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Data Collection
• Sample multi-dimensional config space

using Latin Hypercube Sampling.
• Emulate DMS workloads using container

techniques and traffic control.
• Collect DMS internal and external state

metrics using Collectd.

DMS Simulator Training
DMSConfig adopts the random 
forest[2] (RF) algorithm to train a 
DMS simulator that takes a 
number of performance-relevant 
parameters as input and forecasts 
several software internal state 
metrics, publisher-side 
throughput, and latency.

DRL-based Configuration Tuning
• Convert the latency-constrained configuration tuning problem to a 

Markov Decision Process and solve it using the DDPG algorithm.
• The auto-tuner (RL Agent) gradually enhances the likelihood of 

selecting high-quality configurations (RL Action) through trial and 
error. 

• The derived optimal searching strategy (RL Policy) can navigate the 
auto-tuner to obtain the maximum cumulative return, and the 
action taken to reach the terminal state is the best configuration.

Challenges
• The search space grows exponentially as the 

number of tunable parameters increases. 
• Requires significant domain knowledge and in-

depth understanding of the impact of each 
parameter on application performance and their 
unseen interactions.

• The default configurations are usually suboptimal.
• Naive exhaustive search methods are laborious, 

error-prone and suboptimal.

Why DRL?
• The sequential decision-making process in 

RL coincides with the essence of iterative 
parameter adjustment.

• DDPG has been proven a robust approach 
for settling continuous control 
problems(continuous configuration in our 
context).

• The reward function in RL guides the tuning 
process by applying revenue or penalty to 
the agent, which satisfies our demand for 
throughput and latency simultaneously.

• Driven by the model-based DMS simulator 
and RL reward mechanism, DMSConfig can 
rapidly adapt tuning requests that have 
different latency constraints.

Methodology
We propose a Deep Reinforcement 
Learning (DRL)-based configuration 
recommendation system, called 
DMSConfig. It is built using container-
based emulation techniques, conventional 
machine learning, and the DDPG[1] DRL-
based algorithm, which is utilized in three 
stages data collection, DMS simulator 
training, and configuration tuning.

Goals and Overview: Distributed messaging systems (DMSs) provide users with a set of continuous 
and discrete configurable parameters that have different data types and value ranges, which 
together result in a hybrid, multidimensional configuration space. By fine-tuning DMS 
configurations, we aim to optimize the publisher-side throughput of DMS applications while 
meeting latency constraints, such as:
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𝑇𝑃(𝑊, 𝑇, 𝑅, 𝐶)
𝑠. 𝑡. 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ≤ 𝐿$

, where 𝑇𝑃 denotes publisher-side throughput, 𝑊 is input workload, 𝑇 is system topology, 𝑅 is
system resource profile, 𝐶 is a specific configuration vector, and 𝐿$ is the restriction imposed on 
system latency.
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DMSConfig earns analogous
throughput performance compared 
with the three baselines but delivers 
the most reliable latency guarantees.

Our initial experimental results, conducted on 
a single-broker Kafka cluster, reveal that the 
configurations identified by DMSConfig
significantly outperform the default
configuration provided by Kafka vendor under 
several levels of 𝑙𝑐𝑓. DMSConfig is also able to 
guarantee application performance under 
resource-constrained(CPU, bandwidth)
environments by making effective 
configuration recommendations.

Future Work
1. Optimize the DDPG reward function and neural 

network design to enhance throughput and reduce 
latency violation occurrence rate; 

2. Extend the single-broker DMS configuration problem 
to multi-broker scenarios.

Initial Experimental Results


