
Configuration Tuning for Distributed IoT Message Systems Using Deep Reinforcement Learning

Vanderbilt University, Nashville, USA
Zhuangwei Kang, Yogesh D. Barve, Shunxing Bao, Abhishek Dubey, Aniruddha Gokhale

Data Collection
• Sample multi-dimensional config space

using Latin Hypercube Sampling.
• Emulate DMS workloads using container

techniques and traffic control.
• Collect DMS internal and external state

metrics using Collectd.

DMS Simulator Training
DMSConfig adopts the random
forest[2] (RF) algorithm to train a
DMS simulator that takes a
number of performance-relevant
parameters as input and forecasts
several software internal state
metrics, publisher-side
throughput, and latency.

DRL-based Configuration Tuning
• Convert the latency-constrained configuration tuning problem to a

Markov Decision Process and solve it using the DDPG algorithm.
• The auto-tuner (RL Agent) gradually enhances the likelihood of

selecting high-quality configurations (RL Action) through trial and
error.

• The derived optimal searching strategy (RL Policy) can navigate the
auto-tuner to obtain the maximum cumulative return, and the
action taken to reach the terminal state is the best configuration.

Challenges
• The search space grows exponentially as the

number of tunable parameters increases.
• Requires significant domain knowledge and in-

depth understanding of the impact of each
parameter on application performance and their
unseen interactions.

• The default configurations are usually suboptimal.
• Naive exhaustive search methods are laborious,

error-prone and suboptimal.

Why DRL?
• The sequential decision-making process in

RL coincides with the essence of iterative
parameter adjustment.

• DDPG has been proven a robust approach
for settling continuous control
problems(continuous configuration in our
context).

• The reward function in RL guides the tuning
process by applying revenue or penalty to
the agent, which satisfies our demand for
throughput and latency simultaneously.

• Driven by the model-based DMS simulator
and RL reward mechanism, DMSConfig can
rapidly adapt tuning requests that have
different latency constraints.

Methodology
We propose a Deep Reinforcement
Learning (DRL)-based configuration
recommendation system, called
DMSConfig. It is built using container-
based emulation techniques, conventional
machine learning, and the DDPG[1] DRL-
based algorithm, which is utilized in three
stages data collection, DMS simulator
training, and configuration tuning.

Goals and Overview: Distributed messaging systems (DMSs) provide users with a set of continuous
and discrete configurable parameters that have different data types and value ranges, which
together result in a hybrid, multidimensional configuration space. By fine-tuning DMS
configurations, we aim to optimize the publisher-side throughput of DMS applications while
meeting latency constraints, such as:

max
! ∈!#

𝑇𝑃(𝑊, 𝑇, 𝑅, 𝐶)
𝑠. 𝑡. 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ≤ 𝐿$

, where 𝑇𝑃 denotes publisher-side throughput, 𝑊 is input workload, 𝑇 is system topology, 𝑅 is
system resource profile, 𝐶 is a specific configuration vector, and 𝐿$ is the restriction imposed on
system latency.

2021 CPS-IoT Week | May 18-21, 2021

[1] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan
Wierstra. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).
[2] Breiman, Leo. "Random forests." Machine learning 45, no. 1 (2001): 5-32.

DMSConfig earns analogous
throughput performance compared
with the three baselines but delivers
the most reliable latency guarantees.

Our initial experimental results, conducted on
a single-broker Kafka cluster, reveal that the
configurations identified by DMSConfig
significantly outperform the default
configuration provided by Kafka vendor under
several levels of 𝑙𝑐𝑓. DMSConfig is also able to
guarantee application performance under
resource-constrained(CPU, bandwidth)
environments by making effective
configuration recommendations.

Future Work
1. Optimize the DDPG reward function and neural

network design to enhance throughput and reduce
latency violation occurrence rate;

2. Extend the single-broker DMS configuration problem
to multi-broker scenarios.

Initial Experimental Results

