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I. INTRODUCTION

In many real-world monitoring scenarios, such as stock
returns, road traffic conditions, data center KPIs, and personal
health metrics, collected data appears in the form of multi-
variate time series (MTS). Monitoring is critical in practice.
For instance, Transportation Management Centers are critical
for managing the surface road network; delays accrued dur-
ing the monitoring phase delay response and resolution [1].
Frequently, secondary crashes and long-clearance times lead
to additional congestion on critical arterial road segments. To
improve the real-time monitoring of extensive road networks,
transportation agencies are increasing the available sensing
modalities, often in smart corridors. However, this drastic
increase in the number of sensors raises an essential question
from an operational perspective—how can transportation agen-
cies monitor thousands of sensors in (near) real-time to detect
incidents of interest? Our conversations with local transporta-
tion agencies revealed that this monitoring is largely performed
manually, an infeasible strategy in the long run. One approach
to enable transportation agencies to utilize an extensive array of
sensors is to detect potentially anomalous patterns in real-time
using the data generated by the sensors; then, human experts
(or potentially decision-theoretic approaches [2]) can narrow
their focus on the anomalies and take necessary operational
actions. Similarly, in large data centers, server machine KPIs,
such as CPU, memory, TCP, UDP metrics, are periodically
collected as multi-variate time series by some profilers. These
KPIs are critical for estimating machine health status and
making timely responses.

Challenges Anomaly detection is a rich field in data mining
and has been explored widely in the domain of transportation
networks. While detection has been traditionally done for
various traffic condition variables with techniques such as
CUSUM [3], K-nearest Neighbors [4], Isolation Forests [5],
and forecasting models (e.g., ARIMA [6]), deep neural net-
works (DNN) have gradually become the state-of-the-art due to
the remarkable capability of modeling high-dimensional MTS
data. However, despite the universal approximation power
of DNN on learning unknown data distributions, performing
anomaly detection on MTS is still challenging. For example,
many DNN-based approaches either rely on an uncontaminated
training dataset to learn the normal traffic patterns (semi-
supervised) or reframe the detection task as a classification
task using a fully-labeled traffic mobility dataset (supervised).

Such approaches, however, are not practical in general, and
moreover, such data often do not account for a large number
of incidents such as phantom traffic jams, slowdowns, and
weather hazards. Further, even if labels are available, such
classifiers and approaches identify point anomalies, where the
observation is clearly far away from what is expected globally.
In addition, traditional anomaly detection techniques focus
on maximizing the accuracy of detection. However, in the
specific use case of transportation centers, the goal of such
a detector is to ensure that the search space for monitoring is
shrunk for domain experts. As a result, in practice, the detector
must demonstrate high recall with relatively low precision, i.e.,
false negatives are more costly than false positives. Finally, an
additional challenge is proactive model improvement; agencies
must ensure that the learned model used to detect anomalies is
improved proactively to detect potentially unseen anomalies.

Contributions This work systematically addresses these
challenges by developing a multi-variate anomaly detection
framework based on conditional normalizing flow, a probabilis-
tic generative model that can tractably perform density estima-
tion and sampling in extremely high dimensional spaces [7].
Through this approach, we can model the multimodal distri-
butions of time series data. In particular, we summarize the
contributions of this paper as follows:

1) We propose a principled MTS anomaly detection and
diagnosis model for traffic data that comprises an
LSTM-Encoder-Decoder (LSTM-EncDec) model and a
Normalizing Flow architecture [7], specifically a Real-
NVP [8] flow. The former makes sequence-to-sequence
forecasting with a sliding-window scheme to extract
internal spatial-temporal information from ground-truth
data. The flow model is used to model complex data
distribution in the high-dimensional transit data. Specif-
ically, it performs conditional density estimation using
the outputs of the forecasting model.

2) To ensure tractability of our approach, we divide the
road network of a city into clusters, and perform
anomaly detection at the granularity of clusters.

3) Then, we use a simpler density estimator based on
a kernel density function to identify anomalies at the
granularity of features(e.g., road segments in transporta-
tion systems or KPIs for server machines).

4) We compare our approach with existing state-of-the-
art baselines using traffic data collected from the City
of Nashville, Tennessee as well as an open dataset on
server machines. Experimental results show that our
approach has superior performance and sensitivity on
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anomaly detection in traffic networks.

II. BACKGROUND

In this section, we provide some preliminary knowledge
about general normalizing flows and RealNVP.

A. Normalizing Flow
Normalizing flows define a series of bijective transforma-

tions that can transform the probability density pX(x) of a
random variable X ∈ RD to a well-known base distribution
pZ(z) defined by a random variable Z ∈ RD [9]. The random
variable Z is chosen such that it has an explicit probability
density function. The problem of training the normalizing
flow is to learn an invertible transformation, f such that
z = f(x) and x = f−1(z). The transformation is a sequence
of bijective functions composed together, i.e., f = (f1.f2 · · · ).
Once learned, the forward mapping, X → Z can be used for
density estimation and the inverse mapping Z → X can be
used for sampling (synthetic data generation). This mapping
presents a key advantage that enables exact density estimation
without loss of dimensional information, making it suitable
for anomaly detection. In particular, the marginal likelihood
pX(x) can be expressed as:

pX(x) = pZ(f(x))

∣∣∣∣det

(
∂f(x)

∂x

)∣∣∣∣ (1)

where pZ(f(x)) is density of x under the base distribution
pZ and det

(
∂f(x)
∂x

)
is the determinant of the Jacobian of f .

The main challenges of modeling arbitrary distributions using
normalizing flow lie in designing the compositional and invert-
ible transformation f . Further, the choice of the architectures
are restricted by the need for the efficient computation of the
determinant of the Jacobian matrix.

B. RealNVP
One of the recent innovations in normalizing flow is the use

of the real-valued non-volume preserving transformations [8]
as the function f . Effectively, RealNVP is a set of affine
coupling layers, one of the possible bijective transformations
that can be used to design the composition f . To explain this
further, consider the example of a single layer transformation
(several such layers are composed in practice) Y that maps X
to Z. RealNVP transformation Y partitions X into two disjoint
groups, where the first d dimensions remain unchanged while
the latter part, i.e., from the d + 1-th to the D-th dimension,
undergoes an affine transformation. Formally,

y1:d = x1:d

yd+1:D = xd+1:D � exp(snet(x
1:d)) + tnet(x

1:d)
(2)

snet and tnet indicate a “scale” and a “translation” function
respectively and � stands for element-wise product. The
representation power of RealNVP depends on snet and tnet,
which can be any arbitrarily complex function (often a neural
network architecture). Note that because the first d dimensions
remain unchanged during transformation, to make the flow

model capture the full picture of input space, RealNVP swaps
active and inactive dimensions in an alternating manner. A
convenient way to realize this is to multiply the D dimensional
inputs and outputs with a binary mask vector.

RealNVP guarantees its computation of Jacobian function
is efficient because the Jacobian is a block-triangular matrix,
where elements on the diagonal are an identity matrix and
a diagonal matrix whose diagonal elements correspond to
the vector exp

(
snet(x

1:d)
)
. Therefore, the determinant of

Jacobian, which simplifies to exp(
∑
j(snet(x

1:d)j)) can be
efficiently computed. If the flow is implemented using K
such layers, which is required to ensure better learning, the
probability density of a given sample x can be calculated as
follows:

log(pX(x)) = log(pZ(z)) +

K∑
k=1

log

(∣∣∣∣∣exp(∑
j

(sknet(y
1:d
k−1))j)

∣∣∣∣∣
)
(3)

where the first term denotes the likelihood of z (transformed
from x) on the base distribution, and the second term rep-
resents the accumulated changes while transforming x to z.
Thus, the training objective of RealNVP is to find the right
set of hyperparameters of the snet and tnet that maximize the
overall likelihood of the observed data, which can be denoted
as

θ∗ = arg max
θ∈Θ

1

|D|
∑
x∈D

log pX(x; θ) (4)

, where D is the observed data and θ denotes parameters of
snet and tnet functions.

III. METHODOLOGY

The problem statement of MTS anomaly detection and the
function and principle of each component in our framework
(as shown in figure 2) are concentrated and discussed in this
section.

Let S denote the set of all road segments under consider-
ation. Consider an arbitrary segment Si ∈ S on which (near)
real-time speed is monitored continuously; we assume that the
estimated harmonic mean speed on segment Si is computed
and stored at discrete times t ∈ {1, 2, ..., T}. We denote this
observation at time t by vti . The free-flow speed v̂i, an intrinsic
property of segment Si, is calculated based upon the 85th-
percentile of the observed speeds on the segment Si for all
time periods [10]–[12]. The historical average speed, denoted
by v̄ti , signifies the regular traffic condition on Si, which is
calculated by taking the harmonic average of speeds on Si for
each hour of day and for each day of the week. Then, the
congestion rate is defined as

xti =
v̄ti − vti
v̂i

(5)

The congestion rate of N roadway segments can be modeled
as an N -dimensional time series of length T , denoted by
X , i.e., X = {x1, x2, . . . xT }, where xt ∈ RN is an N
dimensional vector representing a measurement at time t. The
congestion observation from the ith segment at time t is xti.
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Symbol Description
D the traffic congestion dataset
X set of congestion rate time series
T total length of the traffic dataset
i, t a specific roadway segment and time step
λt a time feature vector for time t
Si the ith road segment
xi univariate time series, congestion rate of the ith road segment
xt a vector of congestion values at time t
xti congestion rate of the ith road segment at time t
v̄ti , v

t
i historical average speed and harmonic mean speed of the ith segment

at time t
v̂i free-flow speed of the ith segment
τ the length of a sliding window
t0 the start time step of the prediction window in a sliding window
B a batch of sliding windows
e encoding vector produced by Encoder for a specific context window
ht LSTM hidden states at time t
K the number of Coupling layer and Batch normalizing layer in the

RealNVP model
z the base distribution of the flow model
y an arbitrary latent representation learned as part of the transformation

in flow model
p(xt) probability density of xt

snet, tnet scale and translation network in each Coupling layer of the
RealNVP model

history(xj) history data that are at the same period as xj , where j ∈ [t0, τ ] is
a detected anomalous time step

θ trainable parameters in the model
α, β the fractions of anomalous time slices and road segments in the

synthetic dataset

TABLE I: List of Symbols

At an arbitrary time t, xt therefore denotes a snapshot of
congestion at all roadway segments. Each time step can have
additional features associated with it, e.g., day of the week and
hour of the day. We denote such features for the t-th time step
be λt.

The primary goal of our framework is to detect points in
time at which anomalous congestion may occur. With the
obtained detection results, the secondary target is to recog-
nize the roadway segments most likely to have caused the
abnormal observation at each timestamp. Figures 1 and 2
together demonstrate a four step method we propose for
fulfilling these targets: (1) time series clustering based on
similarity measures; (2) unsupervised anomaly detection based
on conditional RealNVP; (3) anomaly diagnosis at the road
segment granularity based on non-parametric kernel density
estimation; (4) auxiliary supervised anomaly detection based
on multi-layer perceptron.

A. Time Series Clustering

In practice, X might be composed of thousands of dimen-
sions with heterogeneous temporal patterns, semantic mean-
ings, or underlying dependencies. It is computationally diffi-
cult to learn patterns or explicit probability distributions for
extremely high-dimensional data. One way to alleviate this
challenge is by identifying dimensions that are related in the
feature space. To tackle this, we perform data-driven clustering
to partition the given time series into separate groups based
on similarity (where similarity is based on an appropriate
distance in the feature space, e.g., the `1 norm). This step

facilitates anomaly detection and diagnosis in two aspects.
First, it ensures that learning the probability distribution over
the input time series is tractable. Second, similarity in the
feature space naturally associates semantic meaning to the
clusters; e.g., we observe that different clusters correspond
(roughly) to different types of roads such as highways and
on-ramps. Learning an explicit distribution for a particular
cluster therefore enables us to learn a distribution of traffic
in a particular type of roadway.

Fig. 1: Grouping the road segments into clusters.

Traditional clustering methods cannot be applied directly to
time-series settings due to the temporal nature of the data. A
general idea of time series clustering, as shown in Figure 1,
is to first convert temporal data to a flat representation by
computing a similarity or distance matrix; then, a standard
clustering algorithm (e.g., KMeans [13], DBSCAN [14]) can
be used to partition the flat representation. We leverage the
commonly-used “Dynamic Time Warping” (DTW) [15] dis-
tance to measure pair-wise similarities between time series.
Particularly, consider arbitrary road segments Si and Sj . The
DTW distance between the segments (in the feature space
defined by congestion) can be calculated as the squared root of
the sum of squared distances between every element in xti ∀t ∈
{1, . . . , T} and its nearest point in xtj ∀t ∈ {1, . . . , T}. Intu-
itively, the distance reflects how similar was each congestion
value observed in segment Si to any congestion value observed
in segment Sj , and then aggregates the similarities. Given
the similarity measures, we use the OPTICS algorithm [16]
for clustering. The OPTICS algorithm is density-based, which
does not require the number of clusters as a prerequisite. Given
the clusters, we perform anomaly detection in each cluster
independently.

B. Timestamp-level Anomaly Detection

We can perform density estimation on the raw data using
RealNVP directly; recall that the normalizing flow approach
allows us to perform tractable density estimation. However,
our initial experiments proved otherwise as the flow model
failed to capture contextual anomalies. This observation is not
surprising; the transformations in RealNVP operate along the
feature dimensions but discard the temporal correlation in the
data. In contrast, recurrent neural networks with gated memory
such as LSTM (long short-term memory networks) [17] have
been proven to be powerful tools for modeling sequential data.
This inspires us to explore the possibility of capturing “point”
and “contextual” anomalies simultaneously by aggregating an
LSTM-based Encoder-Decoder and a normalizing flow model.
As LSTM requires three-dimensional inputs (the batch size,
the number of time steps, and the number of features), we
use overlapping sliding windows x{1:τ} of length τ as inputs,



4

Fig. 2: Anomaly detection, roadway segment-level anomaly diagnosis,
and supervised anomaly classification.

where each window is further divided into a context window
x{1:t0−1} and a prediction window x{t0:τ} (see figure 2). We
explain the functioning of the LSTM below.

1) LSTM Encoder-Decoder: We use an LSTM-Encoder-
Decoder structure that defines two separate components: an
encoder and a decoder, each of which is composed of a stack
of LSTM layers. During inference, the encoder first converts
data x{1:t0−1} into a single fixed-length representation vector,
fθenc : x{1:t0−1} → e, given by the last hidden states of
LSTM, that contains all the information needed for the input
of a subsequent decoder. The encoder vector e is then repeated
τ − t0 + 1 times and used to initialize the internal states of
decoder LSTM cells. The decoder then generates the ultimate
hidden states of the target sequence xt0:τ in an autoregressive
manner, i.e., fθdec : e→ ht0:τ .

With respect to anomaly detection, the autoregressive
scheme enables RNN to propagate and leverage historical
information. Also, the encoder-decoder structure prevents out-
of-distribution data from being constructed from compressed
historical information, which in turn ensures that the density
is learned without too many outliers. Deterministic encoder-
decoder models use mean squared error as anomaly score to
measure the deviation between observations and predictions.
However, this score may result in sub-optimal anomaly de-
tection decisions due to two reasons. First, noise in data and
randomness from the model’s parameters may interfere with
the training procedures. Second, the decisions are concluded
from a fixed-length of historical data, therefore lacking a global

perspective. We bypass this issue by integrating the encoder-
decoder structure with the normalizing flow (described below)
and training the overall architecture by maximizing the log
likelihood function (which is inherently probabilistic).

Consider an observation xt where t ∈ {t0 : τ}. Let the
output of the last layer of the decoder for xt be denoted by
ht. Intuitively, given ht, which implicitly contains information
summarized from previous time steps, our ultimate goal is
to estimate the likelihood of xt in the entire input space X ,
i.e., p(xt|ht). A low value implies the observation is either
rare in the input space or deviates from contextual behavior.
Our implementation of the LSTM Encoder-Decoder model is
shown in figure 2. We include temporal features such as week-
of-year, day-of-week, and hour-of-day with the encoder’s input
to facilitate learning the seasonality and trend patterns of time
series. Then, the likelihood of the observations from t0 to τ
can be represented as:

p(xt0:τ | x1:t0−1, λ1:t0−1, θenc, θdec) =

τ∏
t=t0

p(xt|ht, λt, θdec) (6)

where ht denotes the LSTM hidden at xt that is autoregres-
sively derived from the previous step. Next, we explain how to
compute the density function mentioned in equation 6 using a
conditional RealNVP flow model.

2) Conditional RealNVP: Note that while the LSTM re-
quires a three-dimensional input, such an input cannot directly
fit into the flow model. As a result, we begin by flattening
the time dimension. Recall that our goal is to learn a set of
bijective functions that enable transformation between a simple
distribution and the real-world data distribution, as mentioned
in section II-B. We use a multivariate Gaussian distribution
with a diagonal covariance matrix as the base distribution,
which is a common choice for normalizing flow [9]. Let yt
denote an arbitrary latent representation learned as part of
the transformation. RealNVP partitions a given x into two
disjoint groups, one of which is unchanged and mapped to
the 1 : d dimensions, while the other part of x undergoes a
transformation and is mapped to d + 1 : D dimensions (see
equation 2 in section II). To model the conditional distribution
shown in equation 6, we concatenate ht and λt with the
unchanged part of yt, forming the inputs of st-networks in each
coupling layer (see figure 2). During the transformations, we
use binary mask vectors to extract the changed and unchanged
dimensions in yt, where the unchanged dimensions are multi-
plied by ones and the other dimensions are multiplied by zeros.
Note that the outputs of st-networks preserve the dimensions
of d + 1 : D using the inverse mask vector so that we can
compute corresponding values smoothly.

We stack K coupling layers to ensure the flow models can
perform adequate changeovers when modeling complicated
distributions, corresponding to the second term in equation 3.
We also place a bijective batch normalization (BN) layer after
every coupling layer. Our design is motivated by prior work
by Dinh et.al [8], who use BN layers to stabilize the training
process. As the BN layer is essentially a linear function, it is
invertible and the computation of the Jacobian is efficient.
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3) Training and Inference: The flow and encoder-decoder
models are trained together via minimizing the below loss
function with the Adam [18] optimizer. Given a batch of
sliding windows B, according to the optimization objective 3
and equation 6, the loss function is parameterized as:

L = − 1

|B| · (τ − t0 + 1)

∑
xt0:τ∈B

τ∑
t=t0

log pX(xt|ht, λt; θ) (7)

where θ denotes all trainable parameters in the workflow.
During inference, the procedure of anomaly detection is

straightforward and computationally efficient after training.
Given a sample xt, we use the trained network to perform
density estimation, and flag the point as an anomaly based on
a exogenous threshold ε.

C. Segment-level Anomaly Diagnosis
We now have a general architecture that can detect anoma-

lies from real-time congestion data. However, note that an
anomalous data point xt (say) consists of N dimensions,
where each dimension corresponds to a road segment. This
detection does not fully solve our problem; recall that our
goal is to enable TMC operators focus their attention (e.g.,
secondary inspection of cameras and resource allocation) to
a small subset of segments. However, N can still be large in
practice. Now, given an anomalous time vector xt, we describe
how to diagnose an anomaly down to the granularity of an
individual segment. Consider xt =< x1, x2, ..., xn > is a
detected anomalous vector, we investigate the data distribution
at time t by gathering historical data at the same period of
[t − σ

2 , t + σ
2 ], where σ denotes a configurable window size.

Then, we train a density estimation model with a Gaussian
kernel for each time series and determine the density threshold
using a split validation dataset.

D. Supervised Anomaly Classification
Given the normalizing flow model (that can perform exact

density estimation and efficient sampling) and the LSTM-
EncDec model (that can capture temporal correlations), we can
generate labeled synthetic data to train supervised classifiers
for anomaly detection. The procedure of generating MTS
sequences are as follows: we first provide a warm-up sequence
(an initial context window) as the input of the encoder to pro-
duce the decoder’s initial hidden states. Anomalies and normal
samples are then sampled from a standard normal distribution
and then transformed to the output space (with decoder hidden
states as conditional inputs). Generated samples are reused as
inputs of the next iteration until the desired time series length
is reached. The samples can then be used to train a classifier.
We use a multi-layer perceptron classifier in our analysis.

E. Thresholding
CondRealNVP and baseline methods label anomalies by

comparing the computed anomaly score (probability density,
reconstruction, or prediction errors) with a static or dynamic

threshold. In this project, we examine a static thresholding
method and a dynamic one. The static method iteratively
searches anomaly scores of the first N% data points of the test-
ing dataset for a threshold that yields the maximum F1-Score.
The computed threshold is then applied to anomaly scores of
the remaining data. We utilize the SPOT [19] algorithm for
dynamic thresholding, which essentially combines the Peak
Over Threshold (POT) algorithm with a streaming process.
Specifically, POT is a statistical method that uses “extreme
value theory” to fit the data distribution with a Generalized
Pareto Distribution. SPOT algorithm begins with computing an
initial threshold by performing a POT estimate on the first N
data points. SPOT then (1) updates its model using incoming
values that are smaller than the threshold; (2) and fits values
greater than the threshold to a GPD to adjust the threshold.

IV. EVALUATION

In this section, we first introduce a real-world traffic dataset
and a public server machine dataset used to train and evaluate
our approach. For the traffic dataset, we (1) report the anomaly
detection and diagnosis performance on synthetic datasets in
terms of Recall and F1-score; (2) present the correlations
between inferenced anomaly scores with real traffic anomalies;
(3) demonstrate the anomaly classification performance of
the CondRealNVP-driven supervised classifier in terms of
AUC score. For the server machine dataset, we present the
timestamp-levle anomaly detection performance when inte-
grating our approach with a dynamic thresholding method.
A thorough comparison with several state-of-the-art anomaly
detectors was also conducted to illustrate the effectiveness of
our approach.

A. Datasets
1) Traffic Data: We use an INRIX1 traffic mobility data

collected for one year (2019) from the city of Nashville,
Tennessee. This dataset contains estimated “real-time” har-
monic mean flow speeds, free-flow (reference) speeds, and
historical average speeds of 364 interstate road segments with a
five-minute frequency. The congestion rate measurements are
derived based on the equation 5. We impute missing values
at a specific road segment by interpolating observations from
nearby segments. If nearby segments also contain missing
values, we impute by using historical averages.

Property Values
# roadway segments 364
# records/segments 104832
collection period 2019-01-01 00:00 –2019-12-30 23:55

frequency 5 minutes

TABLE II: Details of the traffic dataset collected from Nashville TN

Synthetic Testing Data Note that the real-world traffic data is
unlabeled. To evaluate the efficacy of the proposed approach,
we generate synthetic data. We use the actual congestion data

1 https://inrix.com/

https://inrix.com/
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from Oct-2019 to Dec-2019 to generate this dataset. First,
we model the ground-truth MTS as a multivariate Gaussian
distribution, whose parameters are learned from empirical
observations. We sample from the multivariate Gaussian. Then,
we randomly inject “point” and “contextual” anomalies at a
fraction (α) of half-hour length time slices and in a fraction
(β) of road segments respectively, where α and β are hyper-
parameters that control the temporal and spatial distribution
of anomalies. The motivation of injecting anomalies in a tem-
poral manner is that traffic congestions are not instantaneous
events in practice. Point anomalies are created by perturbing
the values obtained from the first step by a factor drawn
from a uniform distribution U(−g,+g), where g denotes the
magnitude of congestion rate of the day. Contextual anomalies
are introduced by flipping the time slices that have minimum
and maximum hourly average values.

2) Server Machine Data: SMD (Server Machine Dataset) 2

is a public 5-week-long dataset which was collected by Om-
niAnomaly [20] authors from a large Internet company with
a one-minute frequency. The dataset is divided into three
groups based on the service hosted on machines. There are 28
machines in total and 38 KPIs are collected on each machine.
The SMD dataset is divided into two subsets of equal size: the
first half is the training set and the remaining is the testing set.
Anomalies and their anomalous dimensions in SMD testing set
have been labeled by domain experts based on incident reports.
The details of the SMD dataset is summarized in Table III.

Property Values
# data files 28

# dimensions 38
frequency 1 minute

training set size 708405
testing set size 708420

anomaly ratio(%) 4.16
KPIs CPU load, network usage, memory usage, etc.

TABLE III: Details of the SMD dataset

B. Baselines

In terms of MTS anomaly detection, we compare our
approach against prediction-based (e.g., AR, DeepLog-
LSTM) and reconstruction-based (e.g., AE, VAE, EncDec-AD)
anomaly detectors. These models are briefly described as the
following:

1) AR [21] models use linear regression to calculate a sam-
ple’s deviance from the predicted value, which is then
used as its outlier scores. This model is for multivariate
time series. This model handles multivariate time series
by various combination approaches. Specifically, this
algorithm trains independent linear regression models
for each dimension then computes the anomaly score
for every sample based on the mean, maximization, or
median of weighted deviance of each dimension;

2 https://github.com/NetManAIOps/OmniAnomaly

2) AE [22] is an autoencoder model based on MLP that
compresses data using an encoder and decode it to
retain original structure using a decoder. AE could be
used to detect outlying objects in the data by calculating
the reconstruction errors;

3) VAE is a variational autoencoder with MLP encoder
and decoder;

4) EncDec-AD [23] replaces MLP layers in AE with
LSTM layers;

5) DeepLog-LSTM [24] is a deep neural network model
that utilizes LSTM to model a system log as a natural
language sequence. This allows DeepLog to automat-
ically learn log patterns from normal execution, and
detect anomalies when log patterns deviate from the
model trained from log data under normal execution.
TODS library [21] only implements the Parameter
Value anomaly detection model in DeepLog [24] for
time series data, which essentially realizes a stacked
LSTM model.

As the baselines do not support anomaly diagnosis at the
feature level, we adopt the same KDE-based method as in
the proposed method when performing evaluation on the Inrix
dataset.

C. Model Configurations
For experiments on the traffic dataset, we configure the

encoder and decoder of LSTM-ED model to have 2 LSTM
layers. The flow model consists of 10 interleaving bijection
and Batch Normalization layers. For both dataset, the snet of
the st-network is activated with the Tanh function, and the
tnet uses the ReLU function [25]. The model is trained for a
maximum of 300 epochs with a batch size of 64. Out of the
training set, 30% is kept out as validation set for early stopping.
We performed hyper-parameter tuning for experiments on both
datasets. More detailed hyper-parameter settings of each model
are reported in Appendix A.

All experiments are run on a single Nvidia TITAN X
GPU (12GB) and the code implementations are based on
the Tensorflow Keras library version 2.4.0 and Tensorflow
Probability 0.11.0. Our implementation can be found at
https://github.com/scope-lab-vu/CondRealNVP.

D. Experiment Setup
1) Traffic Data: The high dimensionality of the MTS make

computing the DTW distance matrix (see section III-A) time-
consuming. Therefore, we sample 100 segments uniformly at
random use one week of data from the segments to generate
the cluster prototype. Then, we calculate the DTW distances
between the remaining segments and centroids of initialized
clusters and merge them into the nearest cluster.

Our model is trained with the congestion data from Jan-2019
to Sep-2019 and evaluated on synthetic data of the remaining
months. We empirically configure the sliding window size
to 72 (6 hours) and the moving step length to 12 (1 hour).
Point and contextual anomalies are detected together for all
experiments. We evaluate the anomaly detection performance

https://github.com/NetManAIOps/OmniAnomaly
https://github.com/scope-lab-vu/CondRealNVP
https://github.com/scope-lab-vu/CondRealNVP
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from two perspectives: effectiveness (based on temporal pa-
rameter (α) and sensitivity (based on spatial parameter (β).
Effectiveness measures whether anomalies can be found in
the case of high imbalance between anomalous and normal
data. Sensitivity, on the other hand, evaluates situations in
which only a portion of road segments are under anomalous
congestion at a specific time, which challenges our approach
to capture anomalies with high sensitivity. For each α and β
pair, we generate the synthetic test set five times and calculate
the average model performance.

For each individual cluster, we generate five one-month long
datasets. Normal and anomolous data are sampled from the
overall flow architecture. Then for each cluster, we train an
MLP classifier with the binary cross-entropy loss and Adam
optimizer. Trained MLP classifiers are evaluated on synthetic
datasets using the area under the curve (AUC) score metric.

2) Server Machine Data: Given the SMD dataset has been
divided into three groups, it is unnecessary to perform time-
series clustering. We selected one machine from each group
(machine-1-1, machine-2-1, machine-3-7) and trained three
individual models. Timestamp-level anomaly detection is then
evaluated. Unlike the static thresholding approach employed on
the traffic dataset, we leverage the SPOT algorithm to decide
the threshold of labeling anomalies. Each model is trained and
evaluated five times. We compare the performance between
CondRealNVP and baselines in terms of F1-Score and Recall.

E. Results and Discussion for Traffic Data
Clustering The MTS clustering step groups the 364 road

segments into eight clusters that include 55, 67, 68, 79, 10,
12, 62, and 11 road segments, respectively. We name the
clusters using the letters A-H. Empirical results show that
roadways in the same cluster usually have similar functions
or properties. For instance, Cluster A mainly covers Exit
road segments. Cluster B involves the highways (e.g., I-65, I-
40) that connect Nashville towards neighboring cities. Cluster
C consists of road segments around on-ramps. Experimental
results for individual clusters can be found in our Github
repository.

Anomaly Detection First, we compare CondRealNVP with
baseline methods for anomaly detection from aspects of effec-
tiveness and sensitivity. The former is achieved by configuring
the fraction of abnormal time slices α to 5%, 3%, and 1%, and
the latter is by setting the fraction of anomalous road segment
β to 100%, 50%, and 25%. We conducted controlled experi-
ments and fixed β to 50% when testing the effectiveness and
configure α as 5% for the sensitivity test. These settings ensure
the sparsity of irregular traffic congestion in temporal and
spatial. The effectiveness test results shown in Table IV reflect
that CondRealNVP consistently outperforms other methods,
with average improvements of 0.203–0.335 and 0.154–0.212
in terms of average Recall and F1-Score. There is a clear trend
that the Recall and F1-Score degrade as the decreasing α;
however, our approach is relatively more robust and guarantee
acceptable performance even in the case of α = 1%. We also
observe similar results in the sensitivity analysis. Except the
situation where all road segments in a cluster suffer heavy

congestion in a specific time slice (β = 100%), we observe
that the CondRealNVP model comprehensively outperforms
the other approaches.

metrics Recall F1-Score
anomaly rate α 5% 3% 1% 5% 3% 1%
AR 0.376 0.343 0.265 0.446 0.401 0.292
AE 0.576 0.504 0.359 0.475 0.421 0.295
VAE 0.574 0.518 0.362 0.490 0.435 0.307
EncDec-AD 0.529 0.472 0.358 0.466 0.401 0.272
DeepLog-LSTM 0.411 0.345 0.278 0.439 0.374 0.246
CondRealNVP 0.752 0.710 0.604 0.632 0.583 0.480

TABLE IV: Avg. Recall and F1-score of the effectiveness test across
8 clusters under different anomaly rates (β = 50%). Best results are
presented in bold.

metrics Recall F1-Score
road segments β 100% 50% 25% 100% 50% 25%
AR 0.482 0.376 0.275 0.580 0.446 0.241
AE 0.446 0.576 0.504 0.516 0.475 0.369
VAE 0.459 0.574 0.486 0.541 0.490 0.370
EncDec-AD 0.468 0.529 0.462 0.519 0.466 0.342
DeepLog-LSTM 0.429 0.411 0.359 0.530 0.439 0.288
CondRealNVP 0.530 0.752 0.648 0.575 0.632 0.484

TABLE V: Avg. Recall and F1-Score of sensitivity test under different
ratios of anomalous road segments (α = 5%).

Segment-Level Detection Given cluster level anomaly de-
tection, we now evaluate the accuracy of performing segment
level detection. We present the experimental results in Ta-
ble VI. It can be seen that the overall trend coincides with what
we observed in the sensitivity test. Specifically, CondRealNVP
obtains 0.102–0.184 and 0.031–0.078 improvement regarding
Recall and F1-Score compared with baseline methods. Finally,
recall that anomaly detection for traffic centers is intended
in near real-time. On average, for each cluster, inference
(including the time taken to train KDE models) takes around
34 milliseconds, which is an acceptable latency in practice.

metrics Recall F1-Score
road segments β 100% 50% 25% 100% 50% 25%
AR 0.459 0.238 0.126 0.570 0.341 0.178
AE 0.401 0.322 0.210 0.491 0.345 0.221
VAE 0.422 0.333 0.211 0.517 0.352 0.218
EncDec-AD 0.427 0.300 0.192 0.507 0.341 0.211
DeepLog-LSTM 0.395 0.242 0.156 0.514 0.333 0.199
CondRealNVP 0.520 0.508 0.282 0.572 0.420 0.245

TABLE VI: Avg. Recall and F1-Score for segment-level anomaly
diagnosis with α = 5%.

Visualization of real-world traffic anomaly We also show
a case study on real-world data to evaluate our approach.
We use real congestion data from cluster G for weekdays
between Oct. 31st and Nov. 29th in Q4 2019, which is not
seen during training. Figure 3 shows (a) the 85th percentile
congestion rate (average in 15 minutes) for all segments in
the cluster and (b) the corresponding average anomaly score
assigned by CondRealNVP. We select the period between 5
AM and 10 AM, which generally covers rush hours of the
roadway (e.g., interstates 65) in Cluster G. The 85th percentile
congestion intensity indicates the extent of congestion in the



8

cluster, implying that only 15% road segments are under
heavier congestion states than presented. It can be seen that
anomalous congestion occurred at 10/31, 11/07, 14, 18, and 22
with an apparent cascading pattern. As expected, our approach
successfully discovers the peak hours and assigns notable
anomaly scores from early stages.

Supervised Classification Finally, we evaluate the efficacy
of learning a classifiers in a supervised setting using samples
drawn from CondRealNVP. The classifiers are evaluated on
five synthetic testing datasets, as we conducted in the previous
section, with α = 5% and β = 50%. We report the average
AUC score in Figure 4. One can see that classifiers have
acceptable discrimination capability (AUC score ≥ 0.7) in
6 of the 8 clusters. The relatively lower AUC scores in
clusters A (off-ramp/Exit segments) and C (on-ramp segments)
are probably due to the extremely low volume of abnormal
congestion data in such clusters.

F. Results and Discussion for Server Machine Data
Figure 5 indicates that CondRealNVP outperforms baselines

by 0.068-0.239 on average over three selected machines in
terms of F1-Score. The Recall of CondRealNVP, as shown in
figure 6, is slightly lower than LSTM-AE on machine-2-1 but
greater than baselines in other cases. Overall, CondRealNVP
obtains an average of 0.050-0.323 higher recall over three
selected machines.

V. RELATED WORK

Existing research on anomaly detection and diagnosis for
surface transportation systems can be broadly classified into
three classes according to the means of measuring deviations
between normal samples and anomalies: reconstruction-based,
prediction-based, and density-based approaches. We review
and investigate the advantages and weaknesses of each strategy
and eventually propose CondRealNVP that combines the ideas
of prediction-based and density-based approaches.

Reconstruction-based approaches leverage the notion that
normal samples can be better restructured from a compressed
latent space than anomalies. The reconstruction error is used
as anomaly score to indicate the deviation of anomalous
samples from regular values. AutoEncoder and many of its
variants have been the main foundation of this class of
methods. Malhotra et al. [23] first introduced the LSTM
encoder-decoder schema for time-series anomaly detection,
known as EncDec-AD. Hu et.al [26] combines AutoEncoder
with graph convolutional networks to detect anomalies that
lead to unexpected travel time in a set of directed weighted
graphs. Madarash et.al [27] leverage LSTM predicted ma-
neuver labels to reduce the number of false-positive alarms
when using LSTM AutoEncoder for anomaly detection on
driving modality data. A major limitation of these studies
is that the detectors have to be built in a semi-supervised
manner, training with unpolluted data only. This does not
meet the unsupervised setting of our problem. Under the
unsupervised setting, Chevrot et.al [28] introduced Contextual
AutoEncoder to detect anomalies in En-Route trajectories.
They improved the regular LSTM-based AutoEncoder using

multiple decoders, where each focus on a specific flight phase
(e.g. climbing, cruising, or descending). However, as shown
in the study [29], a common issue with AutoEncoder-based
methods is that the L2 optimization objective enforces models
to learn a generic summarization of underlying regularities
of the training dataset, even for outliers, leading to severe
over-fitting. Variational AutoEncoder eliminates this problem
by introducing an additional Kullback-Leibler divergence loss
term. People therefore combined LSTM with VAE for multi-
modal temporal anomaly detection in various domains [30]–
[32].

Prediction models can naturally be used as anomaly de-
tector, relying on the fact that normal samples are more
predictable than anomalies. As the boosting of the complexity
and dimension of realistic MTS data, memory-gated RNN
models, such as LSTM and GRU, have been widely used
on MTS forecasting and anomaly detection tasks due to
their prominent capability in modeling long-term sequential
dependencies. Malhotra et al. [33] first proposed LSTM-AD
that uses stacked LSTM networks for MTS anomaly detection.
Similar models are employed in DeepLog [24] for system
log analysis. Channel-wise LSTM models are adopted by
Hundman et al. [34] for spacecraft anomaly detection. In
terms of transportation systems, LSTM networks are applied
on sensor data for traffic density estimation [35] and speed
forecasting [36]. Chen et al. [37] leveraged stacked LSTM
networks to predict traffic conditions with aids of four cate-
gories of traffic relevant online open data, including web map,
social media, local events, and weather. Abduljabbar et al. [38]
compared the performance of bidirectional LSTM (BiLSTM)
and regular LSTM models for freeway traffic forecasting using
simulation data. They highlight the superior performance of
BiLSTM for multiple prediction horizons. Basak et al. [39]
analyzed the cascade effects of traffic congestion using a city-
wide ensemble of intersection level connected LSTM models
and demonstrated a Timed Failure Propagation Graph-based
diagnostics mechanism in [40]. The major drawback of these
attempts is that the forecasting accuracy is likely to be affected
by anomalies when training models with polluted datasets [41],
leading to unreliable anomaly detection results. In this case, the
encoder-decoder structure was embedded in LSTM networks,
known as sequence-to-sequence (Seq2Seq) prediction models.
Loganathan et al. [42] leveraged the Seq2Seq encoder-decoder
model to detect anomalous packets in TCP traffic. A more
sophisticated Seq2Seq model with attention mechanism and
bidirectional LSTM networks is introduced in [43] for short-
term passenger flow prediction.

Density-based approaches intend to extract the underlying
distribution of ground-truth data. The principle of detecting
anomalies is that the density around a normal sample is similar
to that around its neighbors. Chiang et al. [44] designed a two-
step congestion cascades identification strategy, where they
used a non-parametric Kernel Density Estimation function
to compute anomaly score for road segments in the first
step. Congested cascades are then formed by unifying both
attribute coherence and spatio-temporal closeness of detected
congested segments. Normalizing flows, as a class of recent
probability density estimation technique, has been used for
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Fig. 3: Visualization of real-world traffic anomalies and anomaly scores. The top figure shows the 85th percentile congestion rate (average in
15 minutes). The bottom figure shows the average anomaly scores per 15 minutes. Boxes highlight the most noticeable periods that are likely
under abnormal congestion. Heatmaps show the results of Cluster G from 5 AM to 10 AM (rush hours) for 22 working days. Our method
sensitively captures the time periods when recurring congestion occurred.

Fig. 4: Average AUC score for the MLPClassifiers on 5 synthetic
testing datasets. Boxplot shows the performance variation of MLP-
Classifiers trained on 5 datasets drawn from CondRealNVP.

Fig. 5: Average F1-Score and standard deviation over five runs on the
SMD dataset

anomaly detection in transportation systems. Dias et al. [45]
employed RealNVP and masked autoregressive flow for tra-
jectory anomaly detection, in which a trajectory is defined as
a sequence of GPS points generated by a moving object on a
monitoring system. Their experimental results show that flow
models outperform classical density-based methods including
LOF [46] and a Gaussian mixture model [47]. A remarkable
benefit of density-based anomaly detection approaches is they
do not need labeled training data [48]. However, since they

Fig. 6: Average Recall and standard deviation over five runs on the
SMD dataset

only focus on the underlying data distribution, they cannot
capture the sequential correlation in a time series.

In addition to the natural limitations of the above studies,
none of the existing work comprehensively addresses the scal-
ability and spatial-temporal correlation challenges of anomaly
detection and diagnosis for large traffic congestion datasets. In
contrast, our presented work clusters road segments based on
temporal similarity measures to decompose the problem scale.
For an individual cluster, we employ the Encoder-Decoder-
based LSTM model to extract sequential dependency and
eliminate the interference of anomalies to the training process.
A powerful conditional normalizing flow model then estimates
the probability density of ground-truth congestion data. Real-
time road segment-level anomaly diagnosis is also realized in
our framework using fast kernel density estimation.

VI. CONCLUSION

In this paper, we present an end-to-end framework to address
the problem of multivariate time series anomaly detection and
real-time anomaly diagnosis. In the framework, we identify
similarity between uni-variate time series and use a conditional
normalizing flow model for MTS that combines an LSTM
Encoder-Decoder network with a RealNVP model for density-
based anomaly detection. Then, we provide a KDE-based
real-time anomaly diagnosis to locate anomalous features.
Extensive experiments conducted on a real-world traffic dataset
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and a public server machine dataset manifest that our approach
outperforms several state-of-art methods for both anomaly
detection and anomaly diagnosis.

In the future, for traffic anomaly detection, we plan to
investigate the impact of more time-independent features,
such as weather, holiday, events, etc. on anomaly detection
performance. For machine KPI anomaly detection, we plan to
improve the scalability of our approach to avoid training one
model for every machine. In addition, we want to integrate
attention mechanism with the LSTM networks to differentiate
the importance of features and time steps when deriving
anomaly score at a particular time. Finally, it is worth to
explore other normalizing flow models, such as MAF, Glow,
etc.

APPENDIX A
MODEL CONFIGURATIONS

In this section, we document the model configurations
of CondRealNVP when executing on the traffic and server
machine datasets. For Clusters A-D and G of the traffic data,
encoder LSTM layers consist of 128 and 64 hidden units
(and the opposite for the decoder) [25]. The hidden size is
changed to 64 and 32 for cluster E-F and H. The st-network
of every bijection layer is formed with 2 MLP layers (128
hidden dimensions for clusters A-D, G, and 32 for clusters
E-F, H). We configure the context window size to 6 hours
and 1 hour length for the prediction window. The moving step
length is set to 1 hour. We summarize the hyper-parameter
configurations of CondRealNVP when applying on the SMD
dataset in Table VII.

machine-1-1 machine-2-1 machine-3-7
window 360 1320 720
steps 50 20 50
# bijection blocks 15 5 20
# RNN units of LSTM-ED layers 32 32 128
# RNN layers of LSTM-ED 2 1 1
# units of st layers 32 128 32
# st layer 2 1 1
learning rate 1e-4 1e-3 1e-4
batch size 128 128 64

TABLE VII: Hyper-parameter settings of CondRealNVP when exe-
cuting on SMD datset
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“Anomaly detection for time series using vae-lstm hybrid model,”
in ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2020, pp. 4322–4326.

[33] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings,
vol. 89, 2015, pp. 89–94.

[34] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, 2018,
pp. 387–395.

[35] D. Nam, R. Lavanya, R. Jayakrishnan, I. Yang, and W. H. Jeon, “A deep
learning approach for estimating traffic density using data obtained from
connected and autonomous probes,” Sensors, vol. 20, no. 17, p. 4824,
2020.

[36] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “Lstm network: a deep
learning approach for short-term traffic forecast,” Intelligent Transport
Systems, vol. 11, no. 2, pp. 68–75, 2017.

[37] Y.-y. Chen, Y. Lv, Z. Li, and F.-Y. Wang, “Long short-term memory

model for traffic congestion prediction with online open data,” in
2016 IEEE 19th International Conference on Intelligent Transportation
Systems, 2016, pp. 132–137.

[38] R. L. Abduljabbar, H. Dia, and P.-W. Tsai, “Development and evaluation
of bidirectional lstm freeway traffic forecasting models using simulation
data,” Scientific reports, vol. 11, no. 1, pp. 1–16, 2021.

[39] S. Basak, A. Dubey, and L. Bruno, “Analyzing the cascading effect
of traffic congestion using lstm networks,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 2144–2153.

[40] S. Basak, A. Ayman, A. Laszka, A. Dubey, and B. Leao, “Data-driven
detection of anomalies and cascading failures in traffic networks,” in
Annual Conference of the PHM Society 2019, vol. 11, no. 1, 2019.

[41] W. Wu, L. He, W. Lin, Y. Su, Y. Cui, C. Maple, and S. A. Jarvis,
“Developing an unsupervised real-time anomaly detection scheme for
time series with multi-seasonality,” IEEE Transactions on Knowledge
and Data Engineering, 2020.

[42] G. Loganathan, J. Samarabandu, and X. Wang, “Sequence to sequence
pattern learning algorithm for real-time anomaly detection in network
traffic,” in 2018 IEEE Canadian Conference on Electrical & Computer
Engineering (CCECE). IEEE, 2018, pp. 1–4.

[43] S. Hao, D.-H. Lee, and D. Zhao, “Sequence to sequence learning
with attention mechanism for short-term passenger flow prediction in
large-scale metro system,” Transportation Research Part C: Emerging
Technologies, vol. 107, pp. 287–300, 2019.

[44] M.-F. Chiang, E.-P. Lim, W.-C. Lee, and A. T. Kwee, “Btci: A new
framework for identifying congestion cascades using bus trajectory
data,” in 2017 IEEE International Conference on Big Data (Big Data).
IEEE, 2017, pp. 1133–1142.

[45] M. L. Dias, C. L. C. Mattos, T. L. da Silva, J. A. F. de Macedo, and
W. C. Silva, “Anomaly detection in trajectory data with normalizing
flows,” in 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2020, pp. 1–8.

[46] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 93–104.

[47] D. A. Reynolds, “Gaussian mixture models.” Encyclopedia of biomet-
rics, vol. 741, no. 659-663, 2009.

[48] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial intelligence review, vol. 22, no. 2, pp. 85–126, 2004.


	I Introduction
	II Background
	II-A Normalizing Flow
	II-B RealNVP

	III Methodology
	III-A Time Series Clustering
	III-B Timestamp-level Anomaly Detection
	III-B1 LSTM Encoder-Decoder
	III-B2 Conditional RealNVP
	III-B3 Training and Inference

	III-C Segment-level Anomaly Diagnosis
	III-D Supervised Anomaly Classification
	III-E Thresholding

	IV Evaluation
	IV-A Datasets
	IV-A1 Traffic Data
	IV-A2 Server Machine Data

	IV-B Baselines
	IV-C Model Configurations
	IV-D Experiment Setup
	IV-D1 Traffic Data
	IV-D2 Server Machine Data

	IV-E Results and Discussion for Traffic Data
	IV-F Results and Discussion for Server Machine Data

	V Related Work
	VI Conclusion
	Appendix A: Model Configurations
	References

