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Abstract—While cloud computing is the current standard for
outsourcing computation, it can be prohibitively expensive for
cities and infrastructure operators to deploy services. At the
same time, there are underutilized computing resources within
cities and local edge-computing deployments. Using these slack
resources may enable significantly lower pricing than comparable
cloud computing; such resources would incur minimal marginal
expenditure since their deployment and operation are mostly
sunk costs. However, there are challenges associated with using
these resources. First, they are not effectively aggregated or
provisioned. Second, there is a lack of trust between customers
and suppliers of computing resources, given that they are distinct
stakeholders and behave according to their own interests. Third,
delays in processing inputs may diminish the value of the
applications. To resolve these challenges, we introduce an archi-
tecture combining a distributed trusted computing mechanism,
such as a blockchain, with an efficient messaging system like
Apache Pulsar. Using this architecture, we design a decentralized
computation market where customers and suppliers make offers
to deploy and host applications. The proposed architecture can be
realized using any trusted computing mechanism that supports
smart contracts, and any messaging framework with the neces-
sary features. This combination ensures that the market is robust
without incurring the input processing delays that limit other
blockchain based solutions. We evaluate the market protocol
using game-theoretic analysis to show that deviation from the
protocol is discouraged. Finally, we assess the performance of a
prototype implementation based on experiments with a streaming
computer-vision application.

I. INTRODUCTION

Edge computing is critical to balance the computing work-
loads necessitated by the growing integration of internet of
things and smart city applications [1, 2, 3, 4]. However, the
deployment and maintenance of edge computing infrastructure
can be costly [5, 6]. Therefore, instead of relying only on new
infrastructure, we consider the opportunity provided by the
available slack computing resources in communities, owned by
various stakeholders such as businesses, universities, and inter-
net service providers (ISPs). By “slack” computing resources,
we mean computing resources that remain after their owners’
requirements are met. It is estimated that there are hundreds
of exaFLOPs of slack compute capacity available [7, 8]. The
advantage of using slack resources is that the expenditure
for space, hardware, and operation is already paid for in
supporting the devices’ primary applications. Prior efforts
to access these resources, such as the Berkeley Open Infras-
tructure for Network Computing (BOINC) [9], rely on partic-
ipants “volunteering” slack resources. However, participation
in such programs is limited. We hypothesize that a market that

enables resource providers to sell slack computing capability
to customers who want to deploy an application is required
to incentivize participation. In our prior work [10] we began
work on such a market, however the application support was
limited to batch processing with static input data. In this work
the goal is to also support applications with dynamic inputs,
which requires a distinct approach and introduces additional
challenges.

First, the resources are not effectively aggregated or pro-
visioned. Aggregation requires participation, and provisioning
is difficult because slack capacity is transient and subject to
the demands of the primary application. Therefore, it is likely
that agents who provide slack compute will not be able to
host a service for its entire life cycle. Second, it is imperative
to establish trust between the customers and suppliers since
they may behave selfishly. For example, the resource providers
could claim that they executed a job without actually doing
so. Customers, on the other hand, could provide cleverly
crafted jobs that induce failures in resource providers to avoid
payment, even for parts of the input that were processed
correctly. Therefore, some assurance about the veracity of the
results is imperative. The techniques we used to accomplish
this in the batch processing scenario are not directly applicable
to the online or stream processing use case. Third, the value of
the application outputs may diminish with time. This means
that the mechanisms used to establish trust should not delay
the output.

Existing approaches provide partial solutions to these prob-
lems [11, 12, 13, 14]. For example, Mutable [13] and Au-
rora [14] aggregate slack compute resources, but only from
trusted entities like ISPs. This constraint sidesteps the problem
of validating results but leaves the bulk of the slack resources
untapped. Teutsch and Reitwießner [12] allow mistrusted
entities and rely on blockchain-based distributed ledgers where
there is no central trusted entity; instead, trust is distributed
among the participants to provide trusted compute. Recogniz-
ing that blockchain-only systems are inefficient, slow, and have
limited throughput, the protocol performs the computation and
verification on standard compute nodes. However, Teutsch and
Reitwießner utilize a costly mediation mechanism that involves
storing computation data on the blockchain.

To address these issues, we develop a decentralized market
to incentivize participation. To handle the volatility inherent in
slack resources, Customers specify a minimum service time.
To address the potential for Suppliers to fail accidentally, Cus-



tomers can request that multiple Suppliers host their service.
Similar to our prior work[10] as well as [11, 12], we choose
to rely on blockchain primarily because it does not require
participants to trust a single centralized entity. In addition, it
is robust and has high availability. Recognizing the limitations,
we restrict the use of the smart contract to recording alloca-
tion contracts, providing a minimal verification service, and
transferring funds. All other functionality is enabled using a
durable messaging framework. These two mechanisms work in
parallel and only synchronize to record and sign the allocation
contract prior to deployment and during the final payout. As a
result, after applications have been deployed they do not incur
delays that would be present if blockchain transactions were
used to transmit inputs.

To retain trust despite the inclusion of the messaging frame-
work, we deter undesired actions available to the participants
by designing a protocol that is both incentive-compatible
and individually rational. This protocol establishes a game
and includes in the smart contract a mechanism that verifies
outputs generated by the participants (who are treated as
rational players) to ensure expected outcomes. Then disputes,
if they occur, are resolved by a Mediator. We show using
game-theoretic analysis that this approach is sufficient to
disincentivize deviation from the protocol. This analysis is an
integral part of the system design since enforceable rewards
and penalties are crucial in a decentralized and trustless
setting.

The outline of the paper is as follows. We first explain
the problem, then describe our approach, followed by the
analysis of the protocol. Finally, we describe our prototype
implementation and measure 1) the delay introduced by our
framework on the initial deployment, 2) the resource utiliza-
tion of platform components, and 3) the monetary costs of the
market operations associated with deploying services (making
offers, allocations, verification, mediation). We do not include
the latency or throughput of a deployed service because it does
not depend on the market but rather on the resources available
to the Supplier. The implementation is available at [15].

II. PROBLEM FORMULATION

A. Assumptions

We consider that the actors are selfish but non-malicious
entities, i.e., they may try to cheat; however, given options,
they will make choices that optimize their utility. In particular,
we assume that each si, ci (a Supplier or Customer) has a
utility function U , and a set of actions Γ to choose from.
Since the actors are rational, agent i chooses action χ∗ ∈ X
such that γ∗ = argmaxγ∈Γ U . The utility function takes the
general form U =

∑
(benefits)−

∑
(costs). We define these

participants and some key attributes formally below.
Definition 1 (Suppliers of Computation Resources): A Sup-
plier s is a rational agent that, for some limited duration, has
slack computing resources available. Specifically, it has Rs

MB of memory and Is CPU cycles (in millions) per second
available for a duration defined as ∆s = send − sstart, where
sstart and send denote the start and end clock times of the

availability, respectively. We assume that the Supplier knows
its primary workloads1 and can estimate Is, Rs, and ∆s.
To ensure profitability, the Supplier must require payment
in excess of its operating costs, specifically, the cost of the
electricity consumed to host a service, denoted by πsϵ.
Definition 2 (Customer and Application Service): A Cus-
tomer c is a rational agent that has an application service
(organized as a Docker image) to deploy using our platform.
The application has a data input rate of λ and requires
Rc MB of memory and Ic CPU instructions (in millions)
to process each input. Each deployment lasts for a specific
duration, known as the service lifetime, and is defined as
∆c = cend − cstart, where cstart and cend denote the start
and end clock times of the service, respectively. We assume
that for a specific service, Customers can estimate Ic, Rc, λ,
and ∆c. For every service output, the Customer receives a
benefit b and is willing to pay up to πxmax.

B. Requirements

Given a set of offers, the market must enable suppliers and
customers to benefit from participating in the market. This
implies that the market provides an allocation that assigns
a job to a supplier. Further, we need to ensure that the
participants trust the market. Unfortunately, the nature of the
utility function (Section II-A) encourages the suppliers to
neglect processing service inputs since electricity costs πsϵ

can be saved by reducing processing. Therefore, we face the
challenge of identifying the action space of the participants
and designing a mechanism that makes undesired behavior
expensive for the participating actors.

III. OUR APPROACH

Before we introduce our market, we introduce additional
actors that participate in our market protocol and formally
describe offers through which the customers and suppliers
interact with the market.
Definition 3 (Supplier Market Offers): Both Customers and
Suppliers participate in the market by making offers. A Sup-
plier offer os ∈ Os is a tuple that includes: Asi, a unique
account identifier associated with the Supplier that posted the
offer; Is, the number of slack instructions (in millions) per
second available; Rs, the amount of RAM available; sstart,
when the resource is first available; send, when the resource
availability ends; πxmin, the minimum price the Supplier is
willing to be paid per million instructions; and [M ], a list of
trusted Mediators (we describe mediators below).
Definition 4 (Customer Market Offers): A Customer offer
oc ∈ Oc is a similar tuple that includes: Aci, a unique account
identifier associated with the Customer that posted the offer;
Ic, CPU instructions (in millions) to process each input; Rc,
the amount of RAM required; cstart; cend (defn 2); πxmax,
the maximum price the Customer is willing to pay per million

1In our definition, we do not include other resources such as disk space,
GPU cycles, and network bandwidth. While these are additional constraints
on the resource allocation algorithm, they do not fundamentally change the
problem under consideration.



instructions; name, the name of the application service to be
deployed; λ, data input rate of the service; and [M ], the criteria
used by the Allocator to select a Mediator.
Definition 5 (Allocators): An Allocator is an agent that
aggregates participant offers, solves the resource matching
problem, and proposes an allocation. The Allocator need
not be trusted because all relevant parties must accept the
allocation before it becomes an allocation contract(see below).
The Allocator functionality could have been included in a
smart contract, but this would have increased the costs of
interacting with the platform. In particular, an allocation is
a tuple which consists of customer, the allocated Customer;
{suppliers}, a set of allocated Suppliers; astart, the allocation
start time; aend, the allocation end time; name, the service
name; and πx, the service price per million instructions such
that πxmin ≤ πx ≤ πxmax. For the service price πx, any value
between πxmin and πxmax is feasible, and is determined by
the Allocator according to its allocation algorithm (e.g., double
auction, fixed price, etc.).

Effectively, an allocation declares which offers were
matched, the start and end times, and the service price. This
is only possible if

Icλ ≤ Is and Rc ≤ Rs and πxmin ≤ πxmax (1)
[sstart, send] ∩ [cstart, cend] = [astart, aend] (2)

|aend − astart| > ∆min (3)

i.e., the Supplier has sufficient resources to process inputs at
the necessary rate, there exists a price that both Customer and
Supplier would accept, and the length of time where the offers
overlap exceeds the Customer’s minimum viable service time
∆min.
Definition 6 (Minimum Viable Service Time): To offset the
setup costs πsetup of making and matching offers, a Cus-
tomer’s service must run for a minimum amount of time. We
call this the minimum viable service time and denote it by
∆min. In addition to the start and end times of the service,
the Customer also includes a minimum service time in the
offer. While evaluating the offers, if the Allocator detects
that currenttime + ∆min ≥ cend, then the offer becomes
expired. Similarly if an allocation is created, it expires when
currenttime+∆min ≥ aend.

If an allocation is agreed to by all parties then it becomes an
allocation contract. The duration of the allocation is defined as
∆ = aend−astart. The total value of an allocation is πtotal =
πsλ∆, where πs is the value of processing a single service
input: πs = Icπx. In our market, a number of Allocator agents
can participate and incorporate various resource matching and
constraint satisfaction algorithms to come up with their version
of feasible allocation. The Allocator receives a payment πA

for providing this service. This cost contributes to the setup
costs of consumers (πc setup) and suppliers (πs setup) .
Definition 7 (Mediators): Mediators are actors that are trusted
to perform mediation in the case of a dispute on a particular
allocation. The process involves recomputing the contended
output and determining fault. Customers and Suppliers specify

in their offers the criteria for selecting which Mediators they
are willing to trust. An allocation is only feasible if there a
trusted Mediator in common. If a participant chooses to no
longer trust a particular Mediator then it no longer includes it
in its offers. An example of a trusted Mediator may include
an AWS service whose code has been formally verified.

A. Understanding Costs

In addition to monetary setup costs, there are costs associ-
ated with the time delay between when an offer is submitted
and when that offer is deployed. This delay depends on Sup-
plier availability, the time required to construct an allocation,
denoted by δalloc, and the time to set up the service, denoted
by δsetup. Service setup includes transferring and starting the
service. Assuming that the service inputs are being generated
continuously, the cost of this delay is at least

πdelay = λ× πs × (δsetup + δalloc). (4)

The Customer must account for this delay when specifying
offer start time, specifically cstart = c∗start − (δalloc + δsetup)
where c∗start is the actual desired service start time. Finally, if
a Supplier hosting a service fails, the cost to the Customer to
recover from the failure is

πrecover = πc setup + πdelay. (5)

B. Middleware Components: Smart Contract and Pulsar

In our market, there are two middleware components that
are critical to its operation. First, we use a smart contract (SC)
and blockchain2 to enforce allocation contracts by recording
signed allocations, providing a verification service, and pro-
viding registration to the market by accepting deposits and
transferring payments upon successful completion of the con-
tract. Second, we rely on a distributed messaging framework
like Apache Pulsar [16], which uses a distributed write-ahead
log, to record messages and transfer data between market
participants. The fundamental properties we need from the
messaging framework are fast, efficient, durable storage of
messages that can be routed and are eventually delivered.
Note that both blockchain and Pulsar record aspects of the
market state, however, payments and contracts are only final-
ized through smart contracts in blockchains that provide trust
assurances.

IV. MARKET PROTOCOL

We describe the market protocol (Fig. 1a) using numbers in
the text (e.g., 1 ), which denote the events that take place. We
also refer to the state machine shown in Fig. 1b to describe the
protocol, which depicts how the SC tracks the state of each
allocation. In our notation, text in teletype font represents
SC functions and text that is italicized are state machine states.
1) Making Offers: The protocol begins with the Customers

and Suppliers constructing their offers and sending them
on the offers channel 1 .

2We can support different implementations, but we use Ethereum in the
current prototype.
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Fig. 1: (a) Horizontal lines represent communication channels between participants. Vertical lines represent functions that write
to (filled circle) and/or read from (open circle) channels. For example, the Supplier reads that an allocation was accepted on
the accept channel which causes it to create a reader (denoted by a square) on the input channel, a writer on the output channel
and a reader on the cleanup channel. The functions occur in the numbered sequence. Red numbers signify the sequence after
the outputs checked by the SC deployed on the blockchain do not match. (b) State of an allocation on SC represented as a
state diagram. Our SC functions are described in [15].

2) Creating Allocation: The Allocator reads the offers chan-
nel 2 and executes a matching algorithm to construct an
allocation, if one exists. It then sends the allocation on the
allocations channel.

3) Accepting Allocation: The Customers and Suppliers read
the allocations channel and send a message on the accept
channel 3 to specify if they accept the allocation or not.
The Allocator reads the accept channel and, if all the
allocated participants accept, sends the allocation to the
SC and requests that it calls the createAllocation
function 4 . The SC checks the feasibility and correctness
of the allocation, and the state of the allocation is initiated
to Allocated. As part of submitting the allocation to the SC,
the Allocator sends additional requests (AddSupplier)
to add the id of each Supplier and the hash of its offer to the
allocation stored by the SC. These two function calls incur
a cost of allocation πca. When all Suppliers are added, the
state of the allocation transitions to Signing.
Once the allocation is in the Signing state on the SC,
the participants check the allocation to make sure that it
matches the specific allocation that the Allocator sent on
the allocations channel; if it does, they sign the allocation
on the SC by submitting their security deposits 5 . Ad-
ditionally, as part of signing the allocation, the Customer
commits n tests, which are inputs that will be hidden in the
data stream going to the service, and their corresponding
outputs. It does this in two steps. First, by processing the
n inputs and hashing the inputs and outputs incurring a
cost nπcg . Second, it sends those hashed tests to the SC
incurring a commitment cost of πcc. During the service

lifetime those inputs are injected uniformly at random
among the workload inputs3. See Section IV-A.
When all the participants sign the contract, the state of the
allocation is changed to Running. The allocated Customer,
Suppliers, and Mediators also incur a cost for signing
the allocation and paying the Allocator for its service;
we denote these costs, lumped together, as πa. Once all
participants have signed the contract, the Allocator receives
πA as payment for its service.

4) Service Execution: After the service-specific channels are
constructed, the Customer can begin writing to the service
input channel and the Supplier can begin reading 6 ,
processing inputs and sending outputs on the service output
channel (this process can actually start before signing is
complete). For each correctly processed input the Customer
reads 7 , it receives a benefit b. The Supplier, on the other
hand, incurs electricity cost πsϵ for processing each input.

5) Verifying Outputs: At the end of the allocation, the
Allocator sends a message on the cleanup channel 8 noti-
fying the participants to end the allocation. The Customer
informs the Supplier which n outputs are to be verified.
The Supplier identifies the corresponding outputs and sends
them to the SC for verification 9 , calling postOutput.
The Supplier incurs a cost of πv for performing this
operation. The SC compares the Supplier output against
the test data committed by the Customer when it signed

3This assumes that the Supplier cannot distinguish test inputs from work-
load inputs.



the allocation and stores the result4. We discuss verification
further in Section IV-A.

6) Mediation and Closing the Allocation: If the outputs
match in the previous step, the SC calls ClearMarket
(black 10 ) which transfers payments, with the Supplier
receiving λ∆πs, the Customer paying λ∆πs, and the
Mediator receiving πm for being available. It also causes
the allocation state on the SC to transition to Closed. The
participants receive notification of this change via their
respective SC clients (black 11 ). The allocation is then
finished.
However, if the outputs do not match, the SC records this
outcome and emits a MediationRequested event (red 10 ),
which the Mediator receives from its SC client (red 11 ).
The Mediator then reads 12 from the input and output
channels and re-processes the n inputs, incurring a cost of
n(πsϵ+πcg). The Mediator then sends the result to the SC,
calling postMediation, which incurs a cost of πmc.
The SC calls ClearMarket (red 13 ) which compares the
Mediator output against the output of the Suppliers and
Customer to determine which participants are at fault.
If a Customer or Supplier’s output did not match the
Mediator output, they are fined πcd or πsd respectively. The
Mediator is paid n(πs) from the fine. For any agent whose
output does match the Mediator, payment is transferred as
normal, i.e., the Supplier receives λ∆πs or the Customer
pays λ∆πs. The call causes the state of the allocation to
transition to Closed. The participants receive notification of
this via their respective SC clients (red 14 ). The allocation
is then finished.

A. Verification

As part of the verification process, we expect the Customers
to commit to at least n inputs and their corresponding outputs
which we refer to as tests, where n is a platform parameter
as part of an accepted allocation. It is also important that
the Supplier cannot read them; otherwise, the Supplier can
copy the outputs (by reading from the blockchain) and provide
those outputs at the end of allocation and neglect processing
the actual inputs. To prevent such behavior, our protocol
dictates that the Customer uses a hash function to mask the
values it commits in the blockchain. The key idea behind the
verification strategy is to check the hash of the Supplier output
against the hash of the expected output, without letting the
Supplier know which output is being checked.

We introduce some additional notation to describe the
solution. Let Oc = {o1, o2, . . . on} represent the set of the
Customer’s n tests where oi = (ini, outi) is the ith test for
a particular Customer. Let Os = {os1, os2, . . . osn} represent
the set of all test solutions produced by the Supplier during an
allocation. To mask the input and output values, we use hash
functions that are supported by the chosen blockchain imple-
mentation. We define the following functions for hashing. α

4The verification is only capable of detecting errors, not ascertaining which
entities are at fault. To determine fault, we use a Mediator.

TABLE I: Key Symbols
Smart Contract (SC)

ρ penalty rate set by the SC
πv cost of Supplier submitting outputs to the SC
πcc cost of Customer committing outputs to the SC
πmc cost of Mediator committing mediation results to the SC

Mediator (M)
πm payout to the Mediator for being available for the duration

of the service
πvϵ Mediator’s electricity cost to verify outputs

Customer
ci Customer i
Aci Customer i’s account ID
cstart,end Customer offer start and end times
πxmax amount the Customer is willing to pay per million instruc-

tions
Ic number of instructions (in millions) required to process a

service input
b benefit that the Customer obtains from service output
πcg Customer’s cost of generating test output
ec =

πcg

πs
Customer’s efficiency of processing vs. the price

paid to outsource
λ rate at which data is set to deployed application instance
sc represents when the Customer chooses to provide n correct

tests (true or false)
Supplier

si Supplier i
Asi Supplier i’s account ID
sstart,end Supplier offer start and end times
πxmin payment that the Supplier requires per million instructions
πsϵ cost to process a service input
πv cost to send output hash to the SC
P (s) probability that the Supplier will process a particular input
es = πsϵ

πs
: Supplier’s efficiency of processing vs. the price

paid to outsource
Is number of slack instructions (in millions) per second

available
Rs slack RAM available

Allocator
Ω an allocation
πa cost to pay Allocator (πA) and for signing the allocation
πA payout to the Allocator for providing an accepted alloca-

tion
∆ = aend − astart: duration of a service allocation
πx market price per million instructions between πxmin and

πxmax (determined by the Allocator)
πs = πx × I: amount to be charged/paid to a Cus-

tomer/Supplier for a processed input
πca cost of SC adding an allocation
n number of outputs that must be provided by the Customer

for verification
πcd Customer’s security deposit for collateral prior to transac-

tion (set to ρπs)
πsd Supplier’s security deposit for collateral prior to transac-

tion (set to ρπs)
Other

xstart/end Customer’s service start/end time (x := c), start/end of
Supplier’s resource availability (x := s), start/end of
allocated service time (x := a)

∆min minimum viable service time

hashes all elements of a set K and creates a set of hashes, γ
applies a hash function to a given set and produces a single
hash value, and Γ applies a double hash. The cardinality of
outputs produced by γ and Γ is one, whereas α produces a
set whose size is same as the size of input elements. That
is, α(K) = {hash(ki) : ∀ki ∈ K}, γ(K) = hash(K), and
Γ(K) = hash(hash(K)).

During the finalization of an allocation, the Customer sends
α(Oc), a set of hashes to the Supplier. During execution, the
Supplier records the hash of each input and output, so upon re-
ceiving the set provided by the Customer it is able to determine



the set of test inputs that it must submit to the SC for verifica-
tion. Note that this list does not directly specify the index of
the input or output that must be sent. Rather, it identifies the
Ov ⊆ Os, such that Ov = {oi : hash(oi) ∈ α(Oc) ∩ α(Os)}.
This approach ensures that the Supplier must have processed
the test inputs to be able to correctly identify them. If the
Customer directly provided the indices, the Supplier could
neglect to process the inputs until it received them and
then produce Ov . Finally, the Supplier sends γ(Ov) to the
SC, where the SC then checks if Γ(Oc) = hash(γ(Ov)).
Recall that, during signing, the Customer committed Oc to the
blockchain. In reality, it sent Γ(Oc). The data is double hashed
because if the Customer had sent γ(Oc), then the verification
process on the blockchain would have required to hash all
the Supplier’s n outputs, thereby incurring additional costs.
Instead, the Customer sends Γ(Oc), requiring the Supplier to
send γ(Ov) to the SC. This makes it so that the SC only has to
hash a single element to compare against the Customer’s hash.

B. Handling Failures

Our protocol ensures that the consequences of failures
are localized to the specific stakeholder that experiences the
failure. If a Customer fails prior to signing, the Allocation is
canceled. If the failure occurs after, the Supplier is unaffected.
In the case of a Supplier failure the Customer submits a new
service offer which incurs the cost πrecover (see Eq. (5)). Since
the Supplier is penalized in these cases, they choose their
availability based on estimates of their reliability to reduce the
cost of unintentional failures. Thus, from a market perspective,
as long as more than one agent sends offers to an Allocator
and the agents have a mutually accepted Mediator, the Market
is operational.

C. Prototype

In the current prototype, we use the Ethereum blockchain.
The system can also be implemented by using other ledgers
that provide byzantine fault tolerance, such as Hashgraph [17].
For the messaging framework we use Pulsar. Other options
include Kafka or even layer 2 blockchain solutions such as
side-chains [18]. We chose Pulsar due to its unique capa-
bilities: zero data loss, guaranteed message delivery, infinite
scalability, and in particular multi-tenancy [19]. Multi-tenancy
enables the ownership of the market to be distributed between
the participants, who can each control access to their tenants.

The various actors in the system, i.e., Customers, Suppliers,
Allocators, and Mediators were implemented in Python and
packaged as Docker Containers. Further, we use Docker to
pass the application code between Customer and the Sup-
pliers. The algorithm used in the prototype (given a set of
current offers): 1) finds feasible mapping through brute force
search, 2) utilize the Hopcroft-Karp [20] algorithm to output
a maximum cardinality matching, 3) run a double auction to
determine a fair price, 4) and construct the final allocation.
Each time a new offer is received by the Allocator, it runs to
see if any allocations can be constructed. In this way it pro-
vides a result in the minimum possible time. Other allocation

algorithms can be easily integrated into the architecture. See
the GitHub repository for the implementation [15].

V. PROTOCOL ANALYSIS

This protocol has been designed to disincentivize deviation
from the protocol. We show this by deriving the participants’
utility functions, the incentives associated with each action and
model the protocol as a two-player simultaneous move game.
We refer reader to Table I for reference.

A. Customer Utility

For each input sent, the Customer pays πs, and for each
correct output, the Customer receives a benefit b. Also, for
each allocation the customer incurs a setup cost πc setup

which is

πc setup = nπcg + πcc + πm + πa (6)

where πcg is the cost of generating a test, n is the number of
tests, πcc is the cost of committing the hash of the tests to the
SC, πm is the payment to the Mediator for being available,
and πa is the payment to the Allocator for the allocation. The
Customer utility then is

UC = λ∆(b− πs)− nπcg − πcc − πm − πa (7)

Based on the utility function, the Customer can improve its
utility if it takes actions that allow it to avoid paying πs to
the Supplier, or reduce the number n of test inputs that must
be provided.

Therefore, we must ensure the customer cannot avoid pay-
ing πs and will commit n test inputs. We can ensure that the
Customer cannot avoid payment by having the Customer pay
λ∆πs at the end of the allocation regardless of the outcome.
This decision avoids complications that appear with refunding
services that fail, as in prior work [10]. This design choice may
seem unfair—there is a possibility that the Customer pays for
a service that is not delivered. However, our justification for
using such a mechanism is that in the game analysis we will
show that this loss does not occur when all participants behave
rationally.

To detect when a Customer does not submit n correct
tests, the following measures are taken. During signing, in
addition to the hash of the tests Γ(Oc), the Customer includes
a hash of the list of inputs Γ(Inc). Similarly, when the
Supplier calls postOutput, it includes a hash of the list
of n test inputs γ(Inv). If during the verification process
Γ(Inc) ̸= hash(γ(Inv)), then mediation is requested. To
make sure the Customer commit was honest, the Mediator re-
processes the n test inputs and computes Γ(Oc) and Γ(Inc)
and also recomputes α(Oc) and compares against the set of
hashes α(Oc) the Customer sent to the Supplier for identifying
the tests. This process ensures the proposed system detects if
the Customer does not provide the correct commitment or data
to the Supplier. Since there is no way for the Customer to avoid
paying, the only deviation from the protocol the Customer can
take is to provide an incorrect commitment of n tests which
will be detected and penalized.



TABLE II: Game outcomes and payments from Fig. 2. For example, o2 is the outcome when the Supplier does not process
all the validation inputs correctly and the customer does provide sufficient validation inputs.

Outcomes
o1 (ssc) o2 (ssc) o3 (ssc) o4 (ssc)

Customer λ∆(b− πs)− nπcg − πcc − πa − πm −λ∆πs − nπcg − πcc − πa − πm λ∆(b− πs)− πcc − πcd − πa − πm −λ∆πs − πcc − πcd − πa − πm

Supplier λ∆(πs − πsϵ)− πv − πa − πm −πv − πsd − πa − πm λ∆(πs − πsϵ)− πv − πa − πm −πv − πsd − πa − πm

Allocator πA πA πA πA

Mediator πm πm − n(πsϵ − πvϵ + πs)− πmc πm − n(πsϵ − πvϵ + πs)− πmc πm − n(πsϵ − πvϵ + πs)− πmc

B. Supplier Utility

Recall λ is the incoming data rate and ∆ is the duration of
the allocation, therefore, λ∆ is the total number of inputs sent
during an allocation. That is, if the supplier runs an application
successfully, it will produce λ∆ ≥ n outputs, where n is the
number of tests used for verification (Section IV-A).

The supplier incurs a cost of πsϵ processing an input and z
is the number of inputs processed. For each allocation, the
Supplier incurs a setup cost of

πs setup = πv + πm + πa (8)

where πv is the cost of sending a postOutput request to
the SC. The Supplier utility then is

US = λ∆(πs)− zπsϵ − πv − πm − πa (9)

Based on the utility function, the Supplier can improve its
utility if it takes actions that allow it to reduce the number z
of inputs processed, i.e. skip the processing of some inputs.

C. Incentives

The goal is to have Customers to provide correct test data
and Suppliers to process all inputs. In order to disincentivize
deviation from this behavior, the Customers and Suppliers are
required to provide a security deposit πd to participate. πd is
computed as

πd = πsλ∆ρ (10)

where ρ is a penalty rate defined by the market. Therefore,
if the Customer is detected for not providing the correct test
data, or the Supplier is detected for skipping the processing
of inputs, they are fined πd.

D. Interaction Between Customer and Supplier

We model the interaction between the Supplier(s) and the
Customer as a game. The Supplier’s actions are to either pro-
cess an input (denoted by s) or not (denoted by s). Similarly,
the Customer can choose to provide n correct tests (sc) or
not (sc). The resulting utility for each possible combination is
shown in Table II, and the resulting game is shown in Fig. 2.

The Customer’s dominant strategy is to honestly provide
n test inputs as long as the utility of providing the inputs
(sc) is greater than the utility of not providing the inputs (sc).
Formally if[

UC(s, sc) > UC(s, s̄c)
]
∧
[
UC(s̄, sc) > UC(s̄, s̄c)

]
(11)

then Uc(∗, sc) is the Customer’s dominant strategy, where ∗
represents any strategy of the Supplier. To determine the
conditions that make this true we reference the Customer

outcomes in Table II and substitute them into Eq. (11) and
simplify. Both inequalities in Eq. (11) result in the same
simplified inequality nπcg < πcd. Recall that πcg = ecπs,
where ec < 1 is the customer’s processing efficiency and πcd

was set to πsλ∆ρ. Substituting these values in and simplifying
the inequality gives

nπcg < πcd

necπs < πsλ∆ρ

nec < n < λ∆ρ

(12)

As shown in Eq. (12), the Customer will always process n
inputs as long as n < λ∆ρ, where ρ is the penalty rate set
by the market. Since we can ensure that the Customer’s only
reasonable strategy is to provide the test inputs, we do not need
to consider (for the Supplier) the case when the Customer does
not provide the inputs.

S

commit to n outputs

C

2

sc

3

sc

S

o1 s o2s

S

o3 s o4s

Fig. 2: Extensive-form game produced by our protocol. Blue
nodes indicate Customer moves, red nodes indicate Supplier
moves. The game is sequential, but the decisions are hidden,
so we treat it as a simultaneous move game. Each outcome
has payouts for the agents (Table II).

The Supplier can neglect processing inputs during the allo-
cated service time. Therefore, processing all inputs (s, sc) is
the dominant strategy for the Supplier as long as US(s, sc) >
US(s, sc), which holds when λ∆(πs − πsϵ) > −πsd. This
is true unless the Customer severely underestimates the re-
sources required, in which case the Supplier’s output states
that the resources allocated were exceeded, or the Supplier
underestimated its power consumption in its initial offer.

This presumes that the Supplier processed every input or
none of them. However, it is possible that the Supplier can
risk skipping the processing of some inputs to reduce its costs.
Given that the Customer only checks n inputs, as long as the
Supplier processes those n inputs it will not be caught. To
derive the Supplier’s utility, recall that λ∆ is the total number
of inputs, n is the number of test inputs and z is the number
of inputs processed by the Supplier. In this case, there are(
λ∆
z

)
total ways to select which z inputs are processed by the

supplier and
(
λ∆−n
z−n

)
ways for the supplier to not be detected.



0 20 40 60 80 100

−1

0

1

·104

Percentage of Inputs Processed z
λ∆

Su
pp

lie
r

U
til

ity
U
S ρ = 0.0001 ρ = 0.1 ρ = 0.2

Fig. 3: Supplier utility US as a function of the percentage of
inputs processed by the supplier ( z

λ∆ ). Utility is highest when
all inputs are processed, regardless of ρ.

Therefore, the probability of the supplier getting detected is
represented by Pd, where Pd is

Pd = 1−
(
λ∆−n
z−n

)(
λ∆
z

) (13)

We can then define the utility of the supplier (US) as

US = λ∆πs(1− Pd)− Pdπsd − zπse − πa − πm − πv (14)

We plot this utility in Fig. 3, where we see that the Supplier
obtains maximum utility when it processes all of the inputs.

This analysis shows that since the penalty multiplier ρ is
set by the market, the market can ensure that the Customer
will always provide n correct tests. Further, since ρ and n are
market parameters, and λ and ∆ are determined by the service
the market can ensure a minimum value for Pd.

VI. EXPERIMENTS

We have shown analytically that our protocol will deter
deviation from the protocol for rational agents. We now present
the experimental performance. To emulate a large market, we
deployed the actors as Kubernetes Pods using the Google
Kubernetes Engine (GKE). CPU and RAM utilization were
extracted directly from GKE’s monitoring framework using
BigQuery. The blockchain was deployed on a machine with
an 18 core Intel CPU and 64GB of memory.

The application deployed on this market is a real-world
application from our partner transit agency that processes a
stream of video frames to count the number of passengers
in each vehicle [21, 22]. The data is used for guiding the
planning of decisions that include deploying additional transit
vehicles to an area later in the day. We considered six scenarios
(Table III), where we varied the number of Customers and the
number and type of Suppliers. The types of Suppliers are:
ideal Suppliers that do not cheat and process all inputs, and
dishonest Suppliers that correctly process an input with a 50%
probability, otherwise they provide a random output. Each of
the Customers posted one offer to run the occupancy detection
application on 600 frames.

TABLE III: Experiment Scenarios
Scenario # of Customers # of Suppliers Supplier Type
S1 10 10 ideal
S2 20 10 ideal
S3 20 20 ideal
S4 10 10 dishonest
S5 20 10 dishonest
S6 20 20 dishonest

A. Deployment Overhead

For each scenario, we measured the delay between submit-
ting an offer and receiving the allocation from the Allocator.
The result in Fig. 4 shows that the median allocation time
across scenarios ranged from 9 to 12 seconds for Customers
and 2 to 12 seconds for Suppliers. Additional delay is incurred
if the participants wait until the participants sign the allocation
stored by the SC. The block mean mining time on our private
Ethereum network was 12 seconds. Thus the minimum time
to call the createAllocation, addSupplier and the
various sign functions is 45 seconds on average. To verify
we measured the time between calling these functions and the
transaction being added to block and measured 13.6 ± 6.5,
15.6 ± 18.5, and 14.4 ± 9.1 accordingly. The other SC
functions (e.g., postOutput, postMediation) are not in
the critical path of deploying and running the application and
so do not delay the application deployment.

We also measure the time to start the application once the
allocation has been accepted. This result in Fig. 5 varies from 3
to 74 seconds. This time includes downloading and starting to
run the application Docker image, and depends heavily on the
size of the image itself. In our case, the occupancy detection
image was 3GB which impacted the setup time. It is important
for Customers to take this into account when setting the start
time of the service. Scenarios 1, 2, 5, and 6 have significantly
shorter setup times, this is due to images persisting on disk
between runs eliminating the time needed to download the
image. In the scenarios with dishonest Suppliers we measure
the time spent in mediation. This result in Fig. 6 shows that the
median time for mediation ranged from 145 to 210 seconds.
The duration of mediation increased as the number of sporadic
Suppliers increased. One way to reduce Mediation time is load
balance the Mediators available in the system.

During the scenarios we recorded the CPU and memory
utilization of the pods. The results in Figs. 7 and 8 show the
average CPU utilization and RAM requirements respectively
for the Customers, Suppliers and Mediator in scenarios S1-
S6. Both CPU and RAM usage was consistent for Customers
and Suppliers between scenarios. Scenarios S4-S6 consisted
of included dishonest Suppliers and thus required mediation
which is reflected an increase in CPU and memory usage for
the Mediator in these cases.

B. Monetary Costs

The monetary costs of the system are primarily a conse-
quence of using Ethereum. The gas costs of each function can
be found in table Table IV. The cost to a Customer of using
the market for an ideal iteration of the protocol is 322,222



TABLE IV: Gas Costs and Delay of Each SC Function Call

Function createAllocation addSupplier customerSign supplierSign mediatorSign postOutput postMediation
Gas 208,404 127,038 113,818 109,931 58,053 88,992 87,944
Response time[s] 13.6 ± 6.5 15.6 ± 18.5 14.4 ± 9.1 12.6 ± 7.1 16 ± 19.3 15.2 ± 11 28.5 ± 18
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Fig. 4: Time between when a customer (or supplier) submits
an offer and receives an allocation.
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Fig. 5: Time spent setting up the application for all Suppliers
in scenarios S1-S6.

Gas which includes the cost of signing the allocation, plus
the amount it pays to the Allocator to create the allocation.
The cost in dollars will depend on which Ethereum network
is used. The cost on the Ethereum MainNet, using the conver-
sion [23] (On 4/20/22 With cost of 30Gwei/gas), is $30.22.
Alternatively using a Layer 2 scaling solutions such as the
Polygon network [18] results in a cost of $0.0168 [24]. For
our implementation we ran a private Ethereum Network and
measured the power consumption. The load due to running
a miner was approximately 15 watts on the lab machine
with Intel Xeon CPU and 64 GB RAM, which has a base
power usage of 145 watts. Thus the cost of operating the
Ethereum miner, using $0.10/kWh for the cost of electricity,
is $0.0015/h. For comparision an AWS m4.4xlarge (16vCPU
and 64GiB memory) spot instance is $0.0387/h [25].

VII. RELATED RESEARCH

Market-driven approaches to outsourced computation have
been studied in the context of residual cloud computing [26]
and batch processing [10]. Cherniack et al. [14] outlined a
federated market from which producers and consumers derive
value from streaming data; however, they do not address
trust in their design. TrueBit [12] is a platform designed
to extend the computation capabilities of blockchain-based
consensus computers (such as Ethereum) that provide strong
guarantees that small computations are performed correctly.
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Fig. 6: Time spent in mediation for scenarios S4-S6 due to
dishonest Suppliers.
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Fig. 7: Average CPU utilization per customer, supplier and
mediator for scenarios S1-S6.

Körbel et al. [27] also relies on blockchain for verification,
using zk-SNARKs as the verification mechanism. This has
the advantage that it is able to verify non-deterministic com-
putations as long as rules can be defined for determining
the validity and quality of a result. However, creating the
verification contract is labor intensive and is required for each
new service. Further, the process of creating the rules requires
a trusted step. Thus, for the system to be open to any service
consumer additional work is required to prevent consumers
from abusing the service creation process. Additionally, neither
of these platforms are suitable for stream computing because
they incur the latency associated with sending results to the
blockchain before they are released.

Dong et al. [28] determine that for verifying outsourced
computation, the cryptographic approach is not practical and
should instead use repeated executions. The computations,
however, should not be duplicated more than twice. Their strat-
egy is simple: outsource to two providers and compare results.
However, their approach does not restrict collusion between
suppliers, especially if interaction outside smart contracts is
allowed. Our approach relies on mediation and using n inputs
make collusion unlikely.

Coopedge [11] is an edge computing platform implemented
on HyperLedger. Their approach works for co-operative of-
floading of cloud computing tasks to edge servers participating
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Fig. 8: Average memory used per customer, supplier and
mediator for scenarios S1-S6.

in the network. Their primary trust mechanism relies on
reputation, assuming that the edge servers have a long history
and can gather enough reputation over time. The incentive
mechanism consists of offering higher rewards for completing
a task sooner, and the time is determined through consensus on
the blockchain. This mechanism is not well suited for stream
applications with potentially high and sporadic data rates.
They also do not address how to ensure that computations
are performed correctly.

VIII. CONCLUSION

Our goal in this paper was to develop a framework that
would enable the creation of a decentralized market for out-
sourcing of streaming computation. We presented a protocol
and showed that rational participants would follow the protocol
and benefit from participating in the system, while participants
that deviate from the protocol incur fines. While this does
not prevent agents from operating maliciously and returning
erroneous results it does ensure that costs exceed the benefits
within the system in such cases. We do not handle scenarios
when there are benefits exogenous to the system that make it
worthwhile to misbehave; we would consider such scenarios
in future work. Further work is also required to improve
ways to address potential Mediator corruption, as well as the
means used to inject the test inputs into the data stream as a
naive approach could limit the system to only support stateless
applications.
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