
MODEL-BASED INTENT-DRIVEN ADAPTIVE SOFTWARE (MIDAS)

VANDERBILT UNIVERSITY

MAY 2022

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2022-068

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2022-068 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
STEVEN L. DRAGER GREGORY J. HADYNSKI
Work Unit Manager Assistant Technical Advisor

 Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

1. REPORT DATE

MAY 2022

2. REPORT TYPE

FINAL TECHNICAL REPORT

3. DATES COVERED

START DATE
MAY 2020

END DATE
SEPTEMBER 2021

4. TITLE AND SUBTITLE
MODEL-BASED INTENT-DRIVEN ADAPTIVE SOFTWARE (MIDAS)

5a. CONTRACT NUMBER
FA8750-20-C-0215

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER
R2Z6

6. AUTHOR(S)
Gabor Karsai, Alessandro Coglio, Abhishek Dubey

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 PRIME SUB
 Vanderbilt University Kestrel Institute
 110 21st Avenue South 3260 Hillview Ave
 Nashville TN 37203-2417 Palo Alto CA 94304

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory/RITA DARPA
 525 Brooks Road 675 N. Randolph St
 Rome NY 13441-4505 Arlington VA 22203-2114

10. SPONSOR/MONITOR'S
ACRONYM(S)

RI

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RI-RS-TR-2022-068

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The increasing complexity of software systems makes the rapid propagation of requirement changes into the design and
implementation code very problematic. The goal of the Intent-Driven Adaptive Software program was to develop technologies
that assist developers in making changes to requirements and automatically propagating those changes to the design and
implementation of software systems. The Model-based Intent-Driven Adaptive software project developed a vision for a
comprehensive technology to achieve this goal by developing and implementing two components of that vision: a program
specification and synthesis tool, and a domain-specific language and generators for the rapid configuration and adaptation of
service-based architectures. These two results can serve as a foundation for the future implementation of the vision.

15. SUBJECT TERMS
Model Design Language, deferred concretization, formal specification and program synthesis, domain-specific modeling
languages
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

 SAR

18. NUMBER OF PAGES
a. REPORT

U
b. ABSTRACT

U
C. THIS PAGE

U
19a. NAME OF RESPONSIBLE PERSON

STEVEN L. DRAGER
19b. PHONE NUMBER (Include area code)

N/A
Page 1 of 2 PREVIOUS EDITION IS OBSOLETE. STANDARD FORM 298 (REV. 5/2020)

 Prescribed by ANSI Std. Z39.18

23

TABLE OF CONTENTS

Section Page

List of Figures . ii

1 SUMMARY . 1

2 INTRODUCTION . 1

3 METHODS, ASSUMPTIONS, AND PROCEDURES 2
3.1 Challenges . 2
3.2 Overall approach . 2

3.2.1 Program Synthesis in an Integrated Development Environment 4
3.2.2 Model-driven Development for a Service-based Application Framework 5

4 RESULTS AND DISCUSSION . 6
4.1 Syntheto . 6

4.1.1 Language summary . 6
4.1.2 Interface with ACL2 . 7
4.1.3 IDE with Notebook Interface . 8
4.1.4 Syntheto implementation . 8

4.2 OpenUxAS-MDE . 9
4.2.1 OpenUxAS-MDE implementation . 10

5 CONCLUSIONS . 11

6 REFERENCES . 11

A APPENDIX . 13
A.1 Syntheto Grammar . 13

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 18

i
Approved for public release; distribution is unlimited.

List of Figures

1 Overall technical approach. 3
2 Syntheto-ACL2 interoperation. 7
3 Syntheto notebook interface. 9
4 OpenUxAS-MDE DSL and generators. 10

ii
Approved for public release; distribution is unlimited.

1 SUMMARY

The increasing complexity of software systems makes the rapid propagation of requirements
changes into the design and implementation code very problematic. The goal of the Intent-
Driven Adaptive Software (IDAS) program was to develop technologies that assist developers
in making changes to requirements and automatically propagating those changes to the
design and implementation of software systems. The Model-based Intent-Driven Adaptive
Software (MIDAS) project developed a vision for a comprehensive technology to achieve
this goal while developing and implementing two components of that vision: a program
specification and synthesis t ool, and a domain-specific language and generators fo r the rapid
configuration a nd a daptation o f s ervice-based a r chitectures. T hese t wo r esults c an s erve as
a foundation for the future implementation of the vision.

2 INTRODUCTION

The complexity of software systems is increasing continuously, in parallel with the need
for their rapid update and adaptation to changing requirements. The goal of the project
was to develop a new approach to evolutionary software development and deployment that
extends the results of model-based software engineering and provides an integrated, end-
to-end framework for building software that is focused on growth and adaptation. The
envisioned technology was based on the concept of a ‘Model Design Language’ (MDL) that
supports the expression of the developer’s objectives (the ‘what’), intentions (the ‘how’), and
constraints (the ‘limitations’) related to the software artifacts to be produced. The ‘models’
represented in this language are called the ‘design models’ for the software artifact(s) and
they encompass more than what we express today in software models. Software development
is considered as a continuous process, as in the Development and Operations (DevOps)
paradigm, where the software is undergoing continuous change, improvement, and extension;
and our goal was to build the tools to support this. The main idea is that changes in the
requirements will result in the designer/developer making changes in the ‘design model’ that
will result in changes in the generated artifacts, or changes in the target system, at run-time,
as needed. Such tool support is essential for developers as expensive, manual rework cannot
be avoided without it.

The project has resulted in two prototype software development tools: (1) a program
specification a nd s ynthesis e nvironment b ased o n a n ovel f ormal l anguage, c a lled Syntheto,
as a front-end to a well-established program transformation system, and (2) a model-driven
development tool based on a domain-specific l a nguage, c a lled O p en U n manned Systems
Autonomy Services–Model Driven Engineering (OpenUxAS-MDE), that enables the rapid
configuration a n d a d aptation o f a s o ftware s y stem f o r U n manned A e rial V e hicle (UAV)
Command and Control (C2) applications. The two languages are sub-languages of a future,
more comprehensive Model Design Language and could serve as a starting point for an
end-to-end tool-suite.

1

Approved for public release; distribution is unlimited.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Challenges

The core challenge for the program was that of rapid adaptation of software systems to
changing requirements. The problem is especially acute in complex, mission- and safety-
critical applications that require extensive verification a nd validation b efore d eployment (or
update) in the field. O f ten a s m all c h ange i n r e quirements l e ads t o m a jor, widespread
changes in the implementation, i.e. the code base. Currently there is very little tool support
for facilitating changes in an effective a nd p roductive manner.

Central to this problem are design and implementation decisions that are made early in
the system development. Such design decisions (e.g. choosing a specific i mplementation for
a critical data structure, without encapsulating it into an abstract data type) hamper down-
stream adaptation of the code when the choice cannot be valid anymore. Hence, deferred
concretization is needed, whereby low-level design choices are made late in the development
process. Good software engineering practices, with disciplined developers can address this
problem, but cannot completely eliminate it, especially on very large-scale systems.

The project described in this report aimed at solving this problem using two approaches:
(1) formal specification a nd p rogram s ynthesis, a nd (2) d omain-specific mo deling languages
(DSML). Arguably, the approaches offer a l ternative p a ths t o s o lve t h e r a pid adaptation
problem. Formal specification followed by (semi-)automatic synthesis facilitates productivity
increases, because (1) changing the specification is simpler than changing a code base, and (2)
the synthesis tool can not only (re-)verify the changed specification but can also generate the
implementation. On the other hand, a DSML can represent a complete system architecture
with all variation points controlled by parameters, and the entire, detailed configuration of
the architecture can be automatically generated from the DSML models.

However, both approaches have their own challenges. Existing formal specification and
program synthesis approaches often require special skills and the knowledge of un-common
languages, like Lisp. The use of domain-specific l anguages i n s oftware d evelopment i s (still)
not a widespread practice; although their effectiveness a r e w e ll-recognized [4].The project
described below addressed these issues by developing new technologies, as described below.

3.2 Overall approach
The overall approach and technical vision for the project is summarized in Figure 1. The
lower part of the figure h i ghlights t h e c u rrent p r actice o f M o del-based S o ftware Engineer-
ing (MBSE), while the full diagram shows the concept for the model-based, intent-driven
adaptive development of software. Central to MIDAS is a ‘Model Design Language’: a
higher-level design language that supersedes the existing MBSE approach in several ways,
as listed below.

The goal of MDL is to represent as much knowledge as practically feasible about the
software system, including its requirements, its environment, its target platform, as well as
the process for synthesizing it (or its parts). This happens through a set of models, expressed
either formally (in a precisely specified modeling language) or informally, in natural language.

2
Approved for public release; distribution is unlimited.

A key feature of this language is that such models are inter-linked, and such links (i.e.,
dependencies) are tracked and maintained by tools. Listed below are the various models in
MDL.

Figure 1. Overall technical approach.

1. Domain model (DM). The DM makes the modeling of the domain concepts explicit.
Such models describe the conceptual structure of the ‘world’ the software artifact is
operating in. Domain models are represented as hierarchically organized concepts that
are linked to each other via various relationships, and have attributes capturing salient
properties. These models capture the designer’s understanding of the domain, without
any relationship to implementation. The DM is built by developers who understand
the domain well.

2. Application model (AM). The AM extends the traditional application model with (a)
relating AM elements to DM elements, and (b) linking AM elements to explicitly
expressed intentions and constraints. Note that not all DM elements are expected to
have a corresponding AM, and vice versa, but all AM elements should be related to
an intention. The AM is built by designers and developers.

3. Target model (TM). The TM makes the modeling of the target domain explicit. It
is envisioned that the ‘target domain’ is going to be a software ‘platform’ for which
compilable source code (or other data artifacts, like Makefiles) should be generated.
Therefore, the TM will include models that are associated with parametrized code (or
data) templates that will be filled out during the generation process. The TM is built

3

Approved for public release; distribution is unlimited.

by developers who understand the target domain and its intricacies well, but have
experience with writing code templates and generation. Note that the TM may also
include code templates for unit and system level tests.

4. Synthesis model (SM). The SM is for the implicit or explicit representation of how
AM elements are mapped into code and data artifacts (that are compliant with the
TM elements). It is envisioned that the SM will be built by skilled developers who are
‘synthesis engineers’. Some SMs are prefabricated and re-used across many applications
(e.g. a synthesis tool that generates code from a finite state machine model). Note that
the SM may involve generation of many different artifacts: production code, data, test
code, etc. The SM can also be used to generate changes to a running system: some of
the requirement changes can be addressed by changing the configuration or properties
of the deployed, active system. This could be facilitated by the ’Run-time Adaptation
Script’ shown on the right of Figure 1, which assumes a suitable adaptive software
platform.

5. Objectives, Intentions, and Constraints (OIC). These models represent, at a high level
of abstraction ‘what’ the system is expected to do, ‘how’ it is expected to do it, and
under what ‘restrictions’. These models may be somewhat unstructured with respect
to the other models of the system, but they are to be linked to the other models, to
provide traceability and an opportunity for analysis.

In summary, the envisioned overall approach relies on highly interlinked models of the
objectives, intentions, constraints, domain, application, target platform, and synthesis pro-
cess. The product of the development process is synthesized and/or instantiated executable
code, plus other artifacts necessary for the further compilation and/or deployment of the
system.

Two specific c o mponents o f t h e a b ove o v erall a p proach h a ve b e en d e veloped a n d im-
plemented in the course of the project: (1) a formal methods based program synthesis
environment, and (2) a domain-specific l anguage b ased m odel-driven d evelopment tool.

3.2.1 Program Synthesis in an Integrated Development Environment

The concept of deferred concretization that inspired the IDAS program is well addressed by
the classic idea of program development by transformational stepwise refinement. However,
this classic idea has been so far realized only in tools that required specialized expertise. An
example is Kestrel’s Automated Program Transformations (APT) toolkit [6], which is based
on the ’A Computational Logic for Applicative Common Lisp’ (ACL2) theorem prover [5]
and requires users to be fluent i n t h e A CL2 t h eorem p r over. T h us, a m a jor c h allenge of
this project has been to make this capability available to developers with less specialized
expertise.

The approach of the project has been to take APT [6] as a starting point and making it
more accessible. First, noticing that the ACL2 language, even leaving the theorem proving
capabilities aside, is somewhat unfamiliar to developers due to the Lisp prefix syntax and the
lack of static typing, a novel front-end language: Syntheto was designed and implemented
with strong static typing and more infix syntax. There is a bi-directional translation between

4
Approved for public release; distribution is unlimited.

Syntheto and ACL2. Syntheto can express not only ACL2 specifications, b ut a lso t he invo-
cation of APT transformations, thus providing complete coverage of the software synthesis
process.

Syntheto’s strong static typing helps automate certain classes of ACL2 theorems that
capture type-like properties in ACL2’s untyped language but that nonetheless require ACL2-
specific expertise to formally v e rify. In other words, it is possible to automate a large number
of (relatively simple) proof obligations, sparing users from explicitly dealing with them.

Another area where ACL2 and APT differ f r om m o re w i dely u s ed p r ogramming lan-
guages is in the availability of Integrated Development Environments (IDEs). Good IDEs
can make users much more productive, by enabling them to carry tasks faster and, more im-
portantly, by providing immediate feedback and suggestions. Thus, an IDE for Syntheto was
developed; the IDE provides a notebook interface, which is particularly useful for program
transformations.

3.2.2 Model-driven Development for a Service-based Application Framework

Open Unmanned Systems Autonomy Services (OpenUxAS) [8] is an extensible software
framework for mission-level autonomy for teams of unmanned systems, with a focus on
UAVs. The framework includes several software services for high-level control of UAVs,
route planning, plan execution, etc. that communicate via a software bus. The configu-
ration of the software framework is done via a collection of eXtensible Markup Language
(XML) files that supply parameters t o the s ervices, as well as determine the overall software
architecture of the assembled services. The framework is interfaced to a multi-vehicle simula-
tion environment Open Aerospace Multi-agent Simulation Environment (OpenAMASE) [7]
that provides immediate feedback to the developer when experimenting with the framework.
The primary use case for the framework is that of the development and testing of control
and coordination algorithms for UAVs, with the eventual goal of executing these algorithms
on-board the vehicles.

OpenUxAS is an example for a medium-complexity extensible software framework that
can be configured f or v arious m i ssions. C hanges i n m ission r equirements n eed t o b e propa-
gated to configuration c hanges, p o ssibly i ndicating t he n e ed f o r n ew s e rvices. T he current
approach of using a suite of XML files f o r c o nfiguration is co mp lex an d er ro r-prone, be-
cause one requirement change can lead to cascading changes in multiple files. Debugging
configuration p roblems i s d ifficult, esp ecially if con figuration info rmat ion is i mpl icit , in the
implementation code itself. In a message-based architecture, like OpenUxAS, services pub-
lish and subscribe to messages that facilitate complex service interactions. But what message
a service publishes and subscribes to is often hand-coded in the implementation (in C++,
in this case). This leads to a few problems: (1) to understand how a configured i nstance of
the framework works (for a specific m ission), o ne n eeds t o r ead t he c ode b ase a nd manually
map out these interactions and discover what messages are never generated and/or never
consumed, (2) if a new service is to be added (or an existing one modified), a somewhat com-
plex message handling loop needs to be developed (or an existing one needs to be updated).
Clearly, a better approach is needed.

5
Approved for public release; distribution is unlimited.

A better approach is to use a simple domain-specific language that supports:
� The generation of all related XML configuration files for configuring the framework to
support specific missions.

� The checking of the framework configuration for architectural completeness, i.e. that
the message publishers and consumers are ‘aligned’: every message produced by at
least one service, every message consumed is produced by at least one service.

� The generation of skeleton code for service implementation that can be extended with
‘business logic’. As the service specification may change frequently during development,
the generation should be done in such a way that existing additions are not lost during
the re-generation process.

In the course of the project a Domain Specific Language (DSL) has been developed that
solve the above problems. This language and the corresponding generators are a concrete
example for a synthesis model, mentioned above.

4 RESULTS AND DISCUSSION

4.1 Syntheto

4.1.1 Language summary

Syntheto was designed and developed as a novel language that provides a front-end to ACL2
and APT. Syntheto is a statically strongly typed language, whose type system has the
following features:

� Primitive types such as booleans, integers (of arbitrary size), characters, etc.
� Collection types for finite sets, sequences, and maps.
� An option type for either a value of a type or a special marker for none.
� User-defined product types (i.e. records).
� User-defined sum types (i.e. disjoint unions, such as Rust-style enums).
Since ACL2 is a functional language, so is Syntheto: it has expressions, but not state-

ments as such. However, certain expression construct have a surface syntax that looks like
statements. Syntheto expressions include:

� Boolean, character, string, and integer literals.
� Variables.
� A range of unary and binary expressions.
� Conditional expressions.
� Function calls.
� Bindings of variables to expressions. (The surface syntax of bindings resembles variable
assignment statements.)

� Product type constructions, deconstructions, and updates.
� Sum type constructions, deconstructions, updates, and tests.
At the top level, Syntheto supports the following constructs:
� Type definitions, which may be singly and mutually recursive.
� Function definitions, which may be singly and mutually recursive.
� Functions defined with universal and existential quantifiers.

6

Approved for public release; distribution is unlimited.

� Function specifications, which are second-order predicates.
� Theorems, which express expected properties of the defined and specified functions.
� Transformation calls.
Function specifications, as mentioned, are second-order predicates, which characterize

(the input/output behavior of) the acceptable functions to be synthesized. This specification
approach is based on [2], and is very general. However, in some cases a user can specify a
function by defining it, in a clear but possibly inefficient way: transformations can be used
on defined functions to turn them into more efficient versions.

The transformation calls supported by Syntheto provide an interface to an initial selection
of APT transformations. More APT transformations could be supported in the future.

The Appendix contains the Syntheto grammar expressed using the XText[1] syntax.

4.1.2 Interface with ACL2

The types in the Syntheto type system described above are represented in ACL2 using a
library to emulate structured types in ACL2’s untyped language [9]. Syntheto expressions are
represented as ACL2 expressions, and Syntheto functions are represented as ACL2 functions;
this is also the case for the second-order predicates mentioned above, despite the fact that
ACL2’s language is first-order, using a library to represent (limited) second-order in ACL2
[3].

Figure 2. Syntheto-ACL2 interoperation.

Syntheto transformations correspond to APT transformations. A challenge is that, be-
sides the forward translation from Syntheto to ACL2, needed to represent all the Syntheto
constructs in ACL2, it was necessary to develop a backward translation from ACL2 to
Syntheto, for at least Syntheto expressions and functions. The reason is that, when a trans-
formation is applied to a function, it yields a new function (in some cases multiple functions,
but this is not important for the present discussion), but it is an ACL2 function, because
the Syntheto transformation call is turned into an ACL2 transformation call that operates
on the ACL2 representation of the the Syntheto target function. The resulting ACL2 func-
tion must be translated to a Syntheto function, because the whole point of Syntheto is to
“hide” the ACL2 details and provide a Syntheto-centric functionality. In other words, an

7

Approved for public release; distribution is unlimited.

“illusion” is created that transformations operate directly on Syntheto, even though there is
a round-trip to ACL2 behind the scenes. Figure 2 shows the interoperation of Syntheto and
the ACL2 system. The challenge with the backward translation is that ACL2 is untyped
while Syntheto is strongly typed: this means that type information must be reconstructed
in ACL2. The issue does not arise in the forward translation, because it is easy to “forget”
types than to “reconstruct” them.

The ACL2 Bridge is used to realize a bidirectional communication with ACL2. The ACL2
Bridge is a tool that enables starting up an ACL2 process that acts as a server listening to
a socket. The approach taken here is to start up this process, load all the Syntheto support
into it, and have the IDE (described in more detail below) exchange messages through the
socket.

4.1.3 IDE with Notebook Interface

A challenge in developing an IDE for Syntheto is that an ACL2 process must interface with
a Java process; this is because the IDE is written in Java, but the same would apply to IDEs
written in other languages (there are no modern IDEs written in ACL2). The issue is one
of inter-language interfacing: the ACL2 Bridge provides a working approach to handle the
connection, but there are Java data structures on one side and ACL2 data structures on the
other side. Thus, Java code was developed to perform bidirectional translations between Java
and ACL2 data structures; these are only a (syntactical) portion of the semantic bidirectional
translation between Syntheto and ACL2.

The project has developed an “extension” for the Visual Studio Code (VS Code), an
open source Microsoft IDE, that provides an integration with a conventional development
environment. The VS Code extension provides the following services:

� Syntax-driven editing of Syntheto specifications. This editor enforces the syntactical
rules of Syntheto on the user input, and performs simple semantic checks.

� Transforming the specifications via multiple transformation steps into ACL2 syntax
and sending it to the ACL2 Bridge.

� Receiving responses from the Bridge, separating them into error messages and syn-
thesized code (in ACL2/Lisp), translating the latter back into Syntheto syntax, and
rendering it.

The first and the last step uses a ‘notebook’ interface that enables a workflow in the style
of incremental editing, submission, and response viewing. Figure 3 shows an example screen
of the interface.

4.1.4 Syntheto implementation

The Syntheto environment will be available as follows:
� The backend at https://github.com/acl2/acl2, the ACL2 community library, under
the directory https://github.com/acl2/acl2/tree/master/books/kestrel/syntheto.

� The frontend at https://github.com/KestrelInstitute/syntheto-frontend.

8
Approved for public release; distribution is unlimited.

 https://github.com/acl2/acl2
https://github.com/acl2/acl2/tree/master/books/kestrel/syntheto
https://github.com/KestrelInstitute/syntheto-frontend

Figure 3. Syntheto notebook interface.

4.2 OpenUxAS-MDE

The OpenUxAS-MDE language was developed to assist in the generation of all XML con-
figuration files for the OpenUxAS framework. The modeling language has the following
features:

� Message specifications represent message data types. The named message types then
can be used in the service definitions.

� Service definitions represent the parameters, and the messages produced and consumed
by the service.

� Vehicle definitions specify vehicle types and their parameters, and vehicle declarations
specify concrete instances of vehicles to be used in the mission.

� Task definitions specify task types and their parameters, and task declarations specify
concrete instances of tasks to be performed in a the mission. Scenario specifications
assemble task declarations and represent a complex scenario, with multiple tasks.

� Application specifications (that incorporate all the above elements) provide the com-
plete specification of a mission.

The above specifications and definitions are used in generation process as follows.
� Message specifications are used in generating XML definitions for the supporting mes-
saging framework.

� Service definitions are used in generating service skeletons for implementation (in
C++).

� Vehicle definitions and declarations are used to generate configuration files for the
simulator, as well as the software framework services.

� Task definitions and declarations, and scenario specifications are used to configure the
simulation framework.

9

Approved for public release; distribution is unlimited.

Figure 4. OpenUxAS-MDE DSL and generators.

� Application specifications (through the inclusion of the previous elements) are used to
generate all the configuration files.

The textual definitions, declarations and specifications expressed in the DSL is the single
source of truth for configuring a l l a s pects o f t h e m i ssion, b o th t h e s i mulation, a s w e ll as
the software framework. Changes in the inputs are trivially propagated to the generated
configuration fi le s. The DSL is more compact than the XML files, on one example application
about 100 lines of DSL code resulted in 1285 lines of XML.

The DSL has been used to develop other components beyond XML generators. A code
generator has been developed that produces the service skeleton implementation code. This
code has ‘protected sections’ where developer-provided, business logic code can be added.
These additions are preserved across runs of the generator such that code added is never
lost. Another tool analyzes the application architecture and matches up the producers and
consumers of messages. The developer is informed about messages that are expected but
not produced, and about messages produced but not consumed. This check allows the early
detection of architectural mismatch. Figure 4 shows the various elements of the DSL and
the generated artifacts.

4.2.1 OpenUxAS-MDE implementation

The implementation is available from https://github.com/MbIDAS/OpenUxAS-MDE.

10
Approved for public release; distribution is unlimited.

https://github.com/MbIDAS/OpenUxAS-MDE

5 CONCLUSIONS

The project has provided insights into developing complex software systems that could un-
dergo frequent adaptation due to changes in requirements.

Regarding formal specifications and program synthesis the observation is that the front-
end language should be similar to languages with which average developers are already famil-
iar. Languages with strong typing (unlike Lisp), with infix syntax, well-chosen keywords and
strict syntactical structure are highly advantageous. Formal tools need to fit seamlessly into
conventional IDE-s, and attention needs to be paid to the presentation and user interaction.
Translating error messages and synthesis results coming back from the synthesis tool into a
familiar form is essential for acceptance.

Regarding the use of DSLs, the lesson learned is that developing a DSL after a com-
plete software framework has been designed requires significant effort, and thus there are
advantages to co-developing the DSL with the framework. DSLs can provide productivity
improvements not only by generating code artifacts, but by supporting analysis on the final
application software. DSLs specifications are higher-level, mostly declarative programs that
can potentially influence many components of a software system. Explicit traceability from
specifications to derived (or dependent) artifacts is essential so that the impact of changes
becomes clear.

In summary the project has produced two artifacts that can contribute to the overall
approach outlined earlier. However, further research and development is needed, especially
in the area of traceability from requirements to implementation and back, as well as the
deeper integration of model-based, formal methods based, and conventional development
techniques.

6 REFERENCES

[1] Heiko Behrens, Michael Clay, Sven Efftinge, Moritz Eysholdt, Peter Friese, Jan Köhnlein,
Knut Wannheden, and Sebastian Zarnekow. Xtext user guide. Dostupné z WWW:
http://www. eclipse. org/Xtext/documentation/1 0 1/xtext. html, page 7, 2008.

[2] Alessandro Coglio. Pop-refinement. Archive of Formal Proofs, July 2014. http://afp.
sf.net/entries/Pop_Refinement.shtml, Formal proof development.

[3] Alessandro Coglio. Second-order functions and theorems in ACL2. In Proc. 13th In-
ternational Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2015),
pages 17–33, October 2015.

[4] Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan Mernik, and Juha-
Pekka Tolvanen. Dsls: the good, the bad, and the ugly. In Companion to the 23rd ACM
SIGPLAN conference on Object-oriented programming systems languages and applica-
tions, pages 791–794, 2008.

[5] Matt Kaufmann and J Strother Moore. The ACL2 theorem prover: Web site. http:

//www.cs.utexas.edu/users/moore/acl2.

11

Approved for public release; distribution is unlimited.

http://afp.sf.net/entries/Pop_Refinement.shtml
http://afp.sf.net/entries/Pop_Refinement.shtml
http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/acl2

[6] Kestrel Institute. APT (Automated Program Transformations). http://www.kestrel.
edu/home/projects/apt.

[7] Derek Kingston, Steven Rasmussen, and Laura Humphrey. Automated uav tasks for
search and surveillance. In 2016 IEEE Conference on Control Applications (CCA), pages
1–8, 2016.

[8] Steven Rasmussen, Derek Kingston, and Laura Humphrey. A brief introduction to un-
manned systems autonomy services (uxas). In 2018 International Conference on Un-
manned Aircraft Systems (ICUAS), pages 257–268, 2018.

[9] Sol Swords and Jared Davis. Fix your types. In Proc. 13th International Workshop on
the ACL2 Theorem Prover and Its Applications, 2015.

12

Approved for public release; distribution is unlimited.

http://www.kestrel.edu/home/projects/apt
http://www.kestrel.edu/home/projects/apt

A APPENDIX

A.1 Syntheto Grammar

grammar edu . vande rb i l t . i s i s . midas . Syntheto with org . e c l i p s e . xtext . common .
Terminals

2

import ” http ://www. e c l i p s e . org /emf/2002/Ecore” as ecore
4 generate syntheto ”http ://www. vande rb i l t . edu/ i s i s /midas/Syntheto ”

6 Program re tu rns Program :

8 TopLevelConstruct :
TypeDef in i t ion | Funct i onDe f in i t i on | Funct i onSpec f i c a t i on | Theorem |
Trans formDef in i t ion ;

10

TypeDef in i t ion :
12 SumTypeDefinition | ProductTypeDef in it ion | SubTypeDef init ion ;

14 Pragmadirect ives :
’%’ (Br idgeConnect ionDirect ive | ProcessMode lDi rect ive) (’ ; ’) ? ;

16

BridgeConnect ionDirect ive :
18 ’ use ’ ’ a c l 2 ’ (’ host ’ | ’@ ’) host=Ipaddres s (’ port ’ | ’ : ’) port=INT ;

20 Ipaddres s hidden () :
(f i r s t=INT ’ . ’ second=INT ’ . ’ t h i rd=INT ’ . ’ f our th=INT) ;

22

ProcessMode lDi rect ive :
24 check?=(’ check ’) ;

26 PrimitiveType :
boolean ?=(’ bool ’) | char ?=(’ char ’) | i n t ?=(’ i n t ’) | s t r i n g?= ’ s t r i n g ’ ;

28

TypeElement r e tu rn s TypeElement :
30 Option ;

32 Option r e tu rn s TypeElement :
Sequence | {Option} (’ opt ’ ’< ’ e lement=TypeElement ’> ’) ;

34

Sequence r e tu rn s TypeElement :
36 Set | {Sequence} (’ seq ’ ’< ’ e lement=TypeElement ’> ’) ;

38 Set r e tu rn s TypeElement :
Map | {Set } (’ s e t ’ ’< ’ e lement=TypeElement ’> ’) ;

40

Map re tu rn s TypeElement :
42 PrimaryTypeElement | {Map} (’map ’ ’< ’ domain=TypeElement ’ , ’ range=

TypeElement ’> ’) ;

13

Approved for public release; distribution is unlimited.

44 PrimaryTypeElement r e tu rn s TypeElement :
{PrimaryTypeElement} (primary=PrimitiveType | t yp e r e f =[TypeDef in i t ion]) ;

46

ProductTypeDef in it ion :
48 {ProductTypeDef in it ion } (s t r u c t?= ’ s t r u c t ’) ? productID=ID (’ { ’ e lement+=

TypedVariable (’ , ’ e lement+=TypedVariable) *
(’ | ’ i n va r i an t=Express ion) ? ’ } ’) ? ;

50

TypedVariable :
52 name=ID ’ : ’ type=TypeElement ;

54 Al t e rna t i v e :
{Al t e rna t i v e } (product=ProductTypeDef in it ion) ;

56

SumTypeDefinition :
58 ’ va r i an t ’ name=ID ’ { ’ a l t e r n a t i v e s+=ProductTypeDef in it ion (’ , ’

a l t e r n a t i v e s+=ProductTypeDef in it ion) * ’ } ’ ;

60 SubTypeDef init ion :
{SubTypeDef init ion } ’ subtype ’ name=ID ’ { ’ e lement=TypedVariable ’ | ’
i n va r i an t=Express ion ’ } ’ ;

62

Funct i onSpec f i c a t i on :
64 (’ s p e c i f i c a t i o n ’) name=ID ’ (’ ’ f unc t i on ’ funcName=ID ’ (’ (param+=Param (’ ,

’ param+=Param) *) ? ’) ’ (’ r e tu rn s ’ ’ (’
r e t u r n l i s t+=Param (’ , ’ r e t u r n l i s t+=Param) * ’) ’) ? ’) ’ ’ { ’ expr=
BlockStatement ’ } ’ ;

66

Theorem :
68 ’ theorem ’ name=ID ((’ f o r a l l ’) ’ (’ f o r a l l t a g+=TypedVariable (’ , ’ f o r a l l t a g

+=TypedVariable) * ’) ’) ? (’ | ’) ?
exp r e s s i on=Express ion ;

70

Funct i onDe f in i t i on :
72 (’ f unc t i on ’) name=ID ’ (’ (param+=Param (’ , ’ param+=Param) *) ? ’) ’

(’ assumes ’ assumes=Express ion) ? (’ r e tu rn s ’ ’ (’
74 r e t u r n l i s t+=Param (’ , ’ r e t u r n l i s t+=Param) * ’) ’) ? ((’ ensure s ’ ensure s=

Express ion) ?) (’ measure ’ measure=Express ion) ?
(’ { ’ ((expr=BlockStatement)) ’ } ’) ;

76

Trans formDef in i t ion :
78 (’ f unc t i on ’) name=ID ’=’ ’ trans form ’ t rans fo rmed fn=[TransformableType] ’

by ’ t rans fo rmat ion=trans fo rmat i on type ;

80 TransformableType :
Func t i onDe f in i t i on | Trans formDef in i t ion ;

82

t rans f o rmat i on type :
84 t a i l r e c u r s i o n | remove cdr ing | f l a t t en param | isomorphism |

f i n i t e d i f f e r e n c e | drop i r r e l evant param

14

Approved for public release; distribution is unlimited.

| wrap output | rename param | s imp l i f y ;
86

f i n i t e d i f f e r e n c e :
88 ’ f i n i t e d i f f e r e n c e ’ ’ { ’ ’ e xp r e s s i on ’ ’= ’ exp r e s s i on=Express ion ’ , ’ ’

new parameter name ’ ’=’ new parameter name=ID ’ , ’
’ s imp l i f y ’ ’= ’ s imp l i f y=Boo l eanL i t e ra l ’ } ’ ;

90

f l a t t en param :
92 ’ f l a t t en param ’ ’ { ’ ’ o ld ’ ’= ’ o ld=ID ’ , ’ ’new ’ ’=’ ’ [’ n ew l i s t+=ID ’ , ’ (

n ew l i s t+=ID)+ ’] ’ ’ } ’ ;

94 wrap output :
’ wrap output ’ ’ { ’ ’ wrap funct ion ’ ’= ’ i d e n t i f i e r=ID ’ } ’ ;

96

drop i r r e l evant param :
98 ’ d rop i r r e l evant param ’ ’ { ’ ’ param ’ ’=’ i d e n t i f i e r=ID ’ } ’ ;

100 t a i l r e c u r s i o n :
’ t a i l r e c u r s i o n ’ ’ { ’ ’ new parameter name ’ ’=’ i d e n t i f i e r=ID ’ } ’ ;

102

isomorphism :
104 ’ isomorphism ’ ’ { ’ ’ parameter ’ ’= ’ parameter=ID ’ , ’ ’ new parameter name ’ ’=

’ new parameter name=ID ’ , ’ ’ o ld type ’ ’= ’
o ld type=ID ’ , ’ ’ new type ’ ’= ’ new type=ID ’ , ’ ’ o ld to new ’ ’=’ o ld to new

=ID ’ , ’ ’ new to o ld ’ ’= ’ new to o ld=ID ’ , ’
106 ’ s imp l i f y ’ ’= ’ s imp l i f y=Boo l eanL i t e ra l ’ } ’ ;

108 rename param :
’ rename param ’ ’ { ’ ’ o ld ’ ’= ’ o ld=ID ’ , ’ ’new ’ ’=’ new=ID ’ } ’ ;

110

s imp l i f y :
112 { s imp l i f y } ’ s imp l i f y ’ ;

114 remove cdr ing :
’ remove cdr ing ’ ’ { ’ ’ s imp l i f y ’ ’= ’ s imp l i f y=Boo l eanL i t e ra l ’ } ’ ;

116

Param :
118 tag=TypedVariable ;

120 BlockStatement :
LetExpress ion | I fExp r e s s i on | WhenExpression | UnlessExpress ion |
CondExpression | BlockExpress ion ;

122

BlockExpress ion :
124 (i s r e t u r n?= ’ re turn ’) ? expr=Express ion ’ ; ’ ;

126 CondExpression :
’ cond ’ ’ { ’ branches+=CondBranches+ ’ } ’ ;

128

CondBranches :

15

Approved for public release; distribution is unlimited.

130 t e s t=Express ion ’ { ’ thenexpr=BlockStatement ’ } ’ ;

132 LetExpress ion :
(’ l e t ’ (vars+=TypedVariable (’ , ’ vars+=TypedVariable) *) ’= ’ f i r s t=
BlockStatement second=BlockStatement) ;

134

WhenExpression :
136 ’when ’ ’ (’ t e s t=Express ion ’) ’ ’ { ’ thenexpr=BlockStatement ’ } ’ e l s e e xp r=

Elseexpr ;

138 UnlessExpress ion :
’ un l e s s ’ ’ (’ t e s t=Express ion ’) ’ ’ { ’ thenexpr=BlockStatement ’ } ’ e l s e e xp r=
Elseexpr ;

140

I fExp r e s s i on :
142 { I fExpr e s s i on } ’ i f ’ ’ (’ t e s t=Express ion ’) ’ ((’ { ’ (thenexpr=BlockStatement

) ’ } ’)) (’ e l s e ’ e l s e e xp r=Elseexpr) ;

144 Elseexpr :
{Elseexpr } ’ { ’ (e l s e e xp r=BlockStatement) ’ } ’ ;

146

Express ion r e tu rn s Express ion :
148 Imp l i e s exp r ;

150 Imp l i e s exp r r e tu rn s Express ion :
Or expr ({ Imp l i e s exp r . l e f t=current } (imp l i e s?= ’==> ’ | impl i ed?= ’<==’ |
i f f ?= ’<=> ’) r i g h t=Or expr) * ;

152

Or expr r e tu rn s Express ion :
154 And expr ({Or expr . l e f t=current } ’ | | ’ r i g h t=And expr) * ;

156 And expr r e tu rn s Express ion :
Compare expr ({And expr . l e f t=cur rent } ’&&’ r i g h t=Compare expr) * ;

158

Compare expr r e tu rn s Express ion :
160 Math expr ({Compare expr . l e f t=current } (geq?= ’>=’ | l e q?= ’<=’ | eq?= ’==’ |

neq?= ’ != ’ | gt?= ’> ’ | l t ?= ’< ’)
r i g h t=Math expr) * ;

162

Math expr r e tu rn s Express ion :
164 Mul t i p l i c a t i o n (({ Plus . l e f t=current } ’+ ’ | {Minus . l e f t=cur rent } ’= ’) r i g h t

=Mu l t i p l i c a t i o n) * ;

166 Mul t i p l i c a t i o n r e tu rn s Express ion :
Unary expr (({Multi . l e f t=cur rent } ’ * ’ | {Div . l e f t=current } ’ / ’ | {Modulo .
l e f t=cur rent } ’%’) r i g h t=Unary expr) * ;

168

Unary expr r e tu rn s Express ion :
170 PrimaryExpress ion | {Unary expr} op=OpUnary operand=Unary expr ;

16

Approved for public release; distribution is unlimited.

172 OpUnary :
not?=” ! ” | negat ion?=”=” ;

174

PrimaryExpress ion r e tu rn s Express ion :
176 ’ (’ Express ion ’) ’ | {L i t e ra lVa lue } value=L i t e r a l | {Funct ionCal l } func=[

Funct i onDe f in i t i on] (’ (’ (a rgs+=Express ion
(’ , ’ a rgs+=Express ion) *) ? ’) ’) | {VariableAssignment } (v a r i ab l e=
ElementTagQual i f i er) ;

178

ElementTagQual i f i er r e tu rn s ElementTagQual i f i er hidden () :
180 ch i l d =[Subelement] (({ ElementTagQual i f i er . l e f t=cur rent } ’ . ’) (subelement=[

Subelement])) * ;

182 Subelement :
ProductTypeDef in it ion | TypedVariable | SumTypeDefinition ;

184

L i t e r a l :
186 Boo l eanL i t e ra l | NumberLiteral | S t r i n gL i t e r a l | ProductL i t e ra l |

S ing l eVa lu eBu i l t i n s | TwoValueBuilt ins ;
188

TwoValueBuilt ins :
190 {TwoValueBuilt ins} bu i l t i n=(’member ’ | ’ r emov e f i r s t ’ | ’ add ’ | ’ append ’)

’ (’
operand =Express ion ’ , ’ e lement =Express ion ’) ’ ;

192

S ing l eVa lu eBu i l t i n s :
194 bu i l t i n=(’ l ength ’ | ’ i s empty ’ | ’ f i r s t ’ | ’ r e s t ’ | ’ l a s t ’) ’ (’ e lement=

Express ion ’) ’ | empty?= ’ empty ’ (’ (’ ’) ’) ? ;

196 Boo l eanL i t e ra l :
{Boo l eanL i t e ra l } (’ f a l s e ’ | i sTrue?= ’ t rue ’) ;

198

NumberLiteral :
200 {NumberLiteral} value=INT ;

202 S t r i n gL i t e r a l :
{ S t r i n gL i t e r a l } value=STRING;

204

ProductL i t e ra l :
206 {ProductL i t e ra l } (product=[ProductTypeDef in it ion]) ’ (’ ass ignment+=

ProductAssignment (’ , ’
ass ignment+=ProductAssignment) * ’) ’ ;

208

ProductAssignment :
210 l e f t =[TypedVariable] ’= ’ r i g h t=Express ion ;

212 SeqL i t e r a l :
{ SeqL i t e r a l } ’ [’ (e lements+=Express ion (’ , ’ e lements+=Express ion) *) ’] ’ ;

17

Approved for public release; distribution is unlimited.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ACL2 A Computational Logic for Applicative Common Lisp
AM Application model
APT Automated Program Transformations
C2 Command and Control
DevOps Development and Operations
DM Domain model
DSL Domain-specific Language
DSML Domain-Specific Modeling Language
IDAS Intent-Driven Adaptive Software
IDE Integrated Development Environment
MBSE Model-based Software Engineering
MDL Model Design Language
MIDAS Model-based Intent-Driven Adaptive Software
OIC Objectives, Intentions, and Constraints
OpenAMASE Open Aerospace Multi-agent Simulation Environment
OpenUxAS Open Unmanned Systems Autonomy Services
OpenUxAS-MDE Open Unmanned Systems Autonomy Services–Model Driven Engineering
SM Synthesis model
TM Target model
UAV Unmanned Aerial Vehicle
VS Code Visual Studio Code
XML eXtensible Markup Language

Approved for public release; distribution is unlimited.
18

	List of Figures
	SUMMARY
	INTRODUCTION
	METHODS, ASSUMPTIONS, AND PROCEDURES
	Challenges
	Overall approach
	Program Synthesis in an Integrated Development Environment
	Model-driven Development for a Service-based Application Framework

	RESULTS AND DISCUSSION
	Syntheto
	Language summary
	Interface with ACL2
	IDE with Notebook Interface
	Syntheto implementation

	OpenUxAS-MDE
	OpenUxAS-MDE implementation

	CONCLUSIONS
	REFERENCES
	APPENDIX
	Syntheto Grammar

	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

