
Mechanisms for Outsourcing Computation via a
Decentralized Market

Scott Eisele
Vanderbilt University

Taha Eghtesad
University of Houston

Nicholas Troutman
University of Houston

Aron Laszka
University of Houston

Abhishek Dubey
Vanderbilt University

Published in the proceedings of 14th ACM International Con-
ference on Distributed and Event Based Systems (DEBS 2020).

ABSTRACT

As the number of personal computing and IoT devices grows rapidly,
so does the amount of computational power that is available at the
edge. Since many of these devices are often idle, there is a vast
amount of computational power that is currently untapped, and
which could be used for outsourcing computation. Existing solu-
tions for harnessing this power, such as volunteer computing (e.g.,
BOINC), are centralized platforms in which a single organization
or company can control participation and pricing. By contrast, an
open market of computational resources, where resource owners
and resource users trade directly with each other, could lead to
greater participation and more competitive pricing. To provide
an open market, we introduce MODiCuM, a decentralized system
for outsourcing computation. MODiCuM deters participants from
misbehaving—which is a key problem in decentralized systems—by
resolving disputes via dedicated mediators and by imposing en-
forceable fines. However, unlike other decentralized outsourcing
solutions,MODiCuM minimizes computational overhead since it
does not require global trust in mediation results. We provide ana-
lytical results proving that MODiCuM can deter misbehavior, and
we evaluate the overhead of MODiCuM using experimental results
based on an implementation of our platform.

CCS CONCEPTS

• Computer systems organization→ Redundancy; • Networks

→ Network reliability.

KEYWORDS

computation outsourcing, decentralized market, blockchain, decen-
tralized job scheduling, smart contract

1 INTRODUCTION

The number of computing devices—and thus computational power—
available at the edge is growing rapidly; this trend is projected to
continue in the future [22]. Many of these are end-user or IoT de-
vices that are often idle since they were installed for a specific
purpose, which they can serve without using their full computa-
tional power. Our goal is to harness these untapped computational
resources by creating an open market for outsourcing computa-
tion to idle devices. Such a market would benefit device owners
since they would receive payments for computation while incurring
negligible costs. To illustrate, running an AWS Lambda instance

with 512MB of memory for 1-hour costs $0.03, while the electrical
cost of operating a BeagleBone Black1 single-board computer with
512MB of memory for an hour is 100 times less. Thus, it is feasible
that a computation service could be provided economically.

Prior efforts to leverage these underutilized resources include
volunteer computing projects, such as BOINC [13] and CMS@Home
[21], in which users donate the computational resources of their
personal devices to be used for scientific computation. Volunteer
computing suffers from two limitations that prevent it from broader
utility. First, the resources made available by volunteer comput-
ing participants are only accessible to specific users and projects.
Second, it relies on systems “volunteering” their time as it does
not include incentives to provide reliable access to computational
resources, leading to the problem of low participation [27].

Participation can be incentivized through the implementation of
a competitive market, which facilitates the discovery and allocation
of supply and demand for computational resources and tasks. The
market must provide mechanisms to address misbehavior and re-
solve any disputes2 between the participants. Such a market could
be managed by a central organization, as many in the sharing econ-
omy are (e.g., Uber, Airbnb). A central organization could mediate
disputes. However, a centralized system presents a clear target for
attackers, can be a single point of failure, and without competition
may charge exorbitant fees. An alternative is to create an open
and decentralized market, where resource owners and resource
users trade directly with each other, which could lead to greater
participation, more competitive pricing, and improved reliability.

In distributed computing systems, faults and misbehavior have
traditionally been addressed using consensus algorithms. Recently,
distributed ledgers have emerged as a novel mechanism to provide
consensus in decentralized public systems [33]. Smart contracts
extend the capabilities of a distributed ledger by enabling “trustless”
computation on the stored data. In theory, smart contract imple-
mentations, such as the one found in Ethereum [32, 34], could be
used for outsourcing complex computations. However, since the
computation is replicated on thousands of nodes, it becomes costly.
To reduce costs, complex computations must be executed off-chain
and only result aggregation, validation, and record keeping should
be kept on the chain (see [24] for example).

Prior efforts to construct outsourced computation markets using
distributed ledgers include FogCoin [3], TrueBit [31], Golem [5],
and iExec [6]. Unfortunately, these existing solutions have varying

1https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
2Disputes are disagreement between the parties about the correctness of the job
execution. They may arise due to a fault or malicious behavior.

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

degrees of inefficiency due to extensive verification of the correct-
ness of the computation performed. There have been some efforts
to ameliorate this situation. For example, TrueBit performs compu-
tation using a typical computer and relies on the distributed ledger
only to complete disputed instructions; however, this approach is
still quite inefficient. We discuss these existing solutions and their
drawbacks in detail in Section 2.

Contributions: The key problem in implementing a decentral-
ized market is the efficient resolution of disputes, which includes
determining if the results of outsourced jobs are correct and if re-
source providers should receive their payments for the jobs. This
paper introduces Mechanisms for Outsourcing via a Decentralized
Computation Market (MODiCuM), a distributed-ledger based plat-
form for decentralized computation outsourcing. In contrast to
other distributed-ledger based solutions (mentioned above), our ap-
proach retains computational efficiency by minimizing the amount
of resources spent on verification through three ideas. First, it re-
lies on partially trusted mediators for settling disputes instead of
trying to establish a global consensus on the results of outsourced
computation, which would require extensive duplication of com-
putation. Second, it verifies random subsets of results, which keeps
verification costs low while supporting a wide range of jobs. Third,
it deters misbehavior through rewards and fines, which are enforced
by a distributed-ledger based smart contract. As a result, MOD-
iCuM does not prevent cheating and misuse, but it deters rational
agents from misbehavior. The specific contributions of this paper
are as follows:
(1) We introduce a smart contract-based protocol and a platform

architecture for incentivizing the participation of job creators,
resource providers, and mediators.

(2) We present an analysis of the protocol by modeling the ex-
change of resources as a game, and show how we can select the
values of various parameters (fines, deposits, and rewards), en-
suring that honest participants will not lose, and the advantage
of dishonest participants is bounded.

(3) We provide a proof-of-concept implementation of the proto-
col, built on top of Ethereum. Through comparison against
AWS lambda we determine that due to the transaction costs
currently associated with the main Ethereum blockchain, our
implementation is currently suited only for very long running
jobs. However, any improvements to Ethereum will benefit our
platform. Additionally, our protocol is not limited to the use of
a specific platform. Any platform that supports smart contract
functionality can be utilized.
Outline:We begin by discussing related work in Section 2. Then,

we introduceMODiCuM in Sections 3 and 4. We analyze the pro-
tocol in Section 5. In Section 6, we describe an implementation of
our platform and provide experimental results on its performance.
Finally, in Section 7, we present concluding remarks. Implementa-
tion is available at [8], and proofs and detailed specification can be
found in the appendices.

2 RELATEDWORK

In [20], the authors determine that for verifying outsourced com-
putation the cryptographic approach is not practical and should
instead use repeated executions. The computations however should

not be duplicated more than twice. Their strategy is simple: out-
source to two providers and compare results. The key challenge
then is to prevent collusion. They propose sabotaging collusion with
smart contracts. Essentially, they hold the providers accountable
using security deposits and a smart contract. They also assume
that if two providers intend to collude, the providers also use a
smart contract to hold each other accountable. To counter this, the
authors propose a third contract that states that the first provider
who betrays the other, showing the colluder’s contract as proof, is
granted immunity and will receive a reward. In their work, they
have not yet considered the scenario when the client may be an
adversary. They also do not address the case when the contractors
do not need a contract to trust each other.

The authors of [15] consider a case where there is a trusted third
party that would be responsible for verifying a critical computation,
except that it becomes a bottleneck for the rest of the system. It
instead becomes a boss and outsources the verification task. To
incentivize participation, the boss offers a reward, and to discour-
age misbehavior the boss requires a security deposit to enable it
to enforce fines. The two verification strategies they consider are
random double-checking by the boss and hiring multiple contrac-
tors to perform a job and comparing results. The authors do not
consider the case when the boss is malicious or attempts to avoid
paying out the rewards promised. They also do not discuss practical
issues such as what if the contractors never return a result.

The verification protocol [23] in Golem assumes that tasks are
stateless and can be subdivided into sub-tasks, and it spot-checks
some subset of those tasks. An example of this type of task is image
rendering, which is their initial use case. They claim that they will
also support other computational tasks, such as machine learning;
however, their verification strategy is not guaranteed to suit such
tasks. Their second, more recent protocol [11] executes each com-
putation twice and compares the results using a globally trusted
oracle that compares the two results. If there is a difference, they
request an additional provider to break the tie. They do not men-
tion collusion, which could easily break their verification protocol.
Additionally, they suggest that reputation could be used to reduce
the required number of repeated executions; however, the authors
do not provide any discussion.

In iExec [19], the number of repeated executions required for
verification is determined by a confidence threshold. After a result is
computed, the pool scheduler checks if the results submitted achieve
the desired level of confidence using Sarmenta’s voting [29]. The
workers register themselves to a scheduler that they choose to trust.
If the scheduler breaks trust, the worker can leave to a competing
pool. iExec checks tasks for non-determinism before allowing them
to be deployed in the network. It does this by executing the task
many times. This has the drawback that the task must take no
inputs; otherwise, all execution paths would need to be tested.

In TrueBit [31], verification is provided via Verifiers, which dupli-
cate the computation based on an incentive structure that rewards
them for finding errors, and errors are intentionally injected into
the system occasionally to guarantee benefits for verification.When
a Verifier finds an error, it challenges the resource to a game where
they compare the machine state at various points during the execu-
tion, in a manner similar to binary search. Once the step where the
two solutions deviate is found, the machine state is submitted to a

2

Resource Provider
Docker

Job Creator
Docker

Solver
MODiCuM Platform

Smart Contract

Mediator
Docker

Directory
Docker Registry

Figure 1: MODiCuM architecture. For ease of presentation,

only one instance of Resource Provider, Job Creator, Media-

tor, Directory, and Solver is shown.

mediator. Rather than using a single entity as a trusted mediator,
TrueBit implements the mediation as an Ethereum smart contract
which implements a virtual machine. The TrueBit virtual machine
executes that specific step and determines which agent is at fault.
The authors recognize that even though TrueBit can theoretically
process arbitrarily complex tasks, in practice the verification game
is inefficient for complex tasks.

In each of these prior works, the authors assume that results must
be globally accepted or have universal validity. In [31], the authors
mention that using a trusted mediator is an option for resolving
disputes regarding whether a task was done correctly, but such a so-
lution is unacceptable because it does not provide universal validity.
We argue however that many tasks—perhaps even the majority—do
not require universal validity. For such tasks, only the agent who re-
quested the execution of the task must be convinced of the validity
of the result, which means that the systems proposed by prior work
incur significant and unnecessary computational overhead for such
tasks. Prior works also do not address the possibility that the job
creator itself could manipulate the system by providing tasks that
have non-deterministic or environment-dependent results.

3 MODICUM ARCHITECTURE

MODiCuM enables the allocation and execution of computational
tasks on distributed resources that may be dishonest and may en-
ter or exit the platform at any time. Conceptually, this requires
resource management, i.e., the allocation of resources to maximize
utility. We also need a service for managing job requests, which
include both the job specification and the data products related to
a job. Finally, we need a service that manages the market, which
includes matching jobs to available resources, tracking the prove-
nance of job products, accounting, and handling failures. Due to
the decentralization of the system, job creators (JC) and resource
providers (RP) can have their own strategies; however, the market
must operate as a singleton.

To satisfy all of these requirements, we develop an architec-
ture that consists of a distributed-ledger based Smart Contract,
storage services (Directory), allocation services (Solver), Resource
Providers, Job Creators, andMediators. These components and actors
are shown in Figure 1 and described in the following subsections.
We start by describing first what a job is inMODiCuM.

3.1 MODiCuM Jobs

A job is a computing task that takes inputs and produces outputs.
The jobsMODiCuM is designed to support are limited to determin-
istic, batch jobs that are not time critical, and are isolated, meaning
they receive no information that allows them to discern which
agent (RP, M) is executing them. We discuss the importance of
our limitations in Section 4.4. Further the confidentiality of the job
cannot be guaranteed since the computation is outsourced to any
capable participant. It is essential that jobs can be executed indepen-
dently of the host configuration. The state-of-the-art approach for
achieving this is to use a container technology [18]. Consequently,
we use Docker [25] images to package the jobs in our implementa-
tion. Docker containers provide an easy-to-use way of measuring
and limiting resource consumption and securely running a pro-
cess by separating the job from the underlying infrastructure. To
avoid downloading a full image for every job execution, we support
Docker layers. To execute an instance of a job, a base layer (i.e.,
OS or framework), an execution layer with job specific code, and a
data layer are required. The base layer can be downloaded a priori,
and the other layers are downloaded after a match. If the execution
layer has already been downloaded, then only the new data layer
is required. The job requirements, including the required resources,
are specified in the offers that the agents make. These requirements
are used by the resource provider to set the Docker container’s
resource constraints at runtime.

The cost of running a job depends on the amount of resources
that the job uses. The resources we consider for feasibility are
instruction count (computes from CPU speed and time on CPU),
disk storage, memory, and bandwidth for downloading the job. The
resources we use to compute the price are the instruction count
and bandwidth used as reported by the RP where each is multiplied
by the RP’s asking price. Thus, the price of the job is calculated
as follows:

πc =result.instructionCount · resourceOffer .instructionPrice
+ result.bandwidthUsage · resourceOffer .bandwidthPrice (1)

Note that it is often difficult to estimate resource requirements
precisely. Repeated executions of the same job result in approxi-
mately the same resource usage, but not exactly the same. There-
fore, when constructing an offer, the JC must add margins to the
estimated resource requirements. The upper limit of resource re-
quirements should be set considering the maximum amount of
resources that the JC is willing to pay for to account for the ex-
pected variance. If the JC did not provide this leeway, jobs would
often exceed their resource allotments, forcing the JC to often pay
for the execution of failed jobs.

3.2 MODiCuM Actors

3.2.1 Resource Provider and Job Creator. Job Creators (JC) have
jobs to outsource and are willing to pay for computational resources.
Resource Providers (RP) have available resources and are willing to
let Job Creators use their hardware and electricity in exchange for
monetary compensation. JCs post offers to the market specifying
the jobs, quantities of resources required, deadlines for execution,
required Docker base layers, computation architecture, and unit
bid prices for resources; while RPs post offers specifying available

3

resources, Docker base layers, computation architecture, and unit
ask prices for resources. To prevent the JC and RP from cheating,
they are required to include security deposits (see Eq. (2)) in the
offers submitted to the platform. We provide more details on the
costs and deposits later in Section 5. JCs and RPs also specify trusted
Directories and Mediators, which we describe below.

A JC has multiple strategies for verifying the correctness of the
results returned by an RP. Any reasonable verification strategy
must cost less than what it would cost to simply execute the job.
A straightforward verification strategy is to re-execute a random
subset of jobs and compare the results with those provided by the
RP. As long as the number of verified jobs is low enough, this
strategy is viable. If the JC cannot execute the job itself, then it can
post duplicate job offers instead and compare the results provided
by different RPs. For some jobs, there exist verification algorithms
that cost significantly less than execution, and so the JC may be
able to verify every job. However, this requires the JC to implement
an efficient algorithm for verification, which might be challenging.

3.2.2 Directory. Directories are network storage services that are
available to both JCs and RPs for transferring jobs and job results.
Directories are partially trusted by the actors, which means that
actors (RPs and JCs) choose to trust certain Directories, but these
are not necessarily trusted by the platform or by other RPs or
JCs. Directories are paid by the JC and RP for making its services
available for the duration of a job.

3.2.3 Solver. Matching a JC offer, and an RP offer requires com-
putations that cannot be executed on a smart contract which has
limited computation capabilities. Therefore, we extend the con-
cept of hybrid solvers introduced in [24] and include Solvers in
MODiCuM. A Solver can be a standalone service, or it may be im-
plemented by another actor (e.g., RPs and JCs may act as Solvers for
their own offers). Unlike the smart contract, Solvers are not running
on a trustworthy platform; hence, the contract has to check the
feasibility of matches that the Solvers provide which is significantly
easier computationally than finding matches. Solvers receive a fixed
payment, set by the platform and paid by the JC and RP, for finding
a match that is accepted by the platform.

3.2.4 Mediator. When there is a disagreement between a JC and
an RP on the correctness of a job description or a job result (e.g.,
the RP claims that a job result is correct, while the JC claims that it
is incorrect), a partially trusted Mediator decides who is at fault or
“cheating.” A Mediator is capable of executing the job in the same
way as the RP, but it can be more expensive since it is expected
to provide a more reliable service and to maintain its reputation
in the ecosystem. Each Mediator sets a price which it is paid by
the JC and RP for making its services available for the duration of
a job. In case of mediation it is additionally compensated for the
computations it executes.

3.2.5 Smart Contract. The Smart Contract (SC) is the cornerstone
of our framework.Most communication inMODiCuM is effectuated
through function calls to the SC and through events emitted 3 by the

3Emitted events in platforms such as Ethereum are recorded to the transaction logs of
the ledger, which can be accessed by interested agents via polling. We use the word
emit because that is word used for this functionality in Solidity, which we use for our
proof-of-concept implementation.

SC. The SC is deployed and executed on a trustworthy decentralized
platform, like the Ethereum blockchain [34], which enables it to
enforce the rules of the MODiCuM protocol described in the next
section. It also enables actors to make financial deposits and to
withdraw funds on conditions set by the SC. The functions provided
by the smart contract can be found in Appendix D.

4 MODICUM PROTOCOL

In this section, we discuss the operation protocol, possible misbe-
havior, the concept of mediation, and various faults that can occur
and how they can be handled. Fig. 2a shows a possible activity se-
quence from registration to completion of a job. Fig. 2b represents
the state of a job from the perspective of the smart contract.

4.1 Registration and Posting Offers

First, RPs and JCs register themselves with MODiCuM (Fig. 2a:
registerResourceProvider, registerJobCreator). Note that RPs
and JCs need to register only once, and then they can make any
number of offers. If an RP is interested in accepting jobs, it will send
a resource offer to the platform (Figs. 2a and 2b: postResOffer).
On the other side, a JC first creates a job and uploads the job to a
Directory that it trusts and can use (Fig. 2a: uploadJob). Then, it
posts a job offer (Figs. 2a and 2b: postJobOffer).

Note that any time before the offers are matched, RPs and JCs can
cancel their offers. Cancellation can be due to unscheduled mainte-
nance, or because their offers have not been matched for a long time
and they wish to adjust their offer (e.g., increase maximum price)
by cancelling the previous offer (Figs. 2a and 2b: cancelJobOffer
and cancelResOffer) and posting a new one. Once matched, can-
cellation is no longer permitted.

4.2 Matching Offers

After receiving offers, the smart contract notifies the Solvers by
emitting events (Figs. 2a and 2b: JobOfferPosted, ResourceOffer-
Posted). The Solvers then try to match new offers to previously
unmatched offers or store them so they can be matched later if
no matching candidate is available. When a match is found by a
Solver, the Solver posts the match consisting of the resource offer,
job offer, and the Mediator to the smart contract (Figs. 2a and 2b:
postMatch). The smart contract checks that the submitted match
is feasible, and if it is, then it records it and notifies both the JC and
RP that their offers have been matched (Figs. 2a and 2b: Matched).
Note that for a match to be feasible the resources specified in the
RP offer must satisfy the requirements of the job specified by the
JC offer. Additionally, they should have a common architecture,
trusted mediator, and directory. The full feasibility specification
can be found in Appendix A.1.With the Matched event, the contract
pays the Solver the amount RP and JC specified as the matching
incentive.

4.3 Execution by RP and Result Verification by

the JC

After receiving notification of a match, the RP downloads the job
from the Directory (Fig. 2a: getJobImage) and runs the job. While
running the job, RP measures resource usage. Finally, when the job
is done, it uploads results to the Directory (Fig. 2a: uploadResult)

4

JobCreator ResourceProviderSmart ContractSolver Directory Mediator

registerMediator

MediatorRegistered MediatorRegistered

mediatorAddFirstLayerMediatorAddedFirstLayer

registerJobCreator registerResourceProvider

ResourceProviderRegistered

JobCreatorRegistered

jobCreatorAddTrustedMediator resourceProviderAddTrustedMediator

ResourceProviderAddedTrustedMediator

JobCreatorAddedTrustedMediator

resourceProviderAddFirstLayerResourceProviderAddedFirstLayer

uploadJob

postJobOffer postResOffer

ResourceOfferPosted

JobOfferPosted JobOfferPosted

cancelJobOffer cancelResOffer

JobOfferCanceled

ResourceOfferCanceled

postMatch

MatchedMatched

timeout getJobImage

uploadResult

postResultResultPosted

getResult

acceptResult acceptResult

rejectResult JobAssignedForMediation

getJobImage

postMediationResultMediationResultPosted

MatchClosed MatchClosed

Re
gi
st
ra
tio

n
O
ffe

rs
M
at
ch
in
g

Ex
ec
ut
io
n
an
d

Ve
ri
fic
at
io
n

M
ed
ia
tio

n

(a)

Matched

ResultPosted

MatchClosed

JobAssignedForMediation

OffersPending

JobOfferPosted

NoJobOffer

ResourceOfferPosted

NoResourceOffer

State

RP:acceptResult

init

S:postMatch

JC: timeout

RP:postResult

JC:rejectResultJC:acceptResult

M:postMediationResult

JC:postJobOffer

JC:cancelJobOffer RP:cancelResOffer

RP:postResOffer

Powered By�Visual Paradigm Community Edition

(b)

Figure 2: (a) Sequence diagram showing the outsourcing of a single job. Black arrows are function calls to the smart contract.

Blue dashed lines are events emitted by the smart contract. Gray lines are optional function calls. Red lines are optional calls

that are required in case of disagreement between RP and JC. Green lines are off-chain communication. Note that events are

broadcast, and visible to all agents that can interact with the contract. (b) States of job in MODiCuM. Function calls to the

smart contract are prefixed by the actors that make the calls.

and reports the status of the job and resource usage measurements
to the smart contract (Figs. 2a and 2b: postResult). The status of
the job is the state which the job execution finished. Some possible
termination states include Completed or MemoryExceeded. The full
list of status codes can be found in Appendix B.3 and we will discuss
some of them in Section 4.4.

After receiving the notification that the result has been posted
(Figs. 2a and 2b: ResultPosted) the JC downloads the result (Fig. 2a:
getResult) and decides whether to verify it or not. It then accepts,
ignores, or rejects the result. If the JC accepts the result (Figs. 2a
and 2b: acceptResult) the contract returns deposits, pays the RP
and Mediator, and closes the match (Fig. 2b: MatchClosed).

If the JC ignores the result, then after some time, the window
for the JC to react closes and the RP is permitted to accept the
result (Fig. 2b: RP:acceptResult) resulting in the match closing
(Fig. 2b: MatchClosed). If the JC disagrees with the result, it re-
jects the result (Figs. 2a and 2b: rejectResult) with a reason code
such as WrongResults or ResultNotFound; then, mediation fol-
lows (Figs. 2a and 2b: JobAssignedForMediation).

4.4 Faults and Mediation

There are essentially two types of faults that can occur in the system:
(1) Connectivity: this can occur for the JC, RP, and the Mediator

when they try to communicate with the Directory or the smart
contract. Note that the JC, RP, and Mediator do not talk directly
(see Fig. 1). Solver connectivity faults are not a concern since it
only interacts with the smart contract and the failure of a Solver
implies that Solver does not submit a solution, but others may.
Hence, we only worry about the connectivity to smart contract and
the directory. (2) Data (job input and results of execution): it can be
malformed, return an exception when executed, not be available
on the Directory, be verifiably incorrect, etc.

First, we discuss the connectivity with the smart contract. If the
RP cannot communicate with the smart contract, it may not receive
a notification that it has been matched and it is also unable to call
postResult. These are both addressed by the JC having a time-
out. If the JC calls timeout (see Figs. 2a and 2b) and the required
waiting period has elapsed, then the smart contract pays the JC
the estimated value of the job from the RPs deposit and returns
the remainder. The timeout also addresses when the JC misses the
ResultPosted message sent by the RP, since if the misses the mes-
sage, it will attempt to timeout, which will fail because the result
was posted, and then it will fetch the result. Smart contract con-
nectivity failure also means that the JC cannot send acceptResult
and that the RP never receives a notification that the JC accepted.
This is addressed by allowing the RP to bypass the JC and call

5

acceptResult if the platform specified duration for the JC to re-
spond has elapsed. Connectivity failure also means that the JC and
the RP may not receive the MediationResultPosted message. In
this case, they may respond by removing that Mediator from their
trusted list; and if the result eventually arrives, they can re-add
the Mediator. This also addresses when the Mediator does not get
the mediation request or cannot post the mediation result. In this
case, mediation is considered to have failed; to release the security
deposits, we enforce a timeout via the smart contract. In the event
of this timeout, we instead pay the RP half of the JC’s job estimate
and return the remainder of the deposits. Obviously, the Mediator
does not get paid since mediation failed.

Now, we discuss connectivity with the Directory. If a JC cannot
connect to the Directory to submit a job, it simply tries to upload
to another Directory it trusts. If it cannot connect to retrieve a
result then the JC must either pay the RP or request mediation
with the DirectoryUnavailable status. To verify the JC claim,
the Mediator queries the Directory for its uptime. If the Directory
reports that it was available for the entire job duration, then the
Mediator assigns fault to the JC; otherwise, it assigns fault to the
Directory. If the JC does not agree, it may remove the Directory
and/or the Mediator from its trusted lists. Similarly, if the RP cannot
connect to the Directory, either to fetch the job or upload the results,
then it posts a result with the DirectoryUnavailable status. If the
JC does not agree that the Directory is unavailable, then it requests
mediation which proceeds as above with the RP rather than the JC.
If theMediator sends amediation result of DirectoryUnavailable
then the RP and JC may choose to remove the Directory, Mediator,
or both from their trusted list.

Finally, we discuss the data faults. The data faults that the RP can
detect and the corresponding result status are: 1) no job on the Direc-
tory (JobNotFound), 2) a job description error (JobDescription-
Error), 3) excessive resource consumption (ResourceExceeded),
and 4) an execution exception during execution (ExceptionOccur-
red). The JC can request mediation if it disagrees with a claim of
any of these faults, in addition to detecting no result on the Di-
rectory, or that the result is incorrect. Finally, the JC can request
mediation if, after verification, the JC suspects that the resource
usage claimed by the RP is too high. This could occur since the
resource variation should be small, but the JC may have set a high
resource limit to ensure the job completes.

If the JC requestsmediation claiming there is a data fault, then the
Mediator attempts to replicate the steps taken by the RP, with the
distinction being that it re-executes the job n times (see Section 5.1,
it is defined as a parameter of the smart contract), and compares its
results with the RP’s results. In two cases, the JC will be at fault:
(1) All of the Mediator’s results and RP’s result are the same, which
means that the RP has executed the job correctly. (2) The Mediator
gets two different results when running the job, which means that
JC has submitted a non-deterministic job. Otherwise, the Mediator
assumes that the RP has submitted a wrong result. Another case
is when the JC claims that the result is not on the Directory. In
that instance, the Mediator attempts to retrieve the result from the
Directory. If it cannot it faults the RP, if it can it faults the JC. If
either agent disagrees it may remove that Directory, Mediator, or
both from its trusted list.

The Mediator submits the verdict to the smart contract (Figs. 2a
and 2b: postMediationResult), and the smart contract claims the
security deposit. Of the deposit, the actual job price is used to com-
pensate the damaged party for its losses, and πm (which is the job
price times the number of repeated executions n) goes to the Me-
diator to cover its mediation costs. In addition, Mediators always
receive πa as payment for making their service available. They
receive this when a job is closed (Figs. 2a and 2b: MatchClosed).

For this mediation approach to work, the RP must not allow
jobs to access any extra information (e.g., physical location, time)
beyond what is in its description and Docker image. Otherwise,
a job could determine where it is running (e.g., via connecting to
a remote server), so the JC could create a job that would always
produce different results on the RP and on the Mediator. For such a
job, theMediator would always incorrectly blame and punish the RP.
This is why the platform requires that jobs be (1) deterministic and
punishes the JC if non-determinism is detected (otherwise, we could
not use repeated executions to verify) and (2) batch (otherwise, the
jobs could not be isolated). The deterministic restriction specifically
requires that theMediator gets the same result as the RP. Thismeans
that in practice non-deterministic jobs could be sent by the JC as
long as the RP records the non-deterministic values instantiated on
the RP (which are not part of the input posted on the Directory)
as part of its result for use in verification. Some examples of jobs
that could be computed in such environment are machine learning
tasks, or jobs that are similar to volunteer computing tasks, such
as protein folding. Essentially, any batch data processing task is
feasible.

4.4.1 Collusion. A part of the challenge in designing a fair system
is the problem of collusion.We enumerate all possible two-party col-
lusions and discuss their objectives and how MODiCuM addresses
them. We do not consider more than two party collusions explicitly
because they are indistinguishable from two-party collusions for
the non-colluding agents inMODiCuM.

• Job Creator and Solver: Since offers are public and any par-
ticipant can act as a solver, the collusion between JCs and
solvers is inevitable. The goal of this collusion is to match a
JC’s offers to the resource offers with the lowest unit price.
This means that the RP with the lowest-price offer will be
matched first. This collusion does not harm the system be-
cause every resource offer includes a minimum reservation
price; thus, a JC cannot force an RP to perform computation
for less than what the RP voluntarily accepts. This collu-
sion is desirable because it provides solver resilience to the
system due to the incentive for JCs to form this collusion.

• Job Creator and Mediator: Both JC and Mediator can bene-
fit from this collusion by taking the RP’s security deposit
and splitting it between them, while the JC can also bene-
fit by having its jobs executed without paying. This can be
achieved by the JC requesting mediation on a correct result
and the Mediator ruling in favor of the JC. To an honest
RP, this collusion will appear as a faulty Directory, faulty
Mediator, or non-deterministic job, though it can eliminate
the last by repeating the job execution. The RP removes the
Mediator and Directory from its trusted list. Thus, a mediator
can launch this attack only once per RP.

6

• Job Creator and Directory: This collusion is similar to the one
between the JC and Mediator. JC and Directory can collude
in multiple ways. For example, the Directory manipulates the
job so that the RP will return JobDescriptionError result
status. Then, JC will request mediation, the Directory will
provide the correct job to the Mediator, and the Mediator
will rule in favor of JC. Since the RP cannot distinguish
this collusion from the one between a JC and mediator, as a
response, the RP removes the Mediator and Directory from
its trusted list. Thus, a Directory can launch this attack only
once per RP.

• Job Creator and Resource Provider: There is no possible benefit
from this collusion.

• Resource Provider and Solver: The goal of this collusion is
the same as for the collusion between JC and Solver, and its
impact and mitigation are also the same. This collusion is
desirable for the same reason as well.

• Resource Provider and Mediator: RP and Mediator can both
benefit from this collusion by taking the JC’s security deposit
and splitting it between them; while the RP can also benefit
by receiving payment for a job without actually executing
it. This can be achieved by the RP returning any job result,
which the JC might verify and request to be mediated, upon
which Mediator will rule in favor of the RP. This collusion is
mitigated in the same way as the collusion between JC and
Mediator, except that the roles of JC and RP are reversed.

• Resource Provider and Directory: The goal of this collusion
is the same as the RP and Mediator collusion, and it can
be achieved and handled in a similar manner as the JC and
Directory collusion. To an honest JC, collusion will appear
as a faulty or colluding Directory. As a response, the JC
removes the Mediator and Directory from its trusted list.
Thus, a Directory can launch this attack only once per JC.

• Directory and Solver: There is no benefit from this collusion.
• Directory andMediator: This collusion aims to ensure that the
JC will request Mediation by manipulating data or availabil-
ity, and then splitting the payment for Mediation. Depending
on the Directory’s manipulation and the Mediator’s ruling,
either the JC or RP will respond in the same way as if the RP
or JC were colluding with the Directory or Mediator.

• Mediator and Solver: The goal in this case is for the solver
to prioritize trades that include the Mediator, and further
prioritize JCs and RPs with a history of requiring mediation.
This could result in unfairness, i.e., some jobs may never get
matched. However, this is not a real concern since the JC
and RP can act as solvers and match their own offers.

From exploring the possible scenarios, we conclude that the JC
and RP could be cheated once by aMediator or a Directory; however,
the faulty agent will be removed from the trusted list afterwards.
Since the business model for Mediators and Directories is attracting
RPs and JCs who trust and pay them for their services, they have
strong incentives to build a positive reputation in the ecosystem.
Thus, we assume they will behave honestly. The formal proof for
this conjecture will be provided in future work.

Table 1:MODiCuM Parameters and System Constraints

MODiCuM Smart Contract (SC)

θ penalty rate set by the contract
d deposit by JC and RP for collateral before transaction oc-

curs
dmin minimum security deposit
дm cost of requesting mediation
дr cost for an RP to participate; includes the costs of submit-

ting the offer and the results, as well as partial payment to
the Solver for a match accepted by the smart contract

дj cost for a JC to participate; includes the costs of submitting
the job offer, as well as partial payment to the Solver for a
match accepted by the smart contract

πd payout to wronged party when deception is detected
n number of times Mediator executes a disputed job

Mediator (M) and Directory (D)

πm payout to the Mediator when it is invoked
πa payout to the Mediator and Directory for being available

for the duration of the job, which also covers the Solver
match payment

Job Creator (JC)

pv probability that JC verifies a job result (verification rate)
pa probability that a correct execution of a non-deterministic

job returns a “normal” result for which the JC will not
request mediation (functionally, this is an indicator of how
honest the JC is)

πc payment from JC to RP for successfully completing a com-
putation

b JC’s benefit for finished job minus cost of submitting job
cv JC’s cost to verify a job result

Resource Provider (RP)

πr payout that resource provider asks for completing the job
pe probability that RP intentionally executes the job correctly

(1 − pe is the probability of cheating)
ce execution cost for RP to compute job
cd computational cost for RP to deceive and create wrong

answer
System Constraints

1 b > πc + πa + дj for honest JC
2 θ ≥ 0 the penalty rate cannot be negative
3 n > 0 else the mediator does not re-execute the job
4 ce > cd > 0 else the RP never has incentive to cheat
5 π̂c ≥ πc ≥ πr > ce ; if ce ≥ πr , the RP will abort the job;

and if πr > π̂c , then that job and resource offer match is
disallowed by the contract

6 d ≥ dmin

5 ANALYZING PARTICIPANT BEHAVIOR

AND UTILITIES

In this section, we formulate the agents’ actions as a game and
solve for strategies that result in a Nash equilibrium. We also show
that platform parameters can be set so that a rational JC will fol-
low the protocol with, at least, some minimum probability. The
extensive-form representation of the game (shown in Fig. 3) is
explained below.

7

5.1 Game-Theoretic Model

To understand the game, we first introduce a set of parameters in
Table 1. Parameters denoted by p are probabilities, π are payouts, c
are costs incurred by agents, and д are the costs for interacting with
the platform. Many parameters have constraints on the valid values
that they can take and on their relationships with other parameters.

Now, we consider the JC’s choices. The JC has a job to outsource,
whose execution provides a constant benefit b upon receiving the
correct job result. The JC is willing to pay a job specific price, up
to π̂c , which is appropriate for the resources required to have the
result computed. The JC is able to verify if the job result is correct,
but it incurs verification cost cv by doing so. In order to mitigate this
cost, the JC may choose to verify the result with some probability
pv , trading confidence for lower costs.

However, a dishonest JC can design non-deterministic jobs and
we assume that the JC can always recover the correct result from
any output4. The goal of the JC in designing a non-deterministic
job is to get the correct output without having to pay the RP. It
can accomplish this if it requests mediation, and when it does, the
mediator concludes that the result returned by the RP is incorrect.
Thus, if a JC designs a job to look “normal” to the mediator with
probability pa and “incorrect” with probability 1 − pa , then the JC
will accept correct results with probabilitypa and request mediation
with probability 1 − pa . A simple illustration of such a job is one
which returns a natural number as its solution, and changes the sign
of that value (i.e., multiply by -1) with a fixed probability, creating
a set of positive results and a set of negative results.

The game starts with the JC choosing a probability value for pa .
A probability of pa = 0 means that the JC is completely dishonest,
and all results will be considered incorrect. A probability of pa = 1,
means the JC is honest and all correct outputs are accepted.

The RP makes the next move, choosing between honestly exe-
cuting the job or forging a result to deceive the JC. The RP may be
motivated to return a false result because the job execution cost ce
is higher than the deception cost cd and it is possible that the JC
does not verify the result and thus does not detect the deception.
The RP executes the job with probability pe , where pe = 0 means
that the RP is completely dishonest and always attempts to deceive
the JC, while pe = 1 means that the RP is honest and executes the
job correctly. Note that the correct result can be a fault code if the
computation fails.

The JC then makes the next move and selects its verification
strategy, choosing between verifying the job result or passing on
the verification. The JC verifies the result with probability pv . If ver-
ification finds the result to be incorrect, the JC requests mediation
to dispute the result.

To resolve the dispute, the Mediator must determine which agent
is at fault. The Mediator does this by performing the steps that an
RP would take to execute a job, repeating several times to detect
non-determinism. When initialized the smart contract specifies a
verification count n, which is the number of times the Mediator will
execute a job checking for anomalies. Since the job has probability
pa of returning a normal result and the Mediator executes the job n
times, the probability that the job returns a normal result in every

4Note that the RP and M cannot be expected to analyze the code, and hence cannot
know that the job contains non-determinism.

Figure 3: Extensive-form game produced by the MODiCuM

protocol. Blue nodes indicate JC moves, red nodes indicate

RPmoves, green nodes indicateMediator’s probabilistic out-

come. The game is sequential, but the decisions are hidden,

so we treat it as a simultaneous move game. Each outcome

of the game has payouts for the agents, which are found in

Fig. 4

Outcome Party Contract
Payoff

Self
Benefit Reward(r)

o1
RP πd − дr − πa −cd πd − cd − дr − πa
JC −дj − d − дm − πa −cv −дj − d − дm − cv − πa

o2
RP −d − дr − πa −cd −d − дr − cd − πa
JC πd − дj − дm − πa −cv πd − дj − дm − cv − πa

o3
RP πc − дr − πa −cd πc − дr − cd − πa
JC −дj − πc − πa 0 −дj − πc − πa

o4
RP πc − дr − πa −ce πc − дr − ce − πa
JC −дj − πc − πa b b − дj − πc − πa

o5
RP πc − дr − πa −ce πc − дr − ce − πa
JC −дj − πc − πa b − cv b − дj − πc − cv − πa

o6
RP πd − дr − πa −ce πd − дr − ce − πa
JC −дj − d − дm − πa b − cv b − дj − d − дm − cv − πa

o7
RP −d − дr − πa −ce −d − дr − ce − πa
JC πd − дj − дm − πa b − cv b + πd − дj − дm − cv − πa

Figure 4: Game outcomes and payments in Fig. 3. For exam-

ple, o1 is the outcome when the RP deceives, the JC verifies,

and the Mediator finds non-determinism and faults the JC.

The reward for the agents is the sum of contract payoff and

self-benefit and is denoted roi . The Mediator is not included

in the table: in every outcome, it receives πa ; when the JC

requests mediation, the M also receives πm , which is drawn

from the faulty party’s deposit d .

execution is pna . Thus, the Mediator detects a non-deterministic job
with probability 1 − pna , and fines the JC for being dishonest.

As stated in Section 4.1, to deter cheating through fines, we
require JCs and RPs to provide a security deposit d when submitting
offers. We define the deposit to be dependent on the JC’s estimate
of the job price π̂c and scaled by a penalty rate θ , which is set
by the smart contract. The job price π̂c estimated by the JC is
the same as πc except it uses the JC’s bid prices and requested

8

Table 2: RP payoffs by decision

verify pass

execute

URP
EV︷ ︸︸ ︷

−ce − дr − πa+

πc
(
npna (pa − 1) + pa + pna θ (pa − 1)

)
+

πd (1 − pa)
(
1 − pna

)
URP
EP︷ ︸︸ ︷

πc − ce − дr − πa

deceive −cd − дr − πa +
pna πc (−n − θ) + πd

(
1 − pna

)︸ ︷︷ ︸
URP
DV

πc − cd − дr − πa︸ ︷︷ ︸
URP
DP

resources. The penalty rate must be set to a sufficiently high value
to deter misbehavior. The security deposit must also cover the cost
of potential mediation πm , which we estimate as π̂c · n since the JC
is willing to pay π̂c and the Mediator must run n times. The deposit
must also cover the availability costs of the Mediator and Directory
as well as the Solver costs; we let πa denote the sum of these costs.
Thus, we define the minimum security deposit dmin as:

dmin = π̂c · θ︸︷︷︸
penalty

+ (π̂c · n)︸ ︷︷ ︸
πm

+πa (2)

The game induced by the interactions of the actors described
above has 7 possible outcomes. Each outcome has payouts for the
agents as described in Fig. 4. To illustrate how the payouts are cal-
culated, consider the following sequence. The JC pays дj to submit
a non-deterministic job with probability pa of returning a normal
result. The RP honestly executes the job incurring cost ce and pays
дr to submit the result. Since the RP executed honestly, the JC re-
ceives the benefit b. The JC verifies the result, incurring cost cv , and
detects that the non-beneficial part of the result is anomalous. It
then attempts to avoid paying πc to the RP by requesting mediation,
paying дm . The Mediator executes the job n times and if in one or
more of those executions it encounters an anomalous result, which
occurs with probability 1−pna , then it submits to the smart contract
that the JC is at fault and the JC loses its security deposit d for
submitting non-deterministic jobs resulting in outcome o6. Other-
wise if all of the results from the repeated executions are normal
then the JC successfully cheats and receives πd as reparations for
being “faulted” resulting in o7. The payouts of the other outcomes
are calculated similarly. The platform interaction costs are fixed
properties of a given smart contract and its underlying platform.

Since we assume that Directories and Mediators always act hon-
estly, we do not consider their strategic decisions in our game
analysis. The expected utilities of both the RP and the JC are sum-
marized in Tables 2 and 3, respectively. The table is constructed by
considering the possible actions of the RP and JC. There are two
possible actions for RP (execute and deceive) and two for JC (verify
and pass) as illustrated by the tree in Fig. 3. Hence, the utilities of RP
and JC depend on the four action combinations and their possible
outcomes o1 · · ·o7. To understand how the utilities are calculated,
consider the example of the case when RP chooses to execute, and
JC chooses to verify. This is node 7 in Fig. 3, and there are three
possible outcomes o5,o6,o7. Outcome o5 occurs with probability
pa , o6 with probability (1 − pa)(1 − pna), and o7 with probability

Table 3: JC payoffs by decision

verify pass

execute

U JC
EV︷ ︸︸ ︷

b − дj − πc (n + θ) (1 − pa)
(
1 − pna

)
+

(1 − pa)
(
−дm + pna πd

)
− cv − paπc − πa

U JC
EP︷ ︸︸ ︷

b − дj − πa − πc

deceive −cv − дj − дm + pna πd − πa
−πc

(
n − pna (n + θ) + θ

)︸ ︷︷ ︸
U JC
DV

−дj − πa − πc︸ ︷︷ ︸
U JC
DP

(1 − pa)pna . Thus,

U JC
EV = pa · to5 + (1 − pa)

(
(1 − pna) · to6 + pna · to7

)
(3)

The utility for each combination of actions is denoted by utilityU
with superscript of the agent (i.e., RP and JC) and subscript of the
action combination of RP and JC (i.e., EV is <execute,verify>, DP is
<deceive,pass>, EP is <execute,pass>, and DV is <deceive,verify>).
Note that we replace the total outcomes payoffs using Fig. 4 in
Tables 2 and 3.

5.2 Equilibrium Analysis

Here we analyze the utility functions explained in previous section.
Detailed proofs for these statements can be found in Appendix C.
The ideal operating conditions for the platform would be if the

RP always executed (pe = 1), the JC never had to verify (pv = 0)
and only submitted jobs which returned deterministic results (pa =
1). However, if the agents are rational, these parameters do not
constitute a Nash equilibrium. This is because if the JC does not
verify, then the RP will choose to deceive rather than execute since
U RP
EP < U RP

DP . The JCs utility in this case is always negative and so
it is better off not participating in the platform. This proves the
following theorem:

Theorem 1 (JC should not always pass). If the JC always
passes (i.e., pv = 0), then the RP’s best response is to always deceive
(i.e., pe = 0).

If the RP always chose to deceive, the platform would serve no
purpose. Therefore, we must ensure that if the JC chooses to verify,
the RP prefers to execute. This occurs whenU RP

DV < U RP
EV . We show

in Appendix C that this is true if pn+1a > 1
2 . When these conditions

are true, we can prove the following theorem:

Theorem 2 (pe > 0). If pv > 0 and pn+1a > 1
2 , then a rational RP

must execute the jobs with non-zero probability.

Recall pa is a parameter set by the JC, so to satisfy the condition
on pa in Theorem 2 we must show that the platform can set param-
eters to force the JC to choose a value for pa that is greater than
some lower bound. We assume that the JC is rational and chooses
pa to optimize its utility U JC . To find the bound we take its de-
rivative with respect to pa , ∂U JC

∂pa
, and assess how each parameter

shifts the optimal value for pa . The trends are as n, θ , дm increase
pa also increases, meanwhile as πc and pe increase pa decreases.
Knowing how varying each parameter shifts the optimal value for
pa we can select the worst-case values for each parameter, i.e. those
that minimize optimal pa , maximizing dishonesty. Specifically, if

9

0.0 0.2 0.4 0.6 0.8 1.0
pa

-2.5

0.0

2.5

5.0

7.5

10.0

12.5
∂
JU

pa sensitivity to n

n=1

n=2

n=4

n=6

Figure 5: We vary the value of n and plot pa against
∂U JC

∂pa
.

This shows that as n increases, so does the optimal value of

pa (zero-crossing of derivative curve). Parameter values are

πc = 2, дm = 0, θ = 0, cv = 1, b = 4, pe = 1

the parameter and pa are inversely related, set the parameter to
its maximum allowed value, and if they are directly related set the
parameter to its minimum value. Thus, the worst-case values for
each of the parameters are: дm = 0, pe = 1, n = 1, θ = 0. The plot
in Fig. 5 uses those parameters and shows that increasing n does
cause the optimal value for pa to increase. We see that when n = 1,
the optimal pa = 0.5; and when n = 4, the optimal pa = 0.943. This
can be summarized as:

Theorem 3 (Boundedpa). Setting the JC utility function parame-
ters to minimize the optimal value for pa (maximizing a rational JC’s
dishonesty) ensures that any deviation will increase pa . The platform
controls n and θ , and so controls the minimum optimal value of pa .

We want to minimize the number of times the Mediator has to
replicate the computation, so we set n = 2 and set θ = 50 which
yields a minimum pa = 0.99.

So far we have shown that we can ensure that a rational RP
will prefer to execute when a JC verifies, and deceive when the JC
passes, and we can limit the amount of cheating the JC can achieve
through non-deterministic jobs. Next, we analyze the JC utilities to
determine the Nash equilibria of the system.

Analyzing JC types: The preferences of the JC depend on the
parameters in its utility function. We refer to each combination of
preferences as a “type” of JC. We will call a JC that prefers to always
verify as type 1. A JC that prefers to always pass is type 4; we have
already covered this type and determined that a JC of this type will
not participate. A JC that prefers to verify when the RP executes
and pass when the RP deceives is type 2. A JC that prefers to pass
when the RP executes and verify when the RP deceives is type 3.
The JC has a preference because its utility is better in that case.
These preferences are summarized in Table 4 with the ∗ symbol
followed by the type that prefers that choice. This table is Table 3
refactored to remove terms that do not impact the JC’s preference
and to highlight the relationship between the preference and the
cost of verification cv . We consider the equilibrium for each type
assuming the RP has been restricted as we discussed previously. The
theorems below summarize these observations. Proofs are available
in Appendix C.

Table 4: Simplified JC payoffs to assess dominant strategy

with πd = πc

verify pass

execute −πc (1 − pa)
(
1 − pna

)
(n + θ + 1) +

(1 − pa) (−дm + 2πc)∗1,2
c∗3,4v

deceive 2πc − дm − πc
(
1 − pna

)
(n + θ + 1)∗1,3 c∗2,4v

Theorem 4 (JC type 1). If the JC is type 1, it will always verify
(pv = 1) since cv is sufficiently low. This results in a pure strategy
equilibrium <execute,verify>.

Theorem 5 (JC type 2). If the JC is type 2, it results in two pure
strategy equilibria <execute,verify>, <deceive,pass>, and one mixed
strategy Nash equilibrium where the JC randomly mixes between
verifying and passing.

Theorem 6 (JC type 3). If the JC is type 3, it will result in a Nash
equilibrium where the JC randomly mixes between verifying and
passing, and the RP mixes between executing and deceiving.

Strategies: Based on these preferences, a type 1 JC will always
verify pv = 1. Type 2 JCs may also choose to always verify, or
choose a mixed strategy, setting pv such that the RP receives the
same utility regardless of whether it executes or deceives resulting
in a Nash equilibrium. It achieves this by solving Eq. (4) for pv ,
setting ce = πc and cd = 0. Type 3 JCs only have the option of
solving Eq. (4) for pv .

pv ·U RP
EV + (1 − pv) ·U RP

EP = pv ·U RP
DV + (1 − pv) ·U RP

DP

Solve for pv ; pv =
ce − cd

pn+1a πc (θ + n + 1)
(4)

The RP’s strategy changes depending on which type of JC it is
working with. If the JC is type 1, it is simple: the RP must execute.
However, the other two types can mix, so the RP must also mix. It
does this by solving Eq. (5) for pe . The challenge with this is that the
RP does not know the value of cv . However all other parameters are
known once a match is made except pa which from our work earlier
we know that pa ≥ .99. Thus, the RP can sample cv from a uniform
distribution where 0 ≤ cv ≤ P JCEV for type 2 and 0 ≤ cv ≤ P JCDV for
type 3 (P JCEV is the JCs preference value for <execute,verify> from
Table 4). However, since the RP does not know which type of JC it
is working with, it further mixes between the 3 strategies according
to its belief on the distribution of the types of JC in the system.

pe ·U JC
EV + (1 − pe) ·U JC

DV = pe ·U
JC
EP + (1 − pe) ·U JC

DP

Solve for pe ; pe =
2πc − cv − дm − πc

(
1 − pna

)
(n + θ + 1)

pa (2πc − дm − πc (1 − pna) (n + θ + 1))
(5)

This analysis shows that we can limit the dishonesty of the JC,
and that the JC and RP can compute strategies that will result in a
mixed-strategy Nash equilibrium. Further, we can show that the JC
will not have to verify frequently by examining Eq. (4) and showing
that the maximum verification rate is low. First, we know that if
ce < πc (which should hold since otherwise the RP will always
deceive), then ce−cd

πc ≤ 1. In this case, the verification rate is at
its maximum when ce = πc and cd = 0. Simplifying Eq. (4), we
find that 1

pn+1a (θ+n+1) . In establishing Theorem 3, we showed that
10

setting θ and n enforces a minimum value for pa . Again, choosing
n = 2 and θ = 50 to minimize the number of times the Mediator
has to replicate the computation and recalling that this results in
pa ≥ 0.99, we substitute these values into our simplified equation
and find that pv = 0.02. This means that the JC will verify 2% of
the results. Since pa ≥ 0.99, mediation will occur 0.02% of the time
if the JC is cheating.

6 MODICUM IMPLEMENTATION

In this section, we describe an implementation of MODiCuM. The
code is available on GitHub [8]. We use a private Ethereum net-
work to provide smart contract functionality. MODiCuM actors,
including Job Creators, Resource Providers, Solvers, and Directory
services are implemented as Python services. The matching solver
uses a greedy approach to match offers as they become available
using a maximum bipartite matching algorithm. These actors use
the JSON-RPC interface to connect to the Ethereum Geth client
[4]. Note that each actor can be configured with any number of
Geth clients, and the ledger can be implemented either as a private
blockchain or we can use the main Ethereum chain as the ledger.
We use Docker [25] images to package jobs. Jobs can be run securely
by separating the job from the underlying infrastructure through
isolation. This can be achieved using a hardening solution such as
AppArmor [14] or seccomp [9] in conjunction with Docker. This
protects computational nodes from erroneous or malicious jobs, if
properly configured. Proper configuration has been discussed in
other papers, for example [17], and we do not go into detail here. To
determine job requirements, jobs are profiled using cAdvisor [1].

As part of the offer and matching specification, we require the
JC to include the hash of the base of the Docker image. Addition-
ally, during setup, Mediators and RPs specify a set of supported
base Docker images (Fig. 2a: mediatorAddFirstLayer and resource-
ProviderAddFirstLayer). This permits some optimization since RPs
are able to specify which base images they have installed, thus by
matching them accordingly, we can reduce the bandwidth required
to transfer the job by the size of the base image. Common base
images vary between about 2MB - 200MB [7].

6.1 Experimental Evaluation

JCs, RPs, and a Mediator were deployed on a 32 node BeagleBone
cluster with Ubuntu 18.04. We set up a private Ethereum network.
The Solver and Directory were deployed on an Intel i7 laptop with
24GB RAM. The actors connect to the Geth client [4] each using a
unique Ethereum account.

Measuring Gas Costs and Function Times: To measure the
minimum cost of executing a job viaMODiCuM, we had a single JC
submit 100 jobs and measured the function gas costs and call times
independent of the job that was being executed. These can be found
in Appendix E. The JC’s average gas cost of a nominal execution is
592, 000 gas. At current Ethereum prices, this converts to $0.168 per
job for the JC [2]. Comparing this to Amazon Lambda pricing [12]
on a machine with 512MB RAM (which a BeagleBone has), a job
would have to last ~6 hours to incur the same cost. However, the
electrical costs to run a BeagleBone (210-460mA@5V) at maximum
load for that long, assuming $0.12/kWh electricity price, is only
$0.0016. This illustrates that there is potential for such a transaction

system to be a viable option compared to AWS. However, using
Ethereum as the underlying mechanism is currently only viable for
long running jobs; but work is underway to improve the efficiency
of Ethereum [10]. We also measured the gas cost of a mediated
execution: the JC’s average gas cost in this case is 991, 000, and the
Mediator’s cost to post the mediation result is 187, 000.

During these tests, duration of the function calls was also mea-
sured (see Fig. 7). We note that the mean time for a block with
transactions to be mined (block time in Fig. 7) is about every 10
seconds, and that function call delay is consistently about 5 to 10
seconds longer. This may be attributable to calls missing a recent
block. The close time is the time measured between MatchClosed
events. Since the jobs were run sequentially it is a measure of the
cumulative time added to the execution of a job, in this test running
a job throughMODiCuM added approximately 52 seconds.

Measuring the Overhead of Platform: To measure the over-
head, we compared the execution of jobs run with Docker contain-
ers natively against jobs run inMODiCuM. The job we used was the
bodytrack computer vision application drawn from the PARSEC
benchmarking suite [16]. PARSEC has been used to benchmark
resource allocation platforms [30] as well as platforms for high
performance computing [28] among others. We again ran 100 jobs,
which took a total of 221 minutes, averaging 2 minutes per job.
The mean time for a block to be mined was 31 seconds, meaning it
took about 4 blocks to complete a job. The block time was likely
longer in this experiment because as the blockchain grew block
mining times appeared to increase, though we did not study this
explicitly. This application tracks the 3D pose of a human body
through a sequence of images. In Figure 8a, we see thatMODiCuM
increases the runtime by about 1 second or 4%. In Figure 8b, the
average memory consumption increases by 0.1MB, or 3%. To check
mediation, we ran the jobs again, but rejected the results for all 100
jobs and requested mediation.

Resource consumption while running the benchmark on MOD-
iCuM can be seen in Fig. 6. The nodes are at idle during the valley
from 16:04:30 to 16:05:30 at which point the platform is started.
From 16:05:30 onward,MODiCuM is running, and the bursts that
can be seen, for example at 14:09:30-14:10:45 in Figure 6b, are when
jobs are being executed. MODiCuM introduces about 20-25MB
RAM overhead for each agent type. It introduces 80% CPU over-
head on the Mediator, 30% on the Job Creator, and no apparent
change to the Resource Provider. This is acceptable since the BBB
devices are resource constrained and so the overhead will be less
significant on more powerful compute nodes.

7 CONCLUSIONS

An openmarket of computational resources, where resource owners
and resource users trade directly with each other has the poten-
tial for greater participation than volunteer computing and more
competitive pricing than cloud computing. The key challenges asso-
ciated with implementing such a market stem from the fact that any
agent can participate and behave maliciously. Thus, mechanisms
for detecting misbehavior and for efficiently resolving disputes are
required. In this paper we propose a smart contract-based solu-
tion to enable such a market. Our design deters participants from
misbehaving by resolving disputes via dedicated Mediators and

11

(a) Job Creator CPU (b) Resource Provider CPU (c) Mediator CPU

(d) Job Creator RAM (e) Resource Provider RAM (f) Mediator RAM

Figure 6:MODiCuM Total Resource usage. Each plot shows the resource consumption on a node.

bl
oc
k
tim

e
ac
ce
pt

re
je
ct

po
st
JO
ff
1

po
st
JO
ff
2

po
st
Ma
tc
h

po
st
Re
sO
ff

po
st
Re
su
lt

clo
se
tim

e

0

20

40

60

D
ur
at
io
n
[s
]

Figure 7: Duration of MODiCuM function calls during nom-

inal operation.

Native MODiCuM
22
23
24
25
26

Ru
nt
im

e
[s
]

(a) Runtime

Native MODiCuM
3

3.5

4

4.5

M
em

or
y
[M

B]

(b) Average memory

Figure 8: Running time and memory usage on MODiCuM

and native execution.

by imposing enforceable fines through the smart contract. This is
possible because we recognized that the results do not need to be
globally accepted, convincing the JC will often suffice. We learned
that due to the limitations of Ethereum our platform is only suit-
able for long running tasks, but there is space between the cost of
electricity and AWS for a platform of this nature. Future work is
looking into other platforms that support smart contracts, as well
as leveraging improvements to Ethereum.

AcknowledgmentsWe are very thankful to Prof. Gabor Karsai
and Prof. Aniruddha Gokhale for their insight and comments on
the paper. This work was supported in part by National Science
Foundation through award numbers 1647015 and 1818901.

REFERENCES

[1] Contained Advisor. Github, https://github.com/google/cadvisor.
[2] ETH Gas Station. https://ethgasstation.info/calculatorTxV.php. Accessed: 2019-

09-30.
[3] FogCoin: The Future of Compute. https://fogcoin.io
[4] Geth: Ethereum Command Line Interface. Online, https://github.com/ethereum/

go-ethereum/wiki/geth.
[5] The Golem Project: Crowdfunding Whitepaper. https://golem.network/

crowdfunding/Golemwhitepaper.pdf. Accessed: 12-01-2019.
[6] iExec: Blockchain-Based Decentralized Cloud Computing. https://iex.ec/

whitepaper/iExec-WPv3.0-English.pdf. Accessed: 12-01-2019.
[7] Linux Container Images. http://crunchtools.com/comparison-linux-container-

images/. Accessed: 2019-12-26.
[8] MODiCuM: Mechanisms for Outsourcing Computation via a Decentralized Mar-

ket. Online Appendix, https://github.com/paralysisteve/MODICUM/.
[9] seccomp. http://man7.org/linux/man-pages/man2/seccomp.2.html. Accessed:

2020-1-12.
[10] Sharding roadmap. https://github.com/ethereum/wiki/wiki/Sharding-roadmap.

Accessed: 2020-1-4.
[11] Verification in gWASM. https://medium.com/golem-project/verification-in-

gwasm-7b9fb68b2fd7. Accessed: 2019-12-26.
[12] Amazon 2000. AWS Pricing Calculator. https://aws.amazon.com/lambda/pricing/.

Accessed: 2019-09-30.
[13] D. P. Anderson, C. Christensen, and B. Allen. 2006. Designing a Runtime System

for Volunteer Computing. In Proceedings of the 2016 ACM/IEEE Conference on
Supercomputing (SC) (2006-11). 33–33.

[14] Mick Bauer. 2006. Paranoid Penguin: An Introduction to Novell AppArmor. Linux
Journal 2006, 148 (Aug. 2006), 13.

[15] Mira Belenkiy, Melissa Chase, C Chris Erway, John Jannotti, Alptekin Küpçü,
and Anna Lysyanskaya. 2008. Incentivizing Outsourced Computation. In 3rd Int.
Workshop on Economics of Networked Systems. ACM, 85–90.

[16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
17th International Conference on Parallel Architectures and Compilation Techniques
(PACT). ACM, 72–81.

[17] Thanh Bui. 2015. Analysis of Docker security. arXiv preprint arXiv:1501.02967
(2015).

[18] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. Queue 14, 1 (2016), 10.

[19] Hadrien Croubois. PoCo Series #2 — On the use of staking to prevent
attacks. https://medium.com/iex-ec/poco-series-2-on-the-use-of-staking-to-
prevent-attacks-2a5c700558bd. Accessed: 2019-12-26.

[20] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van
Moorsel. 2017. Betrayal, Distrust, and Rationality: Smart Counter-Collusion
Contracts for Verifiable Cloud Computing. In 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS). 211–227.

[21] Laurence Field, D Spiga, I Reid, H Riahi, and L Cristella. 2018. CMS@ home:
Integrating the Volunteer Cloud and High-Throughput Computing. Computing
and Software for Big Science 2, 1 (2018), 2.

[22] IHS Technology. 2016. IoT Platforms: Enabling the Internet of Things. Technical
Report. IHS Markit.

12

https://github.com/google/cadvisor
https://ethgasstation.info/calculatorTxV.php
https://fogcoin.io
https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/ethereum/go-ethereum/wiki/geth
https://golem.network/crowdfunding/Golemwhitepaper.pdf
https://golem.network/crowdfunding/Golemwhitepaper.pdf
https://iex.ec/whitepaper/iExec-WPv3.0-English.pdf
https://iex.ec/whitepaper/iExec-WPv3.0-English.pdf
http://crunchtools.com/comparison-linux-container-images/
http://crunchtools.com/comparison-linux-container-images/
https://github.com/paralysisteve/MODICUM/
http://man7.org/linux/man-pages/man2/seccomp.2.html
https://github.com/ethereum/wiki/wiki/Sharding-roadmap
https://medium.com/golem-project/verification-in-gwasm-7b9fb68b2fd7
https://medium.com/golem-project/verification-in-gwasm-7b9fb68b2fd7
https://aws.amazon.com/lambda/pricing/
https://medium.com/iex-ec/poco-series-2-on-the-use-of-staking-to-prevent-attacks-2a5c700558bd
https://medium.com/iex-ec/poco-series-2-on-the-use-of-staking-to-prevent-attacks-2a5c700558bd

[23] Jacek Karwowski. 2018. More Twain, less cheating. https://blog.golemproject.
net/more-twain-less-cheating/. Accessed: 2019-12-26.

[24] Aron Laszka, Scott Eisele, Abhishek Dubey, Gabor Karsai, and Karla Kvaternik.
2018. TRANSAX: A Blockchain-Based Decentralized Forward-Trading Energy
Exchange for Transactive Microgrids. In 24th IEEE International Conference on
Parallel and Distributed Systems (ICPADS).

[25] Dirk Merkel. 2014. Docker: lightweight Linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[26] John Nash. 1951. Non-Cooperative Games. Annals of Mathematics 54, 2 (1951),
286–295. http://www.jstor.org/stable/1969529

[27] MuhammadNoumanDurrani and JawwadA. Shamsi. 2014. Volunteer Computing:
Requirements, Challenges, and Solutions. Journal of Network and Computer
Applications 39 (2014), 369–380. Issue Supplement C.

[28] Jianbao Ren, Yong Qi, Yuehua Dai, Yu Xuan, and Yi Shi. 2017. Nosv: A lightweight
nested-virtualization VMM for hosting high performance computing on cloud.
Journal of Systems and Software 124 (2017), 137 – 152.

[29] Luis FG Sarmenta. 2001. Sabotage-Tolerance Mechanisms for Volunteer Com-
puting Systems. In 1st IEEE/ACM International Symposium on Cluster Computing
and the Grid. 337–346.

[30] S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale. 2017.
INDICES: Exploiting Edge Resources for Performance-Aware Cloud-Hosted Ser-
vices. In 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC).
75–80. https://doi.org/10.1109/ICFEC.2017.16

[31] Jason Teutsch and Christian Reitwießner. 2017. A Scalable Verification Solution
for Blockchains. Available online: https://people.cs.uchicago.edu/teutsch/papers/
truebit.pdf.

[32] Sarah Underwood. 2016. Blockchain beyond Bitcoin. Commun. ACM 59, 11
(2016), 15–17.

[33] Rafael Brundo Uriarte and Rocco DeNicola. 2018. Blockchain-Based Decen-
tralized Cloud/Fog Solutions: Challenges, Opportunities, and Standards. IEEE
Communications Standards Magazine 2, 3 (2018), 22–28.

[34] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger.
Technical Report EIP-150. Ethereum Project – Yellow Paper. 1–32 pages.

Appendices

Appendix A DEFINITIONS

In this appendix we define what it means for a match to be feasible
and the how the deposits and payments are determined.

A.1 Matching Feasibility

We can match two offers if they satisfy the following conditions:
Job offer limit variables must be lower than the resource offer cap
variables. Job offer max variables must be higher than the resource
offer price variables. Additionally, there should be a mediator with
the same architecture of JO which is trusted by both JC and RP.

RO .instructionCapacity ≥ JO .instructionsLimit (6)
RO .ramCapacity ≥ JO .ramLimit (7)

RO .localStorageCapacity ≥ JO .localStorageLimit (8)
RO .bandwidthCapacity ≥ JO .bandwidthLimit (9)

RO .instructionPrice ≤ JO .instructionMaxPrice (10)
RO .bandwidthPrice ≤ JO .maxBandwidthPrice (11)

JO .architecture = RP .architecture (12)
JO .directory ∈ RP .trustedDirectories (13)

∃M :M ∈ (JC .trustedMediators ∩ RP .trustedMediators)
∧M .architecture = RP .architecture (14)
∧ JO .directory ∈ M .trustedDirectories (15)

currentTime + RP .timePerInstruction · JO .instructionLimit

≤ JO .completionDeadline
(16)

A.2 Payment

When the JC or the RP wants to post an offer for a job or resource,
it will pay a deposit value to prevent it from cheating on the plat-
form. This deposit value is a function of the posted offer which
is more than the price of the job plus mediation. As the price of
job or mediation is unclear at the time of posting the offer, a static
penaltyRate ≫ 1 is applied as security deposit.

After the job is finished and both the JC and RP agree on the
outcome, JC will receive the deposit minus the cost of the job and
the RP will receive the deposited value plus the cost of the job.

In case of disagreement, the match will go for mediation. The
mediators have a fixed price for their resources. After the submis-
sion of their verdict, the deposit of the party who is at fault will be
forfeited in favor of the winner and winner will receive both the
deposits minus the cost of mediation.

JO .deposit =(instructionLimit · instructionMaxPrice+

bandwidthLimit · bandwidthMaxPrice)·
(θ + n) + πa

(17)

RP .deposit =(instructionCap · instructionPrice+
bandwidthCap · bandwidthPrice)·
(θ + n) + πa

(18)

πc =result .instructionCount · resourceOffer .instructionPrice+
result .bandwidthUsaдe · resourceOffer .bandwidthPrice(19)

Appendix B DATA STRUCTURES

This appendix includes the definitions of the data structures used
to model the components of the platform. The platform is a compo-
sition of a smart contract, Resource Providers, Job Creators, Media-
tors, and Directories, and has the following structure:
Platform{ mediators: Mediator[],

resourceProviders: ResourceProvider[],
jobCreators: JobCreator[],
resourceOffers: ResourceOffer[],
jobOffers: JobOffer[],
matches: Match[],
results: JobResults[],
mediatorResults: MediatorResult[],
penaltyRate : uint }

The platform can support multiple architectures. However, ini-
tially it will only have amd64 and armv7.
enum Architecture{ amd64,

armv7 }

B.1 Entities

The data structure representation of the elements that comprise
the platform are defined below.
JobCreator{ trustedMediators: Mediator[]}

13

https://blog.golemproject.net/more-twain-less-cheating/
https://blog.golemproject.net/more-twain-less-cheating/
http://www.jstor.org/stable/1969529
https://doi.org/10.1109/ICFEC.2017.16
https://people.cs.uchicago.edu/teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/teutsch/papers/truebit.pdf

ResourceProvider{ trustedMediators: Mediator[],
trustedDirectories: address[],
arch: Architecture,
timePerInstruction: uint}

Mediator{ arch: Architecture,
instructionPrice: uint,
bandwidthPrice: uint,
trustedDirectories: address[],
supportedFirstLayers: uint,
availabilityValue: uint }

B.2 Offers

The format of the job offer is shown below. jobCreator is a unique
identifier for the JC. The depositValue is the JC’s security deposit
for the job. The limits specify how many instructions the Job Cre-
ator is willing to pay for (after executing this many, the Resource
Provider can give up and still get paid), how much RAM, local
storage, and bandwidth the Resource Provider may have to use
(again, after reaching these limits, the Resource Provider may stop).
instructionMaxPrice specifies the maximum price per instruc-
tion that the Job Creator accepts, bandwidthMaxPrice specifies
the maximum price per downloaded/uploaded byte (for the job
execution layer, not for the base layer) that the Job Creator accepts.
completionDeadline is the deadline of RP for submitting the solu-
tion. matchIncentive is the reward offered by the JC to the Solver.
firstLayerHash is the hash of the job’s Docker image. URI gives
the location of the job-specific files on the Directory. directory
is the identifier of the trusted directory where the job is located.
The jobHash is a hash of the Docker image. arch specifies which
architectures support the job.
JobOffer{ depositValue: uint,

instructionLimit: uint,
bandwidthLimit: uint,
instructionMaxPrice: uint,
bandwidthMaxPrice: uint,
completionDeadline: uint,
matchIncentive: uint,
jobCreator: JobCreator,
firstLayerHash: uint,
ramLimit: uint,
localStorageLimit: uint,
uri: bytes,
directory: address[],
jobHash: uint,
arch: Architecture;}

ResourceOffer{ resProvider: address,
depositValue: uint,
instructionPrice: uint,
instructionCap: uint,
memoryCap: uint,
localStorageCap: uint,
bandwidthCap: uint,
bandwidthPrice: uint,
matchIncentive: uint,
verificationCount: uint;}

Prices are per instruction or per byte. Capacities specify what
resources the Resource Provider has, and they are used as con-
straints for matching. All of the participants can deposit as much as
they want as long as it is more than the required JO/RP.deposit.
depositValue is the variable that holds the amount of deposited
value for each offer.

B.3 Results

There are various results that are produced during operation of the
platform. This appendix describes the data structure of each output.

When offers are posted, they are recoreded to the ledger. Solvers
read the ledger to discover offers and then solve a resource alloca-
tion problem to pair compatible offers. The format of the match sub-
mitted back to the ledger is below,where resourceOffer/jobOffer
is the matched resource/job offer (as defined in Appendix B.2), and
mediator is a mediator that exists in the trusted list of both the RP
and JC data structures (as defined in Appendix B.1).

Match { resourceOffer: ResourceOffer,
jobOffer: JobOffer,
mediator: Mediator}

The result provided by an RP is structured as a JobResult (see be-
low). uri gives the location of the result on the Directory. matchId
is an internal identifier for the match. hash is a hash of the re-
sult submitted to the directory. instructionCount is the num-
ber of instructions that were executed by the ResourceProvider.
bandwidthUsage is the number of bytes downloaded / uploaded
by the Resource Provider for the job (not counting the download
of Docker layers). The JC has a specific deadline for responding
to a result. Whether to approve or decline it. Whether a particular
result has been responded to is recored in the reaction filed. The
deadline is computed from the timestamp recored in the result. If
the deadline is missed the RP can accept the result instead of the
JC.

JobResult{ uri: bytes,
matchId: uint,
hash: uint,
instructionCount: uint,
bandwidthUsage: uint,
reacted: Reaction,
timestamp: uint,
status: ResultStatus; }

status specifies the specific outcome of the execution and is
one of the outcomes defined in the ResultStatus data structure
(see below).

enum ResultStatus{ Completed,
Declined,
JobDescriptionError,
JobNotFound,
MemoryExceeded,
StorageExceeded,
InstructionsExceeded,
BandwidthExceeded,
ExceptionOccured,
DirectoryUnavailable }

14

Completed means that the Resource Provider finished the job
successfully and posted the results on the Directory. A Declined
results status indicates that the RP chose not to execute the job.
JobDescriptionError means that there is an error in the job de-
scription. MemoryExceeded, InstructionsExceeded, Bandwidth-
Exceeded mean that the job exceeded the limits specified in the
JobOffer. ExceptionOccuredmeans that an exception was encoun-
teredwhile executing the job, while DirectoryUnavailablemeans
that the Resource Provider is unable to post results because the
Directory is unavailable.

MediatorResult{ status: ResultStatus,
uri: bytes,
matchId: uint,
hash: uint,
instructionCount: uint,
bandwidthUsage: uint,
verdict: Verdict,
faultyParty: Party; }

The platform on itself cannot determine which party is cheating
merely based on the hash of the Mediator’s Results. For example,
the smart contract cannot check whether the job was correctly
posted to the directory by the Job Creator or the result was correctly
posted to directory by the Resource Provider. Therefore, it is the
responsibility of the Mediator to decide who should be punished in
the ecosystem. verdict is the reason for deciding on the cheating
party, and faultyParty is the cheating party.

enum Verdict{ ResultNotFound,
TooMuchCost,
WrongResults,
CorrectResults,
InvalidResultStatus}

This is the reason that the Mediator chose to punish an actor.
ResultNotOnDirectory means that the Resource Provider did not
put the results in the directory. TooMuchCost means that the Re-
source Provider charged toomuch for the job. WrongResultsmeans
that the Resource Provider providedwrong results. CorrectResults
means that the Resource Provider completed the job correctly and
the JobCreator should be punished by sending the result for medi-
ation. InvalidResultStatus means that the Resource Provider’s
mentioned ResultStatus is wrong. For example, it said that the job
description was invalid and returned JobDescriptionError, but
the description was correct.

enum Party{ ResourceProvider, JobCreator }

These are the trustless parties in the ecosystem.Mediators should
specify who cheated in a job and should be punished by specifying
one of these parties.

Appendix C PROOFS: EQUILIBRIUM

ANALYSIS

This appendix provides the proofs for the theorems presented in
Section 5.2. The RP chooses between executing a job and attempting
to deceive the JC. The JC chooses between verifying the result and
accepting it without verification. Below we examine the payoffs for
each combination to determine which conditions will cause each
agent to always choose one action (the pure strategy) or to mix

randomly between them. The utilities for the RP and JC can be found
in Tables 5 and 6 respectively. To simplify these utility functions,
we set πd (the compensation when cheating is detected) equal to
πc (the amount the JC would have paid the RP for successfully
completing a job). This means that if cheating is detected in the RP,
the JC will receive at least what it was willing to pay, and if cheating
was detected in the JC the RP will receive what it expected for
correct execution. This was chosen to limit the additional benefit
to dishonest participants while minimizing the harm to honest
participants. These simplified utilities can be found in Tables 7
and 8. The proofs for the following theorems rely on determining
which strategy dominates thus we further simplify the payoffs by
removing terms that are common to both strategies, leaving only
the terms that determine which strategy is dominant. The result is
Tables 9 and 10.

To refer to the utility of a given combination of actions we use
the symbol U with superscript of the agent (i.e., RP and JC) and
subscript of the action combination of RP and JC (i.e., EV is <exe-
cute,verify>, DP is <deceive,pass>, EP is <execute,pass>, and DV
is <deceive,verify>). So for example the utility of the RP when the
the RP executes and the JC passes is denotedU RP

EP and refers to the
upper right utility in Tables 5 and 7. Since Tables 9 and 10 do not
represent utility but rather include only the significant terms for
determining strategy dominance we refer to them with ∆U instead.

Theorem 1 (JC should not always pass (pv > 0)). If the JC
always passes (i.e., pv = 0), then the RP’s best response is to always
deceive (i.e., pe = 0).

Proof. Assume that the JC always passes, then the RPwill either
execute or deceive. Since U RP

EP < U RP
DP is always true then the RP

will always deceive. This corresponds to the JC utilityU JC
DP which

is always negative, thus if the JC will always pass then it should
not participate. Therefore, a JC that is participating will not always
pass. □

Theorem 2 (pe > 0). If pv > 0 and pn+1a > 1
2 , then a rational RP

must execute the jobs with non-zero probability.

Proof. If the JC verifies, the RP dominant strategy is to execute
if U RP

DV < U RP
EV . Deriving Table 9 from Table 7 we know that to

execute is dominate if

−ce + pn+1a πc (n + θ + 1) > −cd
rearrange terms pn+1a πc (n + θ + 1) > ce + −cd

(20)

From Table 1 we know that n > 0 so then 2πc < πc (θ + n + 1).
We also know ce < πr ≤ πc . Substituting these into Eq. (20) results
in: {

pn+1a πc (n + θ + 1) ≥ 2πcpn+1a

}
>
{
πc ≥ ce ≥ ce − cd

}
Simplify: 2πcpn+1a > πc

Solve for pn+1a : pn+1a >
1
2

(21)

Thus, since pv > 0 from Theorem 1, if Eq. (21) is true then
executing is the dominant strategy and pe > 0. □

15

Table 5: RP payoffs by decision

verify pass

execute

U RP
EV︷ ︸︸ ︷

−ce − дr − πa+

πc
(
npna (pa − 1)+pa +pnaθ (pa − 1)

)
+

πd (1 − pa)
(
1 − pna

)
U RP
EP︷ ︸︸ ︷

πc − ce − дr − πa

deceive −cd − дr − πa +
pnaπc (−n − θ) + πd

(
1 − pna

)︸ ︷︷ ︸
U RP
DV

πc − cd − дr − πa︸ ︷︷ ︸
U RP
DP

Table 6: JC payoffs by decision

verify pass

execute

U JC
EV︷ ︸︸ ︷

b − дj − πc (n + θ) (1 − pa)
(
1 − pna

)
+

(1 − pa)
(
−дm + pnaπd

)
− cv − paπc − πa

U JC
EP︷ ︸︸ ︷

b − дj − πa − πc

deceive −cv − дj − дm + p
n
aπd − πa

−πc
(
n − pna (n + θ) + θ

)︸ ︷︷ ︸
U JC
DV

−дj − πa − πc︸ ︷︷ ︸
U JC
DP

Table 7: RP payoffs by decision when πd = πc

verify pass

execute

U RP
EV︷ ︸︸ ︷

−ce − дr − πa + πc +
pnaπc (pa − 1) (n + θ + 1)

U RP
EP︷ ︸︸ ︷

πc − ce − дr − πa

deceive −cd − дr − πa + πc − pnaπc (n + θ + 1)︸ ︷︷ ︸
U RP
DV

πc − cd − дr − πa︸ ︷︷ ︸
U RP
DP

Table 8: JC payoffs by decision when πd = πc

verify pass

execute

U JC
EV︷ ︸︸ ︷

b − cv − дj − дm (1 − pa) − πa + πc (1 − 2pa)
− πc (1 − pa)

(
1 − pna

)
(n + θ + 1)

U JC
EP︷ ︸︸ ︷

b − дj − πa − πc

deceive −cv − дj − дm − πa + πc
+πc

(
pna − 1

)
(n + θ + 1)︸ ︷︷ ︸

U JC
DV

−дj − πa − πc︸ ︷︷ ︸
U JC
DP

Table 9: Simplify RP utility to assess dominant strategy

with πd = πc .

verify pass

execute

∆U RP
EV︷ ︸︸ ︷

−ce + pn+1a πc (n + θ + 1)

∆U RP
EP︷︸︸︷

−ce

deceive −cd︸︷︷︸
∆U RP

DV

−cd︸︷︷︸
∆U RP

DP

Table 10: Simplify JC utility to assess dominant strategy with

πd = πc .

verify pass

execute

∆U JC
EV︷ ︸︸ ︷

−πc (1 − pa)
(
1 − pna

)
(n + θ + 1) + (1 − pa) (−дm + 2πc)∗1,2

∆U JC
EP︷︸︸︷

c∗3,4v

deceive 2πc − дm − πc
(
1 − pna

)
(n + θ + 1)∗1,3︸ ︷︷ ︸

∆U JC
DV

c∗2,4v︸︷︷︸
∆U JC

DP

Theorem 3 (Bounded pa). If the parameters in the JC utility
function are all set to minimize the optimal value for pa (maximizing
a rational JC’s dishonesty), then any deviation will increase pa . The
platform controls n and θ , and so controls the minimum optimal value
of pa .

Proof. The system must bound pa for any set of values in the
system, thus we use the JC’s total expected utility.

U JC =pvpeU
JC
EV + pv (1 − pe)U JC

DV +

(1 − pv)peU JC
EP + (1 − pv)(1 − pe)U JC

DP

U JC =bσe − cvσv − дj + дmσv (paσe − 1)+
πcσv (n + θ + 1)

(
−papnaσe + paσe + pna − 1

)
+

2πcσv − πc − 2paπcσeσv − πa

(22)

take the derivative with respect to pa :
∂

∂pa
U JC =дmσeσv − 2πcσeσv+

πcσv (n + θ + 1)
(
−npnaσe +

npna
pa

− pnaσe + σe

) (23)

Set equal to 0 and simplify:

2πc − дm
πc (n + θ + 1)

= 1 − pna +
npn−1a
pe

− npna (24)

We now examine each term in Eq. (24) to determine which values
will minimize pa .

• If дm increases, then left-hand side decreases, meaning pa
will increase.

• If πe increases, then right-hand side decreases, meaning pa
will increase.

• πc has no impact on pa when дm = 0. If дm , 0, then
when πc increases, the left-hand side (lhs) increases and

16

0.0 0.2 0.4 0.6 0.8 1.0
pa

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

∂
JU

pa sensitivity to n

n=1

n=2

n=4

n=6

Figure 9: In this plot we vary the value of n and plot pa

against
∂U JC

∂pa
. This shows that as n increases so does the op-

timal value of pa . For this plot πc = 2, дm = 0, θ = 0, cv = 1,
b = 4, pe = 1

approaches 2
θ+n+1 (approaching parity with дm = 0), then

the right-hand side (rhs) must also increase meaning that pa
must decrease.

• If θ increases, lhs decreases meaning pa will increase.
• If n increases pa increases, see where the curves cross 0 in
Fig. 9.

By assuming a value for each parameter such that any change
results in pa increases we can determine the worst case for the
system. Specifically, if the parameter and pa are inversely related
set the parameter to its maximum allowed value, and if they are
directly related set the parameter to its minimum value. Thus, the
worst case values for each of the parameters are: дm = 0, pe = 1,
θ = 0, n = 1. The plot in Fig. 5 when n = 1 uses those parameters
and shows that increasing n does cause the optimal value for pa to
increase. We see that when n = 1, the optimal pa = 0.5; and when
n = 4, the optimal pa = 0.943. Thus, we see that setting n can set
a lower bound on the optimal pa . Parameter θ also can adjust the
lower bound on the optimal value for pa .

□

Theorem 4 (JC type 1). If the JC is type 1, it will always verify
(pv = 1) since cv is sufficiently low. This results in a pure strategy
equilibrium <execute,verify>.

Proof. Type 1 means that U JC
EV > U JC

EP and U JC
DV > U JC

DP so
verify strictly dominates passing for the JC. From Theorem 3 we
know that pn+1a > 1

2 and from Theorem 2 we know that if pn+1a > 1
2

and the JC verifies then the RP will execute thus <execute,verify>
is a pure strategy equilibrium. □

Theorem 5 (JC type 2). If the JC is type 2, it results in two pure
strategy equilibria <execute,verify>, <deceive,pass>, and one mixed
strategy Nash equilibrium where the JC randomly mixes between
verifying and passing.

Proof. Type 2 means that verify dominates when the RP exe-
cutes (U JC

EV > U JC
EP) and pass dominates when RP deceives (U JC

DV <

U JC
DP). Following Theorem 4we know that <execute,verify> is a pure

strategy equilibrium if the JC always verifies and sinceU JC
EV > U JC

EP
the JC will not choose to pass.

<deceive,pass> is a pure strategy equilibrium because U JC
DV <

U JC
DP so the JC will not change to verify, and RP will not change to

execute becauseU RP
EP < U RP

DP is always true.
The JC will only verify all jobs if the cost of verification cv is

sufficiently low (0). Otherwise it may get better utility by adopting a
mixed strategy, choosing to verify with probability pv and choosing
to pass with probability 1 − pv . However, if the JC passes, the RP
will prefer to deceive (assuming that pn+1a > 1

2) and so will also
choose to adopt a mixed strategy where it executes with probability
pe and deceives with probability 1 − pe .

□

Theorem 6 (JC type 3). If the JC is type 3, it will result in a Nash
equilibrium where the JC randomly mixes between verifying and
passing, and the RP mixes between executing and deceiving.

Proof. Type 3 means that pass dominates when the RP ex-
ecutes (U JC

EV < U JC
EP) and verify dominates when RP deceives

(U JC
DV > U JC

DP). Assume the JC will verify and the RP will execute:
<execute,verify>. Then since U JC

EP > U JC
EV the JC will transition to

pass: <execute,pass>. Now sinceU RP
EP < U RP

DP is always true the RP
will transition to deceive: <deceive,pass>. Then the JC will transi-
tion to verify sinceU JC

DV > U JC
DP : <deceive,verify>. And finally from

Theorem 2 the RP will transition to execute: <execute,verify>. Thus,
we return to the initial condition and there is not pure strategy
equilibrium. From [26] we know that all finite games have an equi-
librium and so there must exist a mixed strategy equilibrium. □

Appendix D SMART CONTRACT FUNCTIONS

Table 11 shows the different smart contract functions and the actor
who calls them. the first two functions are called during deployment
of the smart contract and these have no subscriber available (N/A).

Appendix E FUNCTION GAS COSTS

To measure the minimum cost of executing a job viaMODiCuM,
we had a single JC submit 100 jobs and measured the function
gas costs and call times independent of the job that was being ex-
ecuted. Table 12 shows the cost measured for each function call. The
postJobOffer functionwas split into two parts, postJobOfferPart1
and postJobOfferPart2 to deal with stack too deep issues. The
cost accrued when there are no deviations from the protcol is the
cost to post the job and accept the result. This is the nominal cost
of operation and is :
nominal cost =postjobOfferPartOne + postjobOfferPartTwo+

acceptResult

nominal cost =2.36E5 + 2.16E5 + 1.40E5
nominal cost =5.92E5

(25)

17

Table 11: Functions provided by the MODiCuM Smart Contract and their corresponding events, as well as the agents who

call the functions and the agents that subscribe to those events. In the Caller and Subscriber columns, mediator is denoted M,

Resource Provider is denoted RP, Job Creator is denoted JC, solver is denoted as S.

Function Event Caller Subscriber
setPenaltyRate PenaltyRateSet Deployment N/A
setReactionDeadline ReactionDeadlineSet Deployment N/A
registerMediator MediatorRegistered M M,S,JC,RP
mediatorAddTrustedDirectory MediatorAddedTrustedDirectory M M,S
mediatorAddSupportedFirstLayer MediatorAddedSupportedFirstLayer M M,S
registerResourceProvider ResourceProviderRegistered RP RP,S
resourceProviderAddTrustedMediator ResourceProviderAddedTrustedMediator RP RP,S
resourceProviderAddTrustedDirectory ResourceProviderAddedTrustedDirectory RP RP,S
resourceProviderAddSupportedFirstLayer ResourceProviderAddedSupportedFirstLayer RP RP,S
registerJobCreator JobCreatorRegistered JC JC,S
jobCreatorAddTrustedMediator JobCreatorAddedTrustedMediator JC JC,S
postResOffer ResourceOfferPosted RP RP,S
postJobOffer JobOfferPosted JC JC,S
cancelJobOffer JobOfferCanceled JC JC,S
cancelResOffer ResourceOfferCanceled RP RP,S
postMatch Matched S S,RP
postResult ResultPosted RP RP,JC
rejectResult ResultReaction,JobAssignedForMediation JC JC,M,RP
acceptResult ResultReaction,MatchClosed JC JC,RP
postMediationResult MediationResultPosted,MatchClosed M M,JC,RP
timeout MatchClosed JC JC,RP

Table 12: Gas cost for each platform function call, measured upon receipt of event emitted by that function. gasEstimate is the

value returned when calling the eth_estimateGas method

Function mean std.dev. gasEstimate

setPenaltyRate 4.34E+04 0.00E+00 2.21E+04
setReactionDeadline 4.31E+04 0.00E+00 2.16E+04
acceptResult 1.40E+05 6.47E+04 6.29E+04
postResult 1.91E+05 1.60E+04 2.25E+05
postMatch 1.35E+05 1.70E+03 1.27E+05
postJobOfferPartOne 2.36E+05 4.59E+03 2.28E+05
postJobOfferPartTwo 2.16E+05 0.00E+00 2.27E+05
postResOffer 2.42E+05 2.16E+03 2.32E+05
registerMediator 1.37E+05 0.00E+00 8.51E+04
registerResourceProvider 8.12E+04 0.00E+00 2.54E+04
resourceProviderAddTM 6.50E+04 0.00E+00 4.23E+04
registerJobCreator 3.40E+04 0.00E+00 3.20E+03
jobCreatorAddTM 6.53E+04 0.00E+00 4.26E+04
postMediationResult 1.87E+05 1.56E+04 2.40E+05
rejectResult 5.39E+04 9.90E+00 4.71E+04
nominal cost 5.92E+05

18

	Abstract
	1 Introduction
	2 Related Work
	3 MODiCuM Architecture
	3.1 MODiCuM Jobs
	3.2 MODiCuM Actors

	4 MODiCuM Protocol
	4.1 Registration and Posting Offers
	4.2 Matching Offers
	4.3 Execution by RP and Result Verification by the JC
	4.4 Faults and Mediation

	5 Analyzing Participant Behavior and Utilities
	5.1 Game-Theoretic Model
	5.2 Equilibrium Analysis

	6 MODiCuM Implementation
	6.1 Experimental Evaluation

	7 Conclusions
	References
	A Definitions
	A.1 Matching Feasibility
	A.2 Payment

	B Data Structures
	B.1 Entities
	B.2 Offers
	B.3 Results

	C Proofs: Equilibrium Analysis
	D Smart Contract Functions
	E Function Gas Costs

