
𝑁

∑
𝑖 (𝑦𝑖 − 𝑄 (𝑆 (𝑇𝑖 ), 𝐴(𝑇𝑖 ) |𝜁𝑐 ) )2

20 Get masked actions 𝐴(𝑇𝑖 ) at 𝑆 (𝑇𝑖 ) using actor
network: 𝐴(𝑇𝑖 ) ← Mask (𝑆 (𝑇𝑖 ), 𝜋 (𝑆 (𝑇𝑖 ) |𝜁𝑎 ) )

21 Update the actor policy using policy gradient:
22 ∇𝜁𝑎 𝐽 ←

1
𝑁

∑
𝑖 ∇𝑎𝑄 (𝑆 (𝑇𝑖 ), 𝐴(𝑇𝑖 ) |𝜁𝑐 ) |∇𝜁𝑎𝜋 (𝑠 |𝜁𝑎 ) |𝑆 (𝑇𝑖 )

23 if step mod updateStep == 0 then
24 Update the target networks: 𝜁 ′𝑎 ← 𝜏𝜁𝑎 + (1 − 𝜏 )𝜁 ′𝑎 ;

𝜁 ′𝑐 ← 𝜏𝜁𝑐 + (1 − 𝜏 )𝜁 ′𝑐
25 step← step + 1

techniques. Action masking, denoted asMask(𝑆 (𝑇𝑗 ), 𝐴(𝑇𝑗 )), refines
the raw actions generated by the actor network by enforcing action
validity and utilizing domain-specific knowledge, thereby improv-
ing policy performance (lines 9, 14, 17). Meanwhile, policy guidance
incorporates the MILP solver to provide optimal actions through
MILP (𝑆 (𝑇𝑗 ), remainEpisode), based on current and future informa-
tion (lines 5-9). These optimal actions are stochastically introduced
during RL training into the replay buffer, mixing high-quality ac-
tions with the raw RL actions to enhance the training transition
quality and guide the RL training in a beneficial direction.

A.4 Complementary Experimental Results
We evaluate our approach on an environment with the parameters
shown in Table 8. We use the same parameters across hyperparam-
eter tuning, training, evaluation, and comparison.
Additional Details on Hyper-Parameter Tuning: This method-
ology enables us to monitor and assess the RL model’s performance

Table 6: Hyperparameters and selected values.

Parameter Description Range
Actor network Number of units at each layer [96, 96]
Critic network Number of units at each layer [96, 96]
Γ Discount factor for future reward 1
Actor&Critic
learning rate

Learning rate for updating actor
and critic networks

10−5, 10−3

bufferSize Batch size for fetching transitions
from replay buffer

64

batchSize Size of the replay buffer 106

actionNoise Noise added during action explo-
ration

normal(0,0.2)

𝑅𝑃𝐺 Probability to introduce policy guid-
ance

0.5 or 0.7

𝜆𝑆 , 𝜆𝐵 , 𝜆𝐷 Penalty coefficients for SoC require-
ment, bill cost, and demand charge

1,1, 3

Random seed Random seed for actor and critic
network initialization

0-5

Adjustment of
𝑃𝑚𝑎𝑥

Lower bound of the 99% confidence
interval for the optimal monthly
peak power based on training data

Increased
by 0%, 5%,
10%

trainStep,
updateStep

Training steps and steps per update
of target networks

5, 5

throughout the training process. An early stopping procedure is
implemented, terminating training if the total reward on the 20
evaluation samples does not improve after a specified number of
iterations. Finally, we select the optimal combination of hyperpa-
rameters based on the results from the 3-fold cross-validation. The
new RL model is then trained using the full set of training samples
with the identified best parameter combination. Finally, we test the
trained 9 RL models on 50 unseen monthly samples for each month
from May 2023 to January 2024 to evaluate their generalization
performance. Table 6 show selected values for each hyperparameter
after tuning.

Algorithm 3: Trickle Charging with Least Laxity First.
Input: Set of EVs𝑉 , chargers C, time slots 𝑡
Output: Charging schedule for each EV

1 for each time slot𝑇𝑗 ∈ T do
2 for each EV 𝜙 (𝐶𝑖 ,𝑇𝑗 ) connected to chargers C do
3 Compute laxity: 𝐿 (𝜙 (𝐶𝑖 ,𝑇𝑗 ) ) =

(D (𝜙 (𝐶𝑖 ,𝑇𝑗 ) ) − 𝑡 ) − KWHR (𝐶𝑖 ,𝑇𝑗 )/𝐶𝑖
𝑚𝑎𝑥 .

4 Compute power gap: 𝑃 = 𝑃𝑚𝑎𝑥 (𝑇𝑗 ) − B(𝑇𝑗 ) ;
5 Sort EVs by laxity: 𝐿 (𝜙 (𝐶𝑖 ,𝑇𝑗 ) ) in ascending order;
6 Initialize [𝑃 (𝐶𝑖 ,𝑇𝑗 ) ]𝐶𝑖 ∈C as 0;
7 for each EV 𝜙 (𝐶𝑖 ,𝑇𝑗 ) sorted by laxity do
8 if 𝑃 > 0 then
9 Set trickle charging rate:

𝑃 (𝐶𝑖 ,𝑇𝑗 ) = min(KWHR (𝐶𝑖 ,𝑇𝑗 )/𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 ), 𝑃 ) ;
10 𝑃 ← 𝑃 − 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ;

Heuristics: Algorithm 4 and Algorithm 3 show the exact algo-
rithms used for Charge First LLF and Trickle LLF, respectively.
Ablation results: Finally, Table 3 shows a breakdown of the abla-
tion results per month.



Table 7: Training and testing data information for each month.

Month Training (60 Samples) Testing (50 Samples)
Car Arrival
Number (per
day)

Monthly Peak
Building Load
(kW)

Daily Peak
Building load
(kW)

Estimated
peak
power
(kW)

Number
of Week-
days

Car Arrival
Number (per
day)

Monthly Peak
Building Load
(kW)

Daily Peak
Building Load
(kW)

MAY 9.35 ± 2.19 125.89 ± 1.72 96.22 ± 13.76 119 22 9.31 ± 2.2 125.62 ± 1.65 96.18 ± 13.73
JUN 11.4 ± 2.53 141.04 ± 1.83 109.86 ± 14.0 125 21 11.49 ± 2.51 140.34 ± 2.21 109.75 ± 13.97
JUL 10.86 ± 2.45 148.08 ± 1.57 111.79 ± 35.39 145 20 10.97 ± 2.4 148.12 ± 1.72 111.94 ± 35.49
AUG 6.87 ± 1.97 221.02 ± 3.86 160.5 ± 27.92 202 23 6.92 ± 1.93 221.17 ± 3.77 160.69 ± 28.14
SEP 14.99 ± 2.9 145.91 ± 1.48 127.2 ± 11.86 143 20 14.94 ± 2.88 146.23 ± 1.08 127.2 ± 11.85
OCT 14.55 ± 2.91 186.54 ± 1.72 118.58 ± 30.12 174 21 14.54 ± 2.86 185.17 ± 2.77 118.5 ± 30.13
NOV 9.59 ± 2.31 144.9 ± 3.28 113.09 ± 19.18 130 19 9.57 ± 2.29 144.2 ± 2.92 113.09 ± 19.2
DEC 20.36 ± 3.4 116.49 ± 2.25 98.72 ± 8.0 104 16 20.32 ± 3.35 116.33 ± 2.01 98.69 ± 7.95
JAN 13.62 ± 2.73 137.77 ± 2.47 91.56 ± 19.46 127 21 13.53 ± 2.76 137.64 ± 2.5 91.72 ± 19.47

Table 8: Simulation Parameters.

Parameter Value
C 15 chargers (5 bi-directional, 10 uni-directional)
C𝑖
𝑚𝑖𝑛

,C𝑖
𝑚𝑎𝑥 [-20 kW, 20 kW] for bi-directional, [0, 20 kW] for uni-

directional chargers
𝛿 Time interval: 0.25 hours
𝜃𝐷 , 𝜃𝐸 (𝑇𝑗 ) 9.62 $/kW (Demand), 0.11271 $/kWh (off-peak), 0.1466

$/kWh (peak: 6 a.m.-10 p.m.)
𝐶𝐴𝑃 (𝑉 ) EV battery capacity: 40 or 62 kWh
SOC𝑚𝑖𝑛 (𝑉 ) ,
SOC𝑚𝑎𝑥 (𝑉 )

Minimum and maximum SoC: 0% and 90% of capacity

Table 9: Month-wise ablation results for total bill. Lower is
better.

Policy MAY JUN JULY Total

RL 6222.6 6857.0 7392.2 20471.0
RL\500 6225.08 6875.12 7394.59 20,494.79
RL\E 6464.49 7033.71 7631.95 21,130.15
RL\A 6377.01 7174.84 7721.81 21,273.66
RL\C 6223.4 6895.8 7392.45 20,511.65
RL\F 6230.39 6968.64 7395.07 20,594.10

Random\A 6532.59 7250.97 7843.72 21,627.28

Algorithm 4: Charge First with Least Laxity First.
Input: Set of EVs𝑉 , chargers C, time slots 𝑡
Output: Charging schedule for each EV

1 for each time slot𝑇𝑗 ∈ T do
2 for each EV 𝜙 (𝐶𝑖 ,𝑇𝑗 ) connected to C do
3 Compute laxity: 𝐿 (𝜙 (𝐶𝑖 ,𝑇𝑗 ) ) =

(D (𝜙 (𝐶𝑖 ,𝑇𝑗 ) ) − 𝑇𝑗 ) − KWHR (𝐶𝑖 ,𝑇𝑗 )/𝐶𝑖
𝑚𝑎𝑥 .

4 Compute power gap: 𝑃 = 𝑃𝑚𝑎𝑥 (𝑇𝑗 ) − B(𝑇𝑗 ) ;
5 Compute sum of trickle rates:

𝑆 =
∑

𝑖 KWHR (𝐶𝑖 ,𝑇𝑗 )/𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 ) ;
6 if 𝑆 < 𝑃 then // Overcharging EVs for future discharging
7 for each EV 𝜙 (𝐶𝑖 ,𝑇𝑗 ) connected to C do
8 Set trickle rate:

𝑃 (𝐶𝑖 ,𝑇𝑗 ) ← KWHR (𝐶𝑖 ,𝑇𝑗 )/𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 ) ;
9 𝑃 ← 𝑃 − 𝑆 ;

10 for each EV𝑉 = 𝜙 (𝐶𝑖 ,𝑇𝑗 ) connected to bi-directional
chargers in reverse laxity order do

11 Charge to maximum SoC: 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ←
min

(
𝐶𝑚𝑎𝑥
𝑖

,
(SOC𝑚𝑎𝑥 (𝑉 )−SOC (𝑉 ,𝑇𝑗 ) )×𝐶𝐴𝑃 (𝑉 )

Δ𝑡 , 𝑃

)
;

12 𝑃 ← 𝑃 − 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ;
13 else // Discharging EVs to increase power gap
14 while 𝑃 ≥ 𝑆 and not all EVs connected to bi-directional

chargers are considered do
15 for each𝑉 = 𝜙 (𝐶𝑖 ,𝑇𝑗 ) connected to bi-directional

chargers in reverse laxity order do
16 if 𝑆𝑂𝐶 (𝑉 ,𝑇𝑗 ) > SOC𝑅 (𝑉 ) then
17 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ←

max
(
𝐶𝑚𝑖𝑛
𝑖

,
(SOC𝑅 (𝑉 )−SOC (𝑉 ,𝑇𝑗 ) )×𝐶𝐴𝑃 (𝑉 )

𝛿

)
;

18 𝑃 ← 𝑃 − 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ;
19 for each𝑉 = 𝜙 (𝐶𝑖 ,𝑇𝑗 ) connected to chargers sorted by

reverse laxity do
20 Set trickle rate:

𝑃 (𝐶𝑖 ,𝑇𝑗 ) ← min
(
KWHR (𝐶𝑖 ,𝑇𝑗 )/𝜏𝑅 (𝐶𝑖 ,𝑇𝑗 ), 𝑃

)
;

21 𝑃 ← 𝑃 − 𝑃 (𝐶𝑖 ,𝑇𝑗 ) ;
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