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ABSTRACT
Distributed messaging systems (DMSs) are often equipped with
a large number of configurable parameters that enable users to
define application run-time behaviors and information dissemina-
tion rules. However, the resulting high-dimensional configuration
space makes it difficult for users to determine the best configuration
that can maximize application QoS under a variety of operational
conditions. This poster introduces a novel, automatic knob tun-
ing framework called DMSConfig. DMSConfig explores the con-
figuration space by interacting with a data-driven environment
prediction model(a DMS simulator), which eliminates the prohib-
itive cost of conducting online interactions with the production
environment. DMSConfig employs the deep deterministic policy
gradient (DDPG) method and a custom reward mechanism to learn
and make configuration decisions based on predicted DMS states
and performance. Our initial experimental results, conducted on
a single-broker Kafka cluster, show that DMSConfig significantly
outperforms the default configuration and has better adaptability
to CPU and bandwidth-limited environments. We also confirm that
DMSConfig produces fewer violations of latency constraints than
three prevalent parameter tuning tools.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; • Computing method-
ologies → Policy iteration.
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1 INTRODUCTION
A variety of IoT application domains, such as smart cities and
smart grids, employ DMS as the middleware for data transmission
through which messages can be produced, disseminated and con-
sumed asynchronously. To ensure flexibility in a wide range of
deployment scenarios, system topologies and runtime specifica-
tions, industrial-strength DMSs provide users with a set of con-
tinuous and discrete configurable parameters that have different
data types (e.g., numeric, boolean, categorical) and value ranges,
which together result a hybrid, multidimensional configuration
space. These parameters control application runtime behaviors and
resource allocation strategies, resulting in different variations of
application performance measured across different metrics, such
as throughput, latency, CPU utilization, etc.

Making prudent configuration decisions is challenging because
the scale of the searching space boosts exponentially as the quan-
tity of tunable parameters increases. It also requires significant
domain knowledge and in-depth understanding of the impact of
each parameter on application performance as well as their unseen
interactions, which is difficult even for experts, not to mention
common users. The default configurations provided by the soft-
ware vendors are usually suboptimal, and utilizing naïve exhaustive
search methods to find appropriate configurations are laborious,
time-consuming, non-scalable, and likely be suboptimal due to the
continuous nature of the configuration space (most parameters are
numeric). Hence, this project proposes a Deep Reinforcement Learn-
ing (DRL)-based configuration recommendation system, called DM-
SConfig. We aim to optimize the publisher-side throughput of DMS
applications while meeting latency constraints, which satisfies the
demands of practical IoT streaming applications, such as online
smart grid analytics, that usually have stringent requirements on
both throughput and response time. This project uses Kafka, a pop-
ular event-processing framework used at the data analytics layer of
IoT systems, as an example to validate our approach, but DMSCon-
fig can be adapted to other DMSs since its system components are
fully decoupled.
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2 METHODOLOGY
DMSConfig is built using container-based emulation techniques,
conventional machine learning, and the DDPG [5] DRL-based al-
gorithm, which is utilized in three stages (Figure 1): data collec-
tion, DMS simulator training, and configuration tuning. The data
collection phase includes two steps: sampling configurations and
executing them on a testbed. To expose the relationship between pa-
rameter combinations and performance as much as possible within
a limited operational budget, we employ the Latin Hypercube Sam-
ple (LHS) [4] method to guarantee that the training set covers the
configuration space uniformly. Next, we leverage container and
traffic control techniques to emulate practical DMS production
environments in terms of CPU, memory, and bandwidth, which
enhance the system adaptivity. The resource isolation capabilities
of container virtualization aid in parallelizing the configuration
evaluation process thereby reducing the cost of data collection.

Figure 1: DMSConfig Workflow and Architecture

In the second stage, DMSConfig adopts the random forest (RF) al-
gorithm to train aDMS simulator that takes a number of performance-
relevant parameters as input and forecasts several software internal
state metrics, publisher-side throughput, and latency. The use of
the DMS simulator enables the parameter tuner in the next step
to obtain a predicted environmental feedback immediately after
making a configuration decision, so that the tuner can locate the
high-quality configurations within an acceptable time budget.

In the third phase, we convert the latency-constrained config-
uration tuning problem to a Markov Decision Process and solve
it using the DDPG algorithm. Briefly, the auto-tuner (RL Agent)
gradually enhances the likelihood of selecting high-quality config-
urations (RL Action) through trial and error. The derived optimal
searching strategy (RL Policy) can navigate the auto-tuner to obtain
the maximum cumulative return, and the action taken to reach the
terminal state is the best configuration. The benefit of DDPG is: (1)
the sequential decision-making process in RL is akin to iterative
parameter adjustment; (2) DDPG has been proven to be a robust
approach for settling continuous control problems (continuous con-
figuration in our context); (3) the reward function in RL guides the
tuning process by applying revenue or penalty to the agent, which
satisfies our demand for throughput and latency simultaneously;
(4) driven by the model-based DMS simulator and RL reward mech-
anism, DMSConfig can rapidly adapt tuning requests that have
different latency constraints.

3 RESULTS AND CONCLUSIONS
Our ongoing work evaluates DMSConfig under 9 Kafka use cases
(i.e., different number of publishers, CPU cores, bandwidth, and
message size) and comparing its performance with three mature

(a)𝑇𝑖𝑚𝑝 vs. 𝑙𝑐 𝑓 (b) 𝑙𝑣𝑟 vs. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟

Figure 2: (a) Percentage of throughput improvement offered by DMSCon-
fig over the default configuration under different number of publisher CPU
cores and 𝑙𝑐 𝑓 ; (b) Overall latency violation rate under 7 levels of 𝑙𝑐 𝑓 over 9
use cases.

hyper-parameter recommendation tools (HyperOpt[2], Optuna[1],
and SMAC[3]) and the Kafka’s default configuration. Besides, we
exam 7 different levels (10, 12, 16, 25, 50, 100, unlimited) of latency
constraint factors (𝑙𝑐 𝑓 ), where 𝑙𝑐 𝑓 is the percentage of the default
configuration latency. Each 𝑙𝑐 𝑓 ) is used to validate whether our
proposed DMSConfig can successfully balance latency and through-
put and obtain maximum profit. Our preliminary results reveal
that the configurations identified by DMSConfig achieve overall
12%-538% throughput improvement under 7 different levels of 𝑙𝑐 𝑓 .
DMSConfig is also able to guarantee application performance under
resource-constrained environments by making effective configura-
tion recommendations. In a 100Mbps bandwidth environment, for
instance, it promotes throughput by 463%-538% under the premise
of satisfying 7 levels of 𝑙𝑐 𝑓 . Likewise, vertical comparison results
shown in figure 2a prove DMSConfig adapts to diverse publisher
CPU core settings(show 4 𝑙𝑐 𝑓 due to page limit constraint). Pre-
liminary results also confirm that DMSConfig earns analogous
throughput performance compared with the three baselines but
delivers the most reliable latency guarantees (see Figure 2b). In
conclusion, DMSConfig illustrates a promising approach for con-
figuration tuning problems. To further improve the DMSConfig
performance, in future we plan to (1) optimize the DDPG reward
function and neural network design to enhance throughput and re-
duce latency violation occurrence rate; (2) extend the single-broker
DMS configuration problem to multi-broker scenarios.
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