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Abstract
The Pickup and Delivery Problem with Time Windows (PDPTW)
involves optimizing routes for vehicles to meet pickup and delivery
requests within specific time constraints, a challenge commonly
faced in logistics and transportation. Microtransit, a flexible and
demand-responsive service using smaller vehicles within defined
zones, can be effectively modeled as a PDPTW. Yet, the need for
driver breaks—a key human constraint—is frequently overlooked in
PDPTW solutions, despite being necessary for regulatory compli-
ance. This study presents a novelmixed-integer linear programming
formulation for the Pickup and Delivery Problem with Time Win-
dows and Driver Breaks (PDPTW-DB). To the best of our knowledge
this formulation is the first to consider mandatory periodic driver
breaks within optimized Microtransit routes. The proposed model
incorporates regulatory compliant break scheduling directly within
the vehicle routing optimization framework. By considering driver
break requirements as an integral component of the optimization
process, rather than as a post-processing step, the model enables the
generation of routes that respect hours of service regulations while
minimizing operational costs. This integrated approach facilitates
the generation of schedules that are operationally efficient and pri-
oritize driver welfare through driver breaks. We work with a public
transit agency from the southern USA, and highlight the specific
nuances of driver break optimization, and present a Pickup and
Delivery Problem with Time Windows formulation for optimizing
Microtransit operations and scheduling driver breaks. We validate
our approach using real-world data from the transit agency. Our
results validate our formulation in producing cost-effective, and
regulation-compliant solutions.
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1 Introduction
Between 2010 and 2020, intercity buses were involved in 11% of all
fatal bus crashes on average, while school buses and transit buses
accounted for 38% and 35% of these crashes, respectively [9]. The
U.S. Federal Motor Carrier Safety Administration (FMCSA) iden-
tified the key contributing factors — fatigue, time pressure, and
distraction [11], highlighting the need for stricter rest regulations
and effective route planning to ensure road safety. To address these
concerns, the FMCSA established Hours of Service (HOS) regu-
lations, requiring passenger-carrying drivers to take a 30-minute
break after 8 hours of driving [10]. The European Union enforces
similar rules, including a daily driving limit of 9 hours (extendable
to 10 hours twice a week) and a weekly limit of 56 hours. Dri-
vers must also observe a daily rest of at least 11 hours (reducible
to 9 hours up to three times a week) and take a 45-minute break
after 4.5 hours of driving [8]. Although these regulations aim to
ensure drivers get adequate rest, without proper route planning,
drivers may struggle to find suitable opportunities for breaks or
appropriate rest stops. This challenge is particularly pronounced in
poorly scheduled passenger services, leading to potential violations
of maximum working hours. Consequently, drivers might have to
deviate from their routes or stop unexpectedly, delaying passenger
delivery. In some instances, drivers may end up taking breaks in
locations without adequate rest facilities or food supplies, which
can exacerbate fatigue, reduce alertness, and compromise the safety
of passengers and drivers.

We present a problem formulation and offer a solution method
for the optimization of Microtransit systems. We focus on the
Pickup and Delivery Problemwith TimeWindows (PDPTW), which
has been used to represent Microtransit in previous studies [29].
PDPTWs involve coordinating the pickup and delivery of goods
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or passengers within specified time windows while optimizing
routes to minimize costs and meet scheduling constraints. The
proposed approach incorporates considerations for driver break
rules to address the associated challenges and improve overall
system efficiency and compliance. Existing work in PDPTWs in-
cludes Kim et al., who developed a rolling horizon framework
for Offline PDPTWs by decomposing the problem into manage-
able sub-problems to ensure smooth transitions between time win-
dows [16]. Sivagnanam et al. addressed paratransit routing with
flexible pickup windows by combining offline VRP complexity with
online booking requirements using a learning-based policy [25]. Sar-
tori and Buriol proposed a hybrid metaheuristic approach integrat-
ing Adaptive Guided Ejection Search (AGES), Large Neighborhood
Search (LNS), and Set Partitioning (SP) to improve solutions and
generate new problem instances [23].

In the context of PDPTWs considering driver breaks, Tuin et al.
introduced a method for scheduling breaks during waiting periods
using a modified Dijkstra’s algorithm to optimize travel times [28].
Kok et al. tackled traffic congestion and driving hours regulations
with a solution method for the Vehicle Routing Problem with Time
Windows (VRPTW), balancing travel distance and duty time [17].
However, existing methods generally focus on breaks at specific
times, such as lunch breaks, without addressing the need for peri-
odic breaks throughout the route or considering the spatial require-
ments for break locations, which may impact the overall effective-
ness of driver rest and route planning.

Considering the limitations of existing works, this paper aims to
address PDPTWs by incorporating more flexible continuous time
intervals for driver breaks and selecting suitable break locations
that do not impact future delivery requests. Specifically, the main
contributions of this paper include:

• A novel MILP formulation integrating periodic driver breaks
into the Pickup and Delivery Problem with Time Windows
(PDPTW-DB), balancing serviceability, travel cost, and break
scheduling, with specific constraints and linearization tech-
niques (Section 3).

• Implementation of the formulation and performance compar-
ison of multiple optimization tools, including Gurobi, Google
OR Tools, and Hexaly (formerly Localsolver).

• Experiment setup and evaluation of solution quality and im-
pact on working hours using real-world Microtransit deliv-
ery statistics from the Public Transit Agency (PTA) (Section 4
and Section 5.1) .

2 Related Work
The Pickup and Delivery Problem with Time Windows (PDPTW)
incorporating driver breaks can be derived from the Vehicle Routing
Problem (VRP), which has been extensively studied, with various
methodologies proposed to address challenges posed by different
constraints. This section summarizes significant contributions to
the field, highlighting their limitations and relevance to our prob-
lem.

Several studies have explored VRP or PDPTWwith time-dependent
driver breakswithin specific timewindows, such as lunch breaks. Kok

et al. employed a dynamic programming heuristic to minimize dri-
ver duty time, accounting for time-dependent travel and EC reg-
ulations, while optimizing schedules and incorporating capacity
constraints [17]. Braekers et al. combined a branch-and-cut method
with meta-heuristics to optimize Dial-a-ride service routes, con-
sidering multiple vehicle types and depots. They recognized the
importance of driver breaks and time-dependent travel times, plan-
ning to integrate these in future versions [4].

Su and Chen introduced a hybrid ant colony system to min-
imize delivery time, taking into account cargo capacity, battery
capacity, and human energy constraints. They found that incorpo-
rating driver breaks did not significantly increase overall delivery
time [26]. Prescott-Gagnon et al. employed a large neighborhood
search methodology to minimize the number of vehicles and travel
distance in VRPTWs. They considered weekly rest periods based
n EU regulations but didn’t account for rest periods within the
schedules. [21].

Similarly, Goel employed a large neighborhood search strategy
to optimize routing schedules in accordance with EU driver reg-
ulations. They considered 8-hour shifts with one break per shift
and an 11-hour rest period [12]. However, their approach does not
account for longer shifts that may require multiple breaks. Fur-
thermore, the paper focuses on the Vehicle Routing Problem with
Time Windows (VRPTW), which differs from the problem at hand
involving passenger pickup and drop-off. A significant constraint in
our problem is that drivers cannot take breaks when passengers are
on board, as it would cause inconvenience. Therefore, routes must
be scheduled while taking this restriction into account. Kopfer et al.
proposed a distributed decision-making framework that aims to
minimize vehicle usage and travel time while adhering to EC social
legislation. Their research also focused on incorporating mandated
rest periods throughout the week, rather than daily route schedule
breaks, into the optimization process. [18]. Zhao et al. combined
Hybrid Genetic Search with dynamic programming to minimize
total travel time, addressing time-dependent travel and multi-trip
constraints [31]. Their approach focused on maximizing idle time
to mitigate driver fatigue.

Various studies have focused on different combinations of con-
straints within VRP formulationswith breaks. Benjamin and Beasley
utilized metaheuristics, including Tabu Search, VNS, and VNTS, to
optimize routing with constraints such as time windows, multiple
disposal facilities, and driver rest periods. Each vehicle has a dri-
ver rest period (associated with a lunch break during the working
day [2]. Karademir et al. and Bazirha formulated the VRPTW with
driving time-based breaks [1, 14]. Coelho et al. combined MILP and
local search heuristics to minimize travel distance while addressing
the classical VRPTW with lunch breaks, using VB.net and CPLEX
for implementation [7]. Buhrkal et al. proposed their own formu-
lation of the CVRPTW with lunch breaks [5]. Table 1 provides an
overview of the research conducted on incorporating driver breaks
into VRPs.

Modeling the problem as a Mixed-Integer Linear Programming
(MILP) helps address complex and intertwined objectives. Yadav and
Mukherjee demonstrated this in their work on charging and routing
optimization for electric vehicles (EVs). MILP allows for the simul-
taneous consideration of limited battery capacity, varying charging
rates, and congestion at charging stations while optimizing travel
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and charging schedules. This approach ensures an even distribution
of delivery locations among EVs, minimizing total travel and charg-
ing time in a smart grid environment [30]. Schiffer et al. studied the
impact of synchronizing driver breaks with recharging operations
while scheduling the routes of electric vehicles. Their investiga-
tion highlighted how Hours of Service (HOS) regulations influence
the operational efficiency of Electric Commercial Vehicles (ECVs)
compared to Internal Combustion Engine Vehicles (ICEVs) in mid-
haul transportation. By integrating driver breaks with necessary
recharging stops, they found that ECVs can become more competi-
tive. The synchronization of breaks and recharging can lead to cost
savings of up to 20% compared to ICEVs. [24].

Our formulation considers vehicle capacity, pickups and deliv-
eries, time windows, and driving time-based driver breaks in the
daily schedule, while also making specific spatial considerations
by incorporating suitable break nodes and locations. We present a
novel variant of the VRP, ensuring periodic driver breaks are inte-
grated into the generated schedule, thereby improving the practical
applicability and effectiveness of routing algorithms in Microtransit
systems.

3 Problem Formulation
We formulate our PDPTW-DB problem based on existing PDPTW
formulations [19] proposed by Pavia et al., which extend the frame-
work originally presented by Toth and Vigo [27]. This section
overviews our PDPTW-DB and illustrates the extension of con-
straints for incorporating driver break scheduling into the route
plan. For clarity, Table 2 summarizes all notations used in the for-
mulation.

3.1 Problem Description
Pickup-Delivery Request: In the PDPTW-DB problem, vehicles
aim to serve 𝑛 pickup and delivery requests. The set 𝑁 represents
all pickup and delivery locations, denoted as nodes, with the pickup
nodes being 𝑃 = {1, . . . , 𝑛} and the drop-off nodes being 𝐷 =

{𝑛+1, . . . , 2𝑛}, such that𝑁 = 𝑃∪𝐷 . Each request 𝑖 involves a pickup
node 𝑖 and its corresponding delivery node 𝑛 + 𝑖 . The number of
passengers is denoted by𝑑𝑖 , and 𝑠𝑖 indicates the serving time at node
𝑖 , which accounts for loading passengers or goods. Each request
is constrained by time windows for both pickup and delivery. For
each node 𝑖 , the time window [𝑎𝑖 , 𝑏𝑖 ] specifies the period within
which the vehicle must arrive at that node to perform the pickup
or delivery.
Vehicle’s Route: Vehicles are represented by the set 𝐾 , with each
vehicle 𝑘 ∈ 𝐾 assigned to serve a subset of requests. Each vehicle
starts its route at the origin depot 𝑜 (𝑘) and ends at the destination
depot 𝑑 (𝑘). The travel time between nodes 𝑖 and 𝑗 in 𝑁 is denoted
by 𝜏𝑖 𝑗𝑘 , and the cost between nodes 𝑖 and 𝑗 is denoted by 𝑐𝑖 𝑗𝑘 . In this
paper, we consider the cost based on travel distance (in kilometers).
Each vehicle has an initial capacity 𝐶𝑘 , representing its maximum
passenger count, which changes as it serves requests. The load
change after a vehicle visits node 𝑖 is indicated by ℓ𝑖 . For a pickup
node 𝑖 , ℓ𝑖 = 𝑑𝑖 , and for a delivery node 𝑛 + 𝑖 , ℓ𝑖 = −𝑑𝑖 .
Driver Break Rules: Our driver break constraint stipulates that
drivers can work a maximum of 𝜃 hours before taking a mandatory
break. The additional time and cost for vehicle 𝑘 taking a break

between nodes 𝑖 and 𝑗 are denoted by 𝜏break
𝑖 𝑗𝑘

and 𝑐break
𝑖 𝑗𝑘

, respec-
tively. This includes the travel time from node 𝑖 to the nearest break
location, the break duration, and the travel time from the break
location to node 𝑗 . During route planning, we must ensure drivers
have access to designated break facilities with food and rest areas,
enabling them to resume service and meet subsequent requests on
time.
Route Planning and Break Scheduling: Our problem involves
planning routes for all vehicles to serve pickup and delivery requests
within their respective time windows while also determining driver
break times. To achieve this, we define a binary decision variable
𝑥𝑖 𝑗𝑘 , where 𝑖, 𝑗 ∈ 𝑁 and 𝑘 ∈ 𝐾 . The variable 𝑥𝑖 𝑗𝑘 is defined as:

𝑥𝑖 𝑗𝑘 =

{
1 if vehicle 𝑘 travels from node 𝑖 to node 𝑗
0 otherwise

Additionally, we define a binary variable 𝛽𝑖 𝑗𝑘 for scheduling driver
breaks, which is given by:

𝛽𝑖 𝑗𝑘 =

{
1 if vehicle 𝑘 takes a break at node 𝑖 before going to node 𝑗
0 otherwise

3.2 Objectives
Our PDPTW-DB aims to optimize route planning and break sched-
uling by minimizing vehicle workload, including travel and break
times, while maximizing serviceability of requests. We incorporate
serviceability into the objective function rather than as a constraint,
acknowledging that some requests may not be feasible to fulfill in
real-world scenarios. This is captured by decision variables 𝑥𝑖 𝑗𝑘
and 𝛽𝑖 𝑗𝑘 , as outlined in the objective function shown in Eq. (1).

min
∑︁
𝑘∈𝐾

∑︁
𝑖, 𝑗∈𝐴

(𝑐𝑖 𝑗𝑘𝑥𝑖 𝑗𝑘 + 𝛽𝑖 𝑗𝑘𝑐𝑏𝑟𝑒𝑎𝑘𝑖 𝑗𝑘
) + 𝛼 × (𝑛 −

∑︁
𝑖∈𝑃

𝑟𝑖 ) (1)

In the equation,
∑
𝑖, 𝑗∈𝐴 (𝑐𝑖 𝑗𝑘𝑥𝑖 𝑗𝑘 + 𝛽𝑖 𝑗𝑘𝑐𝑏𝑟𝑒𝑎𝑘𝑖 𝑗𝑘

) represents the total
travel time and additional time for breaks for vehicle 𝑘 . The variable
𝑟𝑖 indicates whether request 𝑖 has been served, as computed by:

𝑟𝑖 =
∑︁
𝑘∈𝐾

∑︁
𝑗∈𝑁∪{𝑑 (𝑘 ) }

𝑥𝑖 𝑗𝑘 ∀𝑖 ∈ 𝑃 (2)

From Eq. (2), we can deduce that 𝑟𝑖 = 1 if a vehicle visits the pickup
node for request 𝑖; otherwise, 𝑟𝑖 = 0. We include a penalty term for
𝑟𝑖 in the objective function, using a large penalty coefficient 𝛼 to
penalize unserved requests, thereby maximizing serviceability.

3.3 Constraints for Pickup-Delivery Services
Next, we list all constraints of the PDPTW-DB formulation to en-
sure that vehicles are routed correctly and requests are effectively
serviced.

To ensure that vehicles start and end their routes at predefined
depots and that every visited node is subsequently left, we define
the following constraints:∑︁

𝑗∈𝑃∪{𝑑 (𝑘 ) }
𝑥𝑜 (𝑘 ), 𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾 (1)∑︁

𝑖∈𝐷𝑘∪{𝑜 (𝑘 ) }
𝑥𝑖,𝑑 (𝑘 ),𝑘 = 1, ∀𝑘 ∈ 𝐾 (2)
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Table 1: VRP with Driver Breaks - Summary

Reference Methodology Objective Function Constraints

Kok et al. [17] Dynamic Programming Heuristic Minimize Driver Duty Time Time-Dependent Travel, EC Regu-
lations

Su and Chen [26] Hybrid Ant Colony System Minimize Delivery Time Cargo Capacity, Battery Capacity,
Human Energy

Prescott-Gagnon et al. [21] Large Neighborhood Search Minimize Number of Vehicles and
Travel Distance

VRPTW, Weekly Rest periods
based on EU regulations

Goel [12] Large Neighborhood Search Optimize Routing Schedules CVRP, EU Driver Regulations,
Fixed Break Periods

Kopfer et al. [18] Distributed Decision-Making
Framework

Minimize Vehicle Number and
Travel Time

VRPTW, EC Social Legislation

Coelho et al. [7] MILP and Local Search Heuristics Minimize Travel Distance Capacity, Time Windows, Lunch
Breaks

Braekers et al. [4] Branch-and-Cut and Meta-
heuristics

Minimize Travel Time Vehicle Type, Multiple Depots

Zhao et al. [31] HGS and Dynamic Programming Minimize Total Travel Time Time-Dependent Travel, Multi-
Trip

Rochat and Taillard [22] Probabilistic Techniques for Local
Search

Optimize Vehicle Routing Simple VRP with Lunch Breaks

Table 2: Notation table for PDPDTW

Symbol Description

𝑛 Number of requests

𝑁 Set of all nodes

𝑃 Set of pickup nodes

𝐷 Set of drop-off nodes

𝐾 Set of vehicles

𝑡𝑖𝑘 Start time of service at node 𝑖 by vehicle 𝑘

𝜏𝑖 𝑗𝑘 Travel time between nodes 𝑖 and 𝑗 by vehicle 𝑘

𝑥𝑖 𝑗𝑘 1 if vehicle 𝑘 travels from node 𝑖 to 𝑗 , else 0

𝑟𝑖 1 if pickup node 𝑖 is serviced, else 0

𝑐𝑖 𝑗𝑘 Travel cost from node 𝑖 to 𝑗 by vehicle 𝑘

𝑦𝑖 Load of vehicle 𝑘 after node 𝑖 has been serviced

ℓ𝑖 Passenger load associated with node 𝑖

𝐶𝑘 Capacity of vehicle 𝑘

𝑠𝑖 Service time at node 𝑖

𝑎𝑖 , 𝑏𝑖 Start and end time window for node 𝑖

𝜏𝑏𝑟𝑒𝑎𝑘
𝑖 𝑗𝑘

Additional travel time between nodes 𝑖 and 𝑗 if 𝛽𝑖 𝑗𝑘=1

𝑐𝑏𝑟𝑒𝑎𝑘
𝑖 𝑗𝑘

Additional travel cost between nodes 𝑖 and 𝑗 if 𝛽𝑖 𝑗𝑘=1

𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

Total driving time at last break node

𝑡𝑎𝑐𝑐
𝑖𝑘

Driving time accumulated since last break

∑︁
𝑖∈𝑁∪{𝑜 (𝑘 ) }

𝑥𝑖 𝑗𝑘 =
∑︁

𝑖∈𝑁∪{𝑑 (𝑘 ) }
𝑥 𝑗𝑖𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝑁 (3)∑︁

𝑗∈𝑁
𝑥𝑖 𝑗𝑘 =

∑︁
𝑗∈𝑁

𝑥 𝑗,𝑛+𝑖,𝑘 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃 (4)∑︁
𝑘∈𝐾

∑︁
𝑗∈𝑁∪{𝑑 (𝑘 ) }

𝑥𝑖, 𝑗,𝑘 ≤ 𝑟𝑖−𝑛, ∀𝑖 ∈ 𝐷 (5)

where Constraint (1) and (2) ensure that each vehicle starts and
ends its route at its origin and final depot. Constraint (3) ensures
that if a vehicle travels from node 𝑖 to node 𝑗 , it must later leave
node 𝑗 , except when 𝑗 is the final depot. Constraint (4) ensures that
if vehicle 𝑘 visits the pickup node 𝑖 , it will subsequently visit the
corresponding delivery node 𝑖 + 𝑛. To ensure that each request 𝑖 is
served by the same vehicle, we define Constraint (5) to guarantee
each serviced pickup request has a corresponding serviced delivery
request:

Additionally, we define constraints to ensure that a vehicle’s
load never exceeds its capacity during its route. We introduce the
intermediate load variable 𝑦𝑖𝑘 ∈ R≥0, where 𝑘 ∈ 𝐾 and 𝑖 ∈ 𝑁 , to
represent the load of vehicle 𝑘 after serving at node 𝑖 .

𝑦𝑜 (𝑘 ),𝑘 = 0, ∀𝑘 ∈ 𝐾 (6)
𝑦𝑑 (𝑘 ),𝑘 = 0, ∀𝑘 ∈ 𝐾 (7)
(𝑥𝑖 𝑗𝑘 = 1) ⇒ 𝑦𝑖𝑘 + ℓ𝑗 = 𝑦 𝑗𝑘 , ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (8)
ℓ𝑖 ≤ 𝑦𝑖𝑘 ≤ 𝐶𝑘 , ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃 (9)
0 ≤ 𝑦𝑛+𝑖,𝑘 ≤ 𝐶𝑘 − ℓ𝑖 , ∀𝑘 ∈ 𝐾,𝑛 + 𝑖 ∈ 𝐷 (10)

We first use Constraints (6) and (7) to ensure vehicles start with
a load of 0 at their origin depots and return with a load of 0 at
their final depots. Additionally, Constraint (8) updates the vehicle
load 𝑦𝑖𝑘 based on the load change value ℓ𝑗 , which indicates the
number of passengers boarding or alighting at node 𝑗 when vehicle
𝑘 travels from node 𝑖 to node 𝑗 . Finally, Constraints (9) and (10)
ensure that the vehicle load never exceeds its capacity 𝐶𝑘 and is
properly adjusted at both pickup and delivery nodes.

Furthermore, to ensure all requests are served within their re-
quired time windows, we introduce an intermediate variable 𝑡𝑖𝑘 ∈
R≥0, where 𝑖 ∈ 𝑁 and 𝑘 ∈ 𝐾 , representing the start time of service
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for vehicle 𝑘 at node 𝑖 . The following constraints are proposed:

𝑡𝑜 (𝑘 ),𝑘 = 0, ∀𝑘 ∈ 𝐾 (11)

(𝑥𝑖 𝑗𝑘 = 1) ⇒ 𝑡𝑖𝑘 + 𝑠𝑖 + 𝜏𝑖 𝑗𝑘 + 𝛽𝑖 𝑗𝑘𝜏𝑏𝑟𝑒𝑎𝑘𝑖 𝑗𝑘
≤ 𝑡 𝑗𝑘 , ∀𝑖, 𝑗 ∈ 𝑁,∀𝑘 ∈ 𝐾

(12)
𝑎𝑖 ≤ 𝑡𝑖𝑘 ≤ 𝑏𝑖 , ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 (13)

𝑡𝑖𝑘 + 𝜏𝑖,𝑛+𝑖,𝑘 + 𝛽𝑖 𝑗𝑘𝜏𝑏𝑟𝑒𝑎𝑘𝑖 𝑗𝑘
≤ 𝑡𝑛+𝑖,𝑘 , ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃 (14)

where Constraint (11) ensures that the start time at each vehicle’s
origin depot is zero. Constraint (12) mandates that if a vehicle
travels from node 𝑖 to node 𝑗 , the start time at node 𝑗 must occur
after the service time at node 𝑖 , including the service time at node 𝑖 ,
travel time between nodes, and any additional break time if taken.
Constraint (13) enforces that the start time 𝑡𝑖𝑘 at any node must
fall within its designated time window [𝑎𝑖 , 𝑏𝑖 ]. If a vehicle arrives
at node 𝑗 before the earliest time window boundary 𝑎𝑖 , it must wait
until 𝑎𝑖 to begin service. Finally, Constraint (14) ensures that each
vehicle visits the pickup node before the corresponding delivery
node by requiring the service time at the pickup node to precede
that at the delivery node.

3.4 Constraints for Driver Breaks
We introduce constraints to ensure drivers take breaks at appro-
priate intervals during their routes. Specifically, drivers must take
a break every 𝜃 time interval without disrupting service fulfill-
ment. To implement this, we define two intermediate variables:
𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

∈ R≥ 0, which tracks the last break time taken by vehicle 𝑘
at node 𝑖 , and 𝑡𝑎𝑐𝑐

𝑖𝑘
, which maintains the accumulated driving time

at node 𝑖 since the last break. Next, we define constraints to update
these parameters as follows:

𝑡𝑎𝑐𝑐
𝑜 (𝑘 ),𝑘 = 0, ∀𝑘 ∈ 𝐾 (15)

𝑡𝑏𝑟𝑒𝑎𝑘
𝑜 (𝑘 ),𝑘 = 0, ∀𝑘 ∈ 𝐾 (16)

(𝑥𝑖 𝑗𝑘 = 1) ∧ (𝛽𝑖 𝑗𝑘 = 0) ⇒ 𝑡𝑎𝑐𝑐
𝑗𝑘

= 𝑡𝑎𝑐𝑐
𝑖𝑘

+ 𝑡 𝑗𝑘 − 𝑡𝑖𝑘 ,∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁
(17)

(𝑥𝑖 𝑗𝑘 = 1) ∧ (𝛽𝑖 𝑗𝑘 = 1) ⇒ 𝑡𝑎𝑐𝑐
𝑗𝑘

= 0, ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (18)

(𝑥𝑖 𝑗𝑘 = 1) ∧ (𝛽𝑖 𝑗𝑘 = 1) ⇒ 𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

= 𝑡 𝑗𝑘 , ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (19)

(𝑥𝑖 𝑗𝑘 = 1) ∧ (𝛽𝑖 𝑗𝑘 = 0) ⇒ 𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

= 𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

, ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (20)

We define Constraints (15) and (16) to initialize the accumulated
working time since the last break, 𝑡𝑎𝑐𝑐

𝑖𝑘
, and the last break time,

𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

, as 0 at the vehicle’s origin depot. If vehicle 𝑘 passes nodes
𝑖 and 𝑗 consecutively, i.e., 𝑥𝑖 𝑗𝑘 = 1, Constraint (17) updates 𝑡𝑎𝑐𝑐

𝑗𝑘

by adding the accumulated working time at node 𝑖 , (𝑡𝑎𝑐𝑐
𝑖𝑘

), and the
travel time and service time gap between nodes 𝑖 and 𝑗 , assuming
no break is taken between these nodes. If a break occurs between
nodes 𝑖 and 𝑗 , Constraint (18) resets 𝑡𝑎𝑐𝑐

𝑗𝑘
to zero. Constraint (19)

ensures that if a break is taken between nodes 𝑖 and 𝑗 , the last break
time at node 𝑗 : 𝑡𝑏𝑟𝑒𝑎𝑘

𝑗𝑘
is updated to the time service began at node 𝑗

and The constraint in (20) ensures that if no break is taken between
nodes 𝑖 and 𝑗 , the timestamp of the last break remains unchanged
and is carried over from node 𝑖 to node 𝑗 .

We further establish constraints to ensure vehicle route planning
compliance with driver break rules:

𝑎𝑖 ≤ 𝑡𝑏𝑟𝑒𝑎𝑘𝑖𝑘
+ 𝑡𝑎𝑐𝑐
𝑖𝑘

≤ 𝑏𝑖 , ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 (21)

(𝑥𝑖 𝑗𝑘 = 1) ⇒ 𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

+ 𝑡𝑎𝑐𝑐
𝑖𝑘

+ 𝑠𝑖 + 𝜏𝑖 𝑗𝑘 ≤ 𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

+ 𝑡𝑎𝑐𝑐
𝑗𝑘
,

∀𝑖, 𝑗 ∈ 𝑁,∀𝑘 ∈ 𝐾 (22)

(𝛽𝑖 𝑗𝑘 = 1) ⇒ 𝑦𝑖,𝑘 = 0, ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (23)

(𝑡𝑎𝑐𝑐
𝑖𝑘

≥ 𝜃 ) ⇒ 𝛽𝑖 𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (24)

We use Constraint (21) to ensure that the accumulated working
time at node 𝑖 is within its service window. Constraint (22) verifies
that the sequence of the last break time and the accumulated time
adheres to the specified time order in the routes. Constraint (23)
guarantees that the vehicle’s load is zero when the driver takes a
break. Lastly, Constraint (24) ensures a break is taken if the working
threshold 𝜃 is reached.

3.5 Constraint Linearization
To handle logical implications and conditional relationships in our
MILP formulation, we linearize Constraints (8), (12), (17) – (19),
and (22) – (24) using the Big-M linearization method. We introduce
𝑀 as a large constant and consider variables 𝑖, 𝑗 ∈ 𝑁 and 𝑘 ∈ 𝐾 .

Constraint (8) for updating the vehicle load at nodes where the
vehicle passes with 𝑥𝑖 𝑗𝑘 = 1 is linearized as follows:

(𝑦𝑖𝑘 + ℓ𝑗 − 𝑦 𝑗𝑘 ) ≤ 𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ), (8a)

Constraint (12) that enforces the update of the starting service time
is linearized as follows:

𝑡𝑖𝑘 + 𝑠𝑖 + 𝜏𝑖 𝑗𝑘 + 𝛽𝑖 𝑗𝑘𝜏𝑏𝑟𝑒𝑎𝑘𝑖 𝑗𝑘
− 𝑡 𝑗𝑘 <= 𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ). (12a)

Constraints (17) and (18), which ensure the update of 𝑡𝑎𝑐𝑐
𝑗𝑘

based on
if a break is taken (𝛽𝑖 𝑗𝑘 ) can be linearized by Eqs.(17a) and (17b),
and Eqs.(18a) and (18b) respectively.

𝑡𝑎𝑐𝑐
𝑗𝑘

≥ 𝑡𝑎𝑐𝑐
𝑖,𝑘

+ (𝑡 𝑗𝑘 − 𝑡𝑖𝑘 ) −𝑀 × 𝛽𝑖 𝑗𝑘 −𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ), (17a)

𝑡𝑎𝑐𝑐
𝑗𝑘

≤ 𝑡𝑎𝑐𝑐
𝑖𝑘

+ (𝑡 𝑗𝑘 − 𝑡𝑖𝑘 ) +𝑀 × 𝛽𝑖 𝑗𝑘 +𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ), (17b)

𝑡𝑎𝑐𝑐
𝑗𝑘

≥ (𝑡 𝑗𝑘 − 𝑡𝑖𝑘 ) −𝑀 × (1 − 𝛽𝑖 𝑗𝑘 ) −𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ), (18a)

𝑡𝑎𝑐𝑐
𝑗𝑘

≤ (𝑡 𝑗𝑘 − 𝑡𝑖𝑘 ) +𝑀 × (1 − 𝛽𝑖 𝑗𝑘 ) +𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ) . (18b)

Constraints (19) and (20) that update the last break time based on
whether break is taken at the last node are linearized by Eqs.(19a)
and (19b), and Eqs.(20a) and (20b).

𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

≥ 𝑡𝑖𝑘 −𝑀 × (1 − 𝛽𝑖 𝑗𝑘 ) −𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ), (19a)

𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

≤ 𝑡𝑖𝑘 +𝑀 × (1 − 𝛽𝑖 𝑗𝑘 ) +𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ), (19b)

𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

≥ 𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

−𝑀 × 𝛽𝑖 𝑗𝑘 −𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ), (20a)

𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

≤ 𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

+𝑀 × 𝛽𝑖 𝑗𝑘 +𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ). (20b)

Constraint (22), which ensures the correct sequence of 𝑡𝑎𝑐𝑐
𝑖𝑘

and
𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

based on the order of visited nodes, is linearized as follows:

𝑡𝑏𝑟𝑒𝑎𝑘
𝑖𝑘

+ 𝑡𝑎𝑐𝑐
𝑖𝑘

+ 𝑠𝑖 + 𝜏𝑖 𝑗𝑘 − (𝑡𝑏𝑟𝑒𝑎𝑘
𝑗𝑘

+ 𝑡𝑎𝑐𝑐
𝑗𝑘

) ≤ 𝑀 × (1 − 𝑥𝑖 𝑗𝑘 ) . (22a)
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Constraint (23) that ensures the vehicle load equals 0 during a break,
is linearized as follows:

𝑦𝑖,𝑘 ≤ 𝑀 × (1 − 𝛽𝑖 𝑗𝑘 ). (23a)

Constraint (24) that enforces taking a break after 𝜃 , is linearized by

𝑡𝑎𝑐𝑐
𝑖𝑘

+ 𝜏𝑖 𝑗𝑘 ≤ 𝜃 − 𝜖 +𝑀 × 𝛽𝑖, 𝑗,𝑘 (24a)
𝑡𝑎𝑐𝑐
𝑖𝑘

+ 𝜏𝑖 𝑗𝑘 ≥ 𝜃 −𝑀 × 𝛽𝑖, 𝑗,𝑘 . (24b)
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Figure 1: Distribution of Request Numbers

Data

Number of Days 377
Number of Requests (Median) 168

Number of Bins 5
Size of Bin 50

Sample Size per Bin 10
Length of Time Window for Each Node 30 min

Number of Vehicles or Drivers 4
Driver Shifts 5:00 A.M. to 8:20 P.M.

Depot Time Window [0,55200] (in seconds)
Break Rules

European Union (EU) 𝜃 = 4.5 hr,
Break Duration = 45 min

FMCSA 𝜃 = 8 hr,
Break Duration = 30 min

Table 3: Summary of Data and Break Rules

4 Experiment Setup
The following section details the experimental setup, dataset, method-
ologies, and optimization tools used to address our proposed Pickup
and Delivery Problem with Time Windows incorporating driver
breaks (PDPTW-DB).

To conduct our analysis, we sourced user request data from
our partner Public Transit Agency (PTA) (name hidden for blind
review). This dataset included essential details such as latitude
and longitude coordinates for pickup and dropoff locations, the
number of passengers or customers per request, and precise pickup
times (service times). To standardize the data, a dropoff time was
set exactly one hour after the pickup for each request, and a 30-
minute service window was established. Our study involved a fleet
of four vehicles, with driver shifts scheduled from 5:00 AM to 8:20
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Figure 2: Impact of Driver Breaks on Problem Complexity

PM, effectively determining the operating hours of the depot. To
accurately assess distances and travel times between each pair of
points, we leveraged data from the Open Source Routing Machine
(OSRM), utilizing the provided latitude and longitude coordinates.
The distance values obtained from OSRM were used to create the
cost matrix, and the corresponding travel times were employed to
generate the time matrix.
Daily Pickup-DropoffRequests: The dataset spans 377 days from
2022-08-08 to 2023-10-31, with daily requests ranging from 1 to 250.
The distribution of daily request numbers is shown in Figure (1).
To evaluate solutions at different problem scales, samples were
categorized into five bins based on daily request numbers: 1-50,
51-100, 101-150, 151-200, and 201-250. 10 days of data from each bin
were sampled for experimentation. The dataset used in this study
can be made available to researchers upon request, following the
application of appropriate data anonymization procedures.
Break Rules: The break duration and the time after which a break
must be taken were varied in our experiments. We conducted two
sets of experiments to explore different regulatory frameworks. The
first set adhered to the EU rule, which mandates a 45-minute break
after 4.5 hours of driving [8]. The second set followed FMCSA reg-
ulations, requiring a 30-minute break after 8 hours of driving [10].
This allowed us to evaluate the impact of different break require-
ments on overall performance metrics. The break rules and data
details have been summarized in Table 3.
Break Location Selection: Feasible break locations within the
experiment region were identified using the Google Places API,
based on specific location types, including but not limited to ‘su-
permarkets’, ‘gas stations’, and ‘parks’. The closest break location
that would minimize additional travel distance when a break was
required were then determined using the OSRM server. For each
pair of points, a 1.5 km radius was initially set to find potential
break locations. If no suitable locations were found within this
radius, the search radius was gradually expanded until a feasible
break location was identified.
Solution Approaches:We employed off-the-shelf solvers to imple-
ment the base problem (PDPTW) and our formulation (PDPTW-DB)
and evaluate performance across various metrics. The solvers used
are as follows:
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Figure 3: Comparison of Metrics between Gurobi PDPTW, Google OR-Tools PDPTW, and Hexaly PDPTW

• Gurobi: A commercial solver for Mixed-Integer Linear Pro-
gramming (MILP), known for its effectiveness in tackling
large-scale optimization problems [13]. We configure its pa-
rameters with MIPFocus set to 1 to prioritize finding high-
quality feasible solutions, Heuristics set to 0.5 to balance
between exploration and exploitation, and CliqueCuts set to
2 to apply more aggressive cut generation for tighter formu-
lations. The time limit on the search was set to 24 hours.

• Google OR-Tools: OR-Tools Routing, developed by Google,
is a widely accessible Vehicle Routing Problem (VRP) solver.
We implemented a VRP solver using the OR-Tools Routing
API, employing the local cheapest insertion heuristic for the
first solution and guided local search algorithm to optimize
route plans. [20] The time limit on the search was set to 24
hours.

• Hexaly: A specialized solver designed for vehicle routing
problems, particularly effective in managing complex con-
straints such as time windows and driver breaks and works
with a combination of heuristic methods unique to the soft-
ware. [3] We set the time limit on the search to 24 hours.

These approaches enabled us to assess the effectiveness and effi-
ciency of different methodologies, particularly in managing the
added complexity introduced by driver breaks.
Metrics: The evaluation focused on key performance metrics:

• Vehicle Miles Traveled per Passenger Mile Traveled
(VMT/PMT): This metric assesses vehicle usage efficiency
relative to passenger service. VMT represents the total vehi-
cle miles traveled in a day, including miles with and without
passengers on board. PMT is the sum of the shortest paths be-
tween each pickup node and delivery node pair in the dataset
for a given day. Essentially, PMT indicates the vehicle miles
required if each passenger were to travel directly between
their origin and destination. A lower VMT/PMT ratio sig-
nifies more efficient vehicle use, minimizing unnecessary
travel miles. [19]

• Service Ratio: The ratio of requests successfully serviced to
the total number of requests. A higher service ratio indicates
better fulfillment of user requests, which is crucial for the
reliability of on-demand transit systems.

• Idle Time: The duration vehicles spend inactive, either wait-
ing for requests or during breaks. By incorporating breaks,
we aim to demonstrate that drivers experience a less demand-
ing schedule. [6]

Comparing these metrics between the classical PDPTW and the
version that includes driver breaks is essential for understanding
the trade-offs involved in complying with regulatory requirements.
While mandatory breaks may increase idle time and reduce service
ratios, they are critical for ensuring driver safety and regulatory
adherence. By quantifying the trade-offs between idle time and
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Figure 4: Comparison of Metrics between Hexaly PDPTW,
Hexaly PDPTW-DB (EU), Hexaly PDPTW-DB (FMCSA)

service ratio impacts, we can better understand the practical im-
plications of different routing strategies and the importance of
optimizing break schedules to mitigate negative effects on overall
system performance.

5 Results
We compare our implementations of PDPTWand PDPTW-DB using
various tools. Table 4 provides a comprehensive list of methods or-
ganized by the format "Tool - Problem Type (Driver Break Rules)." In
this format, "−𝐶" denotes implementations of the Classical PDPTW,
while "−𝐷" indicates implementations of PDPTW-DB.

Method Implementation

Gurobi - C Classical PDPTW using Gurobi
Gurobi - DB (EU) PDPTW - DB using Gurobi (𝜃 = 4.5)

Gurobi - DB (FMCSA) PDPTW - DB using Gurobi (𝜃 = 8)
OR Tools - C Classical PDPTW using Google OR Tools
Hexaly - C Classical PDPTW using Hexaly

Hexaly - DB (EU) PDPTW - DB using Hexaly (𝜃 = 4.5)
Hexaly - DB (FMCSA) PDPTW - DB using Hexaly (𝜃 = 8)
Table 4: Implementation Methods and Descriptions

5.1 Increased Complexity Due to Driver Breaks
The classical Pickup and Delivery Problem with Time Windows
(PDPTW) is known to be NP-hard, making it inherently challenging
to solve efficiently for large instances. Introducing driver breaks
further complicates the problem by increasing its complexity. Specif-
ically, the number of variables expands to include scheduling these
breaks, and the constraints multiply to ensure compliance with
regulatory requirements and time windows for each driver’s route.
Figure (2) illustrates the increase in the number of variables and con-
straints for different problem sizes in both PDPTW and PDPTW-DB.
It shows that incorporating breaks leads to a significant increase
in complexity, with the number of variables and constraints ap-
proximately five times greater in PDPTW-DB when the node count
reaches 500, compared to PDPTW without breaks.

5.2 Optimization Solver Comparison
Figure (3) compares the capabilities of three optimization solvers
in solving the classic PDPTW. Figure (3a) highlights their perfor-
mance on VMT/PMT, showing that Hexaly-C generally offers lower
VMT/PMT, indicating better solutions with greater potential for
ride-sharing within fixed time constraints. This advantage becomes
more pronounced as the number of requests increases. For example,
Hexaly-C achieves a VMT/PMT value that is 0.45 % of Gurobi-C’s
when the number of requests is between 200-250. Additionally, as
the number of requests grows, both OR-Tools-C and Hexaly-C tend
to provide solutions with lower VMT/PMT. This trend may be due
to the increased likelihood of ride-sharing opportunities as more
requests occur in close proximity. Similarly, Figure (3b) shows that
Hexaly-C consistently results in a lower idle time ratio compared to
the other two solvers, indicating that Hexaly-C is better at handling
larger problems and providing superior solutions within a fixed
time frame. Figure (3c) compares the service ratios of the three
solvers, revealing that Gurobi-C struggles to maintain serviceabil-
ity when the number of requests exceeds 100. Finally, Figure (3d)
provides an overview of the performance of these three solvers
across all metrics. It demonstrates that Hexaly-C generally offers
lower VMT/PMT and idle time ratios, along with a higher service
ratio, indicating higher quality solutions for PDPTW.

5.3 Performance comparison of Hexaly PDPTW
and Hexaly PDPTW-DB

Figure (4) evaluates the solutions for classic PDPTW and PDPTW-
DB using Hexaly, which provided the best performance among
the three tools used. Hexaly-C represents the solution for standard
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Figure 5: Comparison of Metrics between Hexaly - DB and Gurobi - DB

PDPTW, Hexaly-DB (EU) applies driver break rules set by the Eu-
ropean Union, and Hexaly-DB (FMCSA) follows driver break rules
set by the FMCSA. Figure (4a) shows the VMT/PMT ratio, which
generally decreases as the number of requests increases. Solutions
for PDPTW without driver break scheduling consistently offer the
lowest VMT/PMT ratio compared to those with break scheduling.
Among the methods with driver breaks, the FMCSA rule results in
the highest VMT/PMT ratio, while the EU rule falls between the
two. Figure (4b) indicates a decrease in idle time ratio as the number
of requests increases for all methods. Hexaly-C exhibits the lowest
idle time ratio across most request bins, while Hexaly-DB (EU) and
Hexaly-DB (FMCSA) provide similar idle time ratios. Figure (4c)
shows comparable service ratios for all three methods. The analysis
suggests that the EU rule, with its shorter working duration, results
in more flexible schedules, as indicated by the higher idle time.
Although this may lead to slightly higher VMT/PMT values com-
pared to other methods. Adhering to the EU rule ensures that all
customers are served. This implies that the EU rule strikes a balance
between driver break requirements and overall system efficiency
while maintaining a high service level.

5.4 Driver Break Rules
Figure (5) explores the performance metrics of PDPTW-DB with
different driver break rules: the FMCSA rule, which mandates an
8-hour driving time followed by a 30-minute break, and the EU rule,

which requires a 4.5-hour driving time followed by a 45-minute
break. The solutions fromGurobi and Hexaly are compared. Despite
running the Gurobi solver for 24 hours, the results were subopti-
mal (see Figure (5c)) compared to Hexaly, which provides solutions
for both driver break rules across scenarios with varying request
numbers, achieving a service ratio of 1. Figure (5a) highlights that
using the same solver, solutions under the EU rule (with a shorter
work duration threshold) generally result in a lower VMT/PMT
ratio compared to the FMCSA rule. This is due to the constraint
that vehicles must have zero load during driver breaks, causing
them to opt for routes with customers further apart to accommo-
date the 8-hour driving limit. This inference is supported by the
lower idle time shown in Figure (5b) for the FMCSA rule, indicat-
ing that drivers spend more time travelling between service nodes.
Therefore, it is more advantageous to follow the EU rule, which
provides a break after 4.5 hours of driving. This approach ensures
compliance with regulations and improves overall transportation
system performance. Figure (5d) provides an overview, revealing
that Hexaly outperforms Gurobi, delivering higher service ratios.
Additionally, Hexaly with EU rules offers a lower VMT/PMT, while
the FMCSA rule results in relatively lower idle time.

6 Conclusion
In this paper, we address a novel version of the Pickup and Delivery
Problem with Time Windows (PDPTW) by incorporating driver
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breaks into the vehicle routing process. We formulate the Pickup
and Delivery Problem with Time Windows and Driver Breaks
(PDPTW-DB) by extending the PDPTW model with additional
constraints to account for periodic driver breaks and ensure that ve-
hicles reach break locations with an empty load. We implement this
formulation using multiple optimization tools, including Gurobi,
Google OR-Tools, and Hexaly, to evaluate their performance across
different problem scales and service request scenarios. We test these
implementations using real-world data from a Microtransit system
in a mid-sized southern U.S. city and compare the FMCSA rule
(8-hour driving with a 30-minute break) with the EU rule (4.5-hour
driving with a 45-minute break). Our experiments reveal that Hex-
aly outperforms both Gurobi and Google OR-Tools in solving the
PDPTW-DB. The EU rule offers more flexible scheduling, resulting
in higher idle times and although this may occasionally lead to
slightly higher VMT/PMT values compared to other methods, the
EU rule still ensures that all customers are served. We demonstrate
the trade-off between service ratio, VMT/PMT, and idle time, show-
ing that well-planned breaks canminimize the impact on VMT/PMT
while maintaining efficiency in route planning. This insight also
highlights the importance of considering multiple performance
metrics when optimizing transportation systems. Our findings can
serve as a reference for transportation authorities in resource al-
location and route optimization for microtransit, paratransit, and
public transit systems.
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