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Abstract— Cascading outages in power systems is a rare, but
important phenomenon with huge social and economic impli-
cations. Due to the inherent complexity and heterogeneity of
components in power system, analysis and prediction of the
current and future states of the system is a challenging task.
In this paper, we address prognosis of cascading outages in
power systems by employing a novel approach based on reduced
ordered binary decision diagrams. We present a systemic way of
synthesizing these decision diagrams based on a simple cascade
model. We also describe a workflow for finding the emergency
load curtailment actions as a part of the mitigation strategy. In
the end, we show the applicability of our approach using the
standard IEEE 14 bus system.

Index Terms— Binary Decision Diagrams, Contingency Anal-
ysis, Nonlinear Optimization, Sensitivity Analysis, Load Cur-
tailment

I. INTRODUCTION

Power system equipment is constantly exposed to dynamic
environments caused due to changing loading conditions,
physical degrading of the components and external faults
such as earthing and winding faults. The safety of the system
is ensured by a large infrastructure of protection system
assemblies. A protection system assembly is composed of
instrument transformers, intelligent software enabled protec-
tion relays and high-voltage circuit breakers. Relays sample
the scaled down voltage and current signals from instrument
transformers and based on embedded relay logic ascertain the
presence of a fault. On detecting the presence of faulty con-
ditions, the relay sends a tripping signal to the breaker which
isolates the faulty component from the system. However,
due to a lack of system wide perspective and hidden faults
(incorrect settings), the actions of protection devices have
been known to cause cascading outages [1]. A cascading
outage is defined as an uncontrolled loss of any system
facilities or load as a result of fault isolation. Such cascading
outages in power grids successively weaken the system
by increasing stress on other components and can lead to
complete blackouts.

There are two stages associated with cascading outages.
The first stage is the steady state progress stage: a period of
slowly evolving successive events. The timescale associated
with the evolution of events in this period is of the order of
min-hrs. The second stage is the transient progress stage:
a fast transient process marked by uncontrolled tripping

of a large number of generators, transmission lines and
transformers. The timescale associated with this period is
of the order seconds to minutes. During the first stage,
system operators evaluate system conditions against different
grid stability criteria to identify state trajectories and take
some control actions to improve the operating conditions
and prevent the possible cascading outages. The control cost
is minimal compared with the massive cost of cascading
outages. The current industry practice involves performing
on demand analysis of cascades using different simulation
models. However, these simulations take a considerable
amount of time to finish and data generated by these complex
simulation models is difficult to analyze in a timely manner.
This increases the line operators’ response time to anticipate
the future state of the system. Thus, an efficient surrogate
model is required that can quickly classify the stability of the
system and provides cascade progression in case the system
is deemed unstable.

In this paper, we propose a novel binary decision diagram
based prognostics methodology. By prognostics, we imply
predicting the future state of the system in terms of outages.
We model cascade progression as a transition relation and use
reduced order binary decision diagrams (BDDs) to encode
these progressions for memory efficient and faster look-up.
We also present optimal load curtailment as cascade mitiga-
tion measures where load curtailment actions are identified at
run time. The novelty of our approach lies in the data-driven
aspect of both cascade prognostics and mitigation. The rest
of the paper is organized as follows: Section II illustrates
the state of the art related to cascade prognostics and
mitigation. Section III describes our approach by discussing
identification of critical component outages, prognostics and
mitigation followed by results and conclusions in sections IV
and V respectively.

II. RELATED RESEARCH

A. Prognostics Methodologies

Current industry practice is to determine (offline) critical
components of the power system such that their outages can
successively weaken the system leading to blackouts. The
process of finding these critical component outages is called
contingency analysis. N-1 contingency analysis refers to a
single component outage out of total N system components.
The cascades in the past have been caused due to the
interaction of more than 1 independent component outage.



Hence, it is required to perform high-order (N-k) contingency
analysis where k is the number of initial outages in a system
with N components. It is well understood that calculating
higher order contingencies are infeasible as the total number
of combinations grows exponentially.

A number of methodologies exist in the literature that tries
to identify contingencies in a power network. We categorize
these techniques into the following two categories:

1) Topology Based: There is a substantial amount of re-
search being done into understanding cascading phenomenon
using topological contagion models [2]. These threshold
based contagion models have been deemed useful in compre-
hending problems like disease spreading [3] and social influ-
ence spreading [4]. Similar approaches have been proposed
for finding contingencies in power systems [5]. Contagion
models are based on the assumption that a component outage
affects only nearby components. However, the premise of
cascade progression being a local phenomenon does not hold
well in power systems.

2) Simulation Based: The second approach uses simu-
lation models of power grids to understand the cascade
propagation and identify critical component outages that can
severely impact the power system. This approach is used
by line operators in offline and online settings. Examples
of such simulation models are DCSIMSEP [6], Oak Ridge-
PSERC-Alaska (OPA) [7], Manchester model [8], TRELSS
[9] and COSMIC [10]. However, these simulations take
a considerable amount of time to finish. Moreover, the
generated data from these simulations is complicated and
thus difficult to understand and summarize quickly.

B. Mitigation Strategies

Once the cascade conditions have been identified, pre-
defined actions such as load shedding can be used to suppress
the cascading effects of overloads, voltage and frequency
instabilities. An alternative approach is to curtail a percentage
of the load instead. Curtailment provides an effective means
of handling the cascade effects without disconnecting the
complete load. For example, the cascading failures during
the blackout of Aug 2003 in the USA could have been
avoided by removing a relatively small amount of load in
the Cleveland area [11], [12]. However, the most effective
load curtailment is not always obvious. Line operators rely
on optimal power flow algorithm to identify the suitable
generator or load re-dispatch actions. General practice is
to use simple linear programming to find minimalistic load
shedding actions that can prevent the progression of a
cascade. But the linear approximation of the underlying
system can be misleading and can result in incorrect load
management. A number of approaches based on model
predictive control [11], [13], [14] have been proposed that
tackles problems of voltage collapse and successive branch
outages due to overloads. However, above mentioned model
predictive control strategies are not always guaranteed to
provide an optimal solution because of the limitation of the
underlying approximation of the mathematical model and
limited number of control actions as per the control horizon.

The work presented in this paper is the extension of
our previous work [15] that proposes a systematic approach
of finding load curtailment actions in an offline setting.
However, this methodology covers 1) identifying critical state
of the system 2) encoding the blackout causing states as
a transition relation using binary decision diagrams and 3)
calculating mitigating actions at run-time.

III. APPROACH

Our approach utilizes reduced order binary decision di-
agrams [16] (BDDs) to encode different blackout causing
outages (contingencies). The advantage of using BDDs is
their ability to encode complex behaviors that can be used
in reasoning about cascade progression efficiently while
incurring small memory footprint and at the same time
allowing fast access time. The proposed cascade prognosis
methodology consists of two phases 1) Offline and 2) Online.
Initially, in the offline phase, critical outages or contingencies
are identified followed by storing these contingencies and
their respective progression in BDDs. Whereas in online
phase, actual prognosis is done using BDDs created in the
previous stage and load curtailment actions are calculated
based on the current state of the system.

Cascading outages in power system are primarily caused
by production and demand imbalance. The initiating event
can be generator (source), transmission line or transformer
(branch) outage caused by fault isolation or planned main-
tenance. The initial outages can increase stress in the rest
of the system causing secondary effects in terms of branch
overloads, bus voltage fluctuations and frequency instability.
These secondary effects can lead to more outages by the
action of protection devices which can further destabilize
the system leading to blackouts. If the secondary effects
can be removed by curtailing a part of the load, then
cascading outages can be prevented. We formulate the load
curtailment as a non-linear optimization problem and utilize
OpenMDAO [17] that uses external steady state simulator,
OpenDSS [18] to find optimal control actions. The opti-
mization framework, OpenMDAO acts as an orchestrator for
finding voltage and current gradients by triggering OpenDSS
to solve the power flow equations at different values of load
demands and generator power injections. Our approach is
different from the existing approaches as it does not assume
linear power flow model. The online and offline phases are
discussed in more detail in the following subsections.

A. Identification of Contingencies

We developed a simple cascade simulation model (based
on steady state calculations) that successively solves the
power flow (using OpenDSS) by removing the overloaded
branches from the system after the initial component outages.
The simulation keeps on tripping the overloaded branches
till a blackout situation is reached or there are no more
secondary effects (overloads) in the system. This cascade
simulation model caters to slowly progressing cascades that
eventually lead to blackouts involving overloads. We have
adopted a conservative approach where all the secondary



effects of initial outages are mitigated through the existing
(pre-defined) protection schemes that isolate the overloaded
components from the system.

Algorithm 1 Algorithm for finding critical N-k contingencies
Input: Model, k, Branch
Output: T, TR
A ← choose(Branch, k) . Generating contingency list
j ← 1
for j ≤

(|Branch|
k

)
do

Prev ← A[j], Next ← ∅, Temp ← ∅, Start ← A[j]
Model.apply contingency(Prev) . Applying jth contingency
while True do

if Model.check blackout() then
T ← T ∪ Start . Save contingency
TR ← TR ∪ Temp . Save the sequence of branch outages
break

else
Next ← Model.get overloads() . Identify overloaded branches
if Next 6= ∅ then

Temp ← Temp ∪ (Next ∪ Prev, Prev)
Prev ← Temp
Model.trip branches(Next) . Tripping overloaded branches

else
break

end if
end if

end while
j ← j + 1 . Iterate to next contingency

end for

Listing 1 shows the underlying algorithm to find N-k
contingencies. The input parameter of the algorithm includes
a OpenDSS model (Model), an integer representing the order
of contingencies (k) and a set of all branch labels (Branch).
The output of the algorithm consists of two sets T , TR
that represents a collection of initiating events and their
respective progressions. The set, T = {s1, s2, ..., sn} is a
collection of all contingencies that can cause blackout, where
si is some combination of branch outages. The set, TRs1 =
{(s1, s2), (s2, s3), ...(si, sj)} represents the progression of
cascade caused due to s1, where si represents the initial
branch outages and sj implies the branch outages as a
consequence si. The algorithm starts with tripping k lines
at random and solving the power flow to update the branch
currents and bus voltages. The second step is to check for
the blackout criteria. The blackout criteria is configurable in
terms of the percentage of the original load (demand) that
is not operational. For a blackout criteria of 40%, if more
than 40% of the net system load demand cannot be satisfied
in a given state, then the system is considered to have
reached blackout. If the system is not in a blackout state, then
secondary effects of the branch outages are investigated by
checking the overloads in rest of the system. If no overloads
are found then, the system is considered to have reached
a safe state from where it cannot reach blackout. On the
other hand, if some secondary overloads are present, the
transition relation, represented by Temp is updated followed
by tripping all those branches. After branch tripping, the
blackout criteria is checked again and the process repeats
until a blackout state is reached or the system reaches a
stable state (no overloads).
B. Efficient Storage Mechanisms

We employ compact and efficient data structure, ordered
Binary Decision Diagrams (BDDs) to store the progressions

of cascading outages. A binary decision diagram is a data
structure that is used to represent boolean functions. A BDD
is a directed acyclic graph that consists of two types of nodes,
A) Decision Nodes: Each decision node represents a boolean
variable, Vi, and has two child nodes, high and low. The
edge from node, Vi to a low (or high) child represents an
assignment of Vi to 0 (1). B) Terminal Nodes: There are two
types of terminal nodes called 0-terminal and 1-terminal.
A path from the root node to the 1-terminal (0-terminal)
represents a variable assignment for which the represented
Boolean function is true (false). A reduced ordered BDD
has a fixed ordering i.e different variables exists in the same
order along different paths and has an important canonicity
property i.e. for a fixed variable ordering, each boolean
function has a unique representation. On an abstract level,
these BDDs are used as a compressed representation of sets
and transition relations that has relatively small memory
footprint and allow fast retrieval of the encoded information
as operations are performed directly on the compressed
form. The progression of a cascade is represented by state
transitions, where state defined by the component outages.
Based on the initiating outages identified using algorithm 1
two BDDs are created with the following functionalities :

• First BDD labeled as, BT , stores the set of initiating
events that will cause cascading outages in the rest of
the system leading to a complete system blackout.

• The Second BDD, labeled as, BTR
stores the progres-

sion of all the initiating events captured by BT as a
translation relation.

1) BDD encoding of collection of initiating events: Let
T be the set of branch outages identified by the offline
N-k contingency analysis. Each element in T represents
a collection of initiating events i.e. independent branch
outages that can trigger a cascading phenomenon leading to
a blackout. Since the main objective is to encode these sets
of line outages, every element of T can be represented by
a unique boolean vector (v1, v2, v3, ..., vn), each vi ∈ 0, 1,
of length equal to the number of branches in the system.
Then T ⊆ S can be represented by a characteristic function
fT : {0, 1}n → {0, 1} which maps a particular evaluation of
(v1, v2, v3, ..., vn) to either 0 or 1, where S is the power set.
For each s ∈ S, if the value mapped by fT is 1 then s ∈ T
otherwise s in not the member of T .

We define a labeling function for S, L(S) : S →
P (Branch), where Branch is a set of branch outages,
say (tl1, tl2, tl3, ..., tln) associated to an initiating event
combination, s ∈ S. Hence s can be represented by a boolean
vector (v1, v2, v3, ..., vn) where vi is 1 if tli /∈ L(s). Here
vi = 1 means the power is flowing through branch tli i.e. all
the breakers associated to the branch are closed whereas the
value 0 implies no power flow. As a BDD, the initiating event
combination, s ∈ S is represented by the boolean function,
l1 · l2 · l3... · ln where li is tli if tli /∈ L(s) otherwise tli. The
set T can be represented by the boolean function fT ,
(l11·l12·l13...·l1n)+(l21·l22·l23...·l2n)+...+(lj1·lj2·lj3...·ljn)
where (lk1 · lk2 · lk3... · lkn) represents the initiating event set
sk.



2) BDD encoding of progression of cascading outage:
The progression of cascade can be modeled by transition
relation. A translation relation is a boolean function, fTR

:
S × S → {0, 1}, which outputs 1 if there exists a transition
between two given states otherwise 0. Similar to T , set of
valid transitions, TR can be viewed as subset of all possible
transitions, i.e. TR ⊆ S × S. An element t ∈ TR implies a
transition from state s to s′ and is represented by a pair
of boolean vectors ((v1, v2, v3, ..., vn), (v′1, v

′
2, v
′
3, ..., v

′
n))

where vi is 1 if tli /∈ L(s) and 0 otherwise; and similarly, v′i
is 1 if tli /∈ L(s′). A single transition link can be represented
by a boolean function (l1 · l2 · l3... · ln) · (l′1 · l′2 · l′3... · l′n)
and the complete set TR can be represented as disjunction
of such formulas as shown in the case of initiating events.

C. Identifying Cascade Progression

After creating these BDDs, the next task is to evaluate
the current system state st, represented by a boolean vector
(v1, v2, ..., vn), where n is the number of branches, is a
member of the set T . If st ∈ T , then the progression of
st can be calculated by finding the set of reachable states
from st under a given transition relation, fTR

. The operation
of finding the set of states reachable from a given state
is called image computation and the process of calculating
image iteratively till a fixed point is reached is a fundamental
step in many state exploration algorithms. The algorithm 2
shows the algorithm in determining the cascade progression
for a given state of the system.

Algorithm 2 Algorithm for determining the evolution of
current state, S0

Input: S0 = (v1, v2, ..., vn) ; BT ; BTR
Output: Sreach

Initialize: Sreach = φ
if Evaluate(BT , S0) == True then

i = 0
while Si 6= φ do
Sreach = Sreach ∪ Si . Update reachable set
Si+1 = Image(BTR

, Si)\Sreach . Identify new reachable states
i = i+1

end while
end if

The algorithm 2, requires a set of line outages (S0), the
BDDs BT , BTR

. The output of the algorithm is a sequence
of states reachable from S0 if S0 ∈ T . The Evaluate(BT , S0)
function checks whether S0 is a member of set T represented
by BT . IF yes, then recursively next states are found and
added to the set Sreach until fixed point is reached when
for a given state Si−1 no new next state is defined i.e Si is
empty.

D. Cascade Mitigation

Cascading outages can be mitigated by adjusting the load
demand of the system such that secondary branch overloads
disappear. However, the amount of load curtailment should
be minimized as a large difference between the power
supplied by the generators and load demand can increase
instability and leading to system collapse. We formulate
identification of load curtailment as an optimization problem,
described in equations (1)-(6), where, L (ohms) is a vector of

load demands of size M, ∆L is a vector of decision variables,
such that ∆Li denotes the (ratio) curtailment of load Li ∈ L
by ∆Li · |Li| ohms. I is the collection of branch currents in
the system.

min
∆L

M∑
i=0

wi ·∆Li · |Li| (1)

0 ≤ |Ij | ≤ IMax
j , ∀Ij ∈ I (2)

0 ≤ ∆Li ≤ 1, ∀Li ∈ L (3)

ΦLi
= Φ(1−∆Li)·Li

, ∀Li ∈ L (4)∑
i

(∆Li) · |Li| ≤ Ltotal
max , ∀Li ∈ L (5)

I = f(∆L) (6)

The objective function is the weighted sum of all load
curtailments as shown in equation 1 where weights, wi
models the importance associated with a load. For instance,
critical loads can be establishments of national or societal im-
portance such as hospitals and government buildings having
large wi. The inequality constraint described in equation 2
ensures no branch overloads are present in the final solution,
where IMax

j defines an upper limit on the current that can
flow through a branch. The inequality constraints 3 describes
the extent to which individual loads can be changed. The
equality constraint 4 ensures the power factor, Φ of all loads
are maintained i.e real and reactive load is shed in equal
proportions. The inequality constraint 5 describes the upper
bound on the total load, Ltotalmax that can be shed from the
system. In the current implementation, it is 20% of the total
system load. The function, f in equation 6 models the load
flow equations. It updates the branch currents (I) according
to the change in system loads.

The convergence of optimization algorithm depends upon
the size of the input search space i.e. number of design
variables and their initial estimates. In order to speed up the
convergence our proposed optimization framework performs
sensitivity analysis to find filter out the loads that do not
affect a given branch overload and obtain initial estimates.
The sensitivity analysis can be broken into 3 sequential steps
described as follows:

1) Data point generation: In this step, the effect of a
varying absolute value of load demand, Li on all the branch
currents, I is observed. The load (Li) vs branch current
(Ij) data points are stored for learning a regression model.
We have used Full Factorial Design of Experiment (DoE)
analysis that uniformly samples the input space i.e. range
[0, Li] for each load Li ∈ L. In our implementation, 100
data points are considered for each load.

2) Regression Analysis: This step involves finding equa-
tion parameters (slope and intercept) for branch current vs
load change data points generated in the previous step. It is
safe to assume linear relationship between branch currents
and load demand since the power factor remains constant.
The sensitive loads can be classified by observing the slope
of the equation, |Ij | = m|Li|+C, where |Ij | are the absolute
value of current flowing through jth branch and |Li| is the ith

load (magnitude) ; and m, c are the equation parameters. For



TABLE I: Timing analysis for IEEE 14 Bus system

Parameters IEEE 14 Bus System
Variable count 20

BT , BTR
construction time (secs) 18.80

Average time for true positive cases (secs) 0.006
Average time for true negative cases (secs) 3.5× 10−5

a given load, if the slope is positive for any branch current,
then the load is considered to be sensitive.

3) Starting Point Estimation: In this step, we estimate
the starting value for each decision variable, ∆Li ∈ ∆L
as described in the equations (7) and (8), where Ij is the
current in jth branch, (Cij , m

i
j) are parameters of the learned

regression model that relates branch current Ij and load Li.
Si is the set of branches (indices) for which the load Li is
classified as sensitive.

L
′
i =

[ Ij − Ci
j

mi
j

]
, ∀j ∈ Si (7)

∆Li =
|Li| −min(L

′
i)

|Li|
(8)

IV. RESULTS

In order to validate the accuracy of our approach, IEEE 14
bus system [19] is used. The system consists of 14 buses, 5
generators, 11 loads and 20 branches (transmission lines and
transformers). As per the algorithm 1, a total of 400 critical
and 600 non-critical outages are identified with k ranging
from [1,3]. The former set of 400 outage combinations are
referred to as true positive cases and the latter are called true
negatives. The blackout criteria used is 40% of total system
load.

Table I summaries the results of the experiments. The
size of the boolean vector (state) is 20 (equal to number
of branches). As shown in the Table I, a small amount of
overhead, 18 secs is added for constructing BDDs. On an
average, fixed point computation i.e. identification of cascade
progression, for true positive cases, takes 7 milliseconds
whereas 0.03 milliseconds for true negatives. Figure 1(Left)
show the response time of all the true positive and negative
cases. These experiments are performed on a 1.7 GHz Intel
Core i7 machine with 8 GB RAM.

The optimization routine was able to find a solution for all
400 cases with an average of 29 iterations. Figure 3 lists the
% load demand reduction. In all cases, load curtailment is
restricted to less than 20 % of the net system load (constraint
6) with an average load reduction of approximately 8%.
Table II lists the solver parameters used for the experiments.

TABLE II: Solver parameters

Parameter Value
Problem type Non Linear

Solver Sequential Least SQuares Programming
Derivative Calculation Forward finite difference

Step Size 2500.00
Max Iterations 1000

Scalability Analysis: Since power systems are large net-
works its imperative to discuss the impact of scale on

Fig. 1: Response Time for set membership and fixed point calcu-
lation i.e. cascade progression for 1000 different combinations of
branch outages for IEEE 14 Bus System. The figure on top shows
the time taken for 400 actual cascade causing outages. The figure
on the bottom shows the time taken to respond to the 600 True
Negative or safe outage combinations

Fig. 2: Response Time for set membership and fixed point calcu-
lation for IEEE 39 Bus System

Fig. 3: The figure on the top shows the net load loss (percentage)
due to load control actions and the bottom one shows the number
of iterations taken by the optimization engine to find a solution



our approach. The presented approach consists of 3 major
computational tasks 1) N-k Contingency Analysis, for small
values of k (1, 2, 3 in our case), this process has approx-
imately polynomial run time complexity as the number of
combinations increases polynomially with increase in the
size of network (N) as well as the time required for solving
power flow [20]. 2) BDD encoding and prognostics, BDD
encoding of singe outage depends upon the size of the
network. In order to find the relationship between number
of branches and set-membership time (identifying whether
a given state is critical or not), 400 true positive and 600
true negative outages are identified for a larger IEEE 39
bus system [21] with 46 branch variables. As the number of
branch variables doubles, the set-membership time roughly
doubled as shown in figure 2. 3) Optimization, the number of
constraints (one per branch) and design or control variables
(loads) increases linearly with the increase in the size of the
power network. It is well known that the performance of the
optimizer is greatly affected by starting point estimate and
the size of the input space of the problem. The sensitivity
analysis routine uses full factorial based analysis to estimate
a starting point for each load to prevent cascade. For large
systems the number of sensitive loads might be very large.
A bound on number of control variables (loads) can be
placed that can reduce the search space for the optimization
problem. If the number of sensitive loads is reduced to 2
(Average number of control variables in first experiment was
7), then the average number of iteration have reduced from
29 to 25 with a slight increase in percentage load reduction
from 8.12 to 8.19 %.

V. CONCLUSIONS

In this paper, we discussed the problem of simulating
fault cascades in power systems and presented a novel way
of storing the useful information from cascade simulations.
We showed with the help of simple cascade model, the
generation of binary decision diagrams. We presented a
detailed algorithm to encode the results of N-k contingencies
as BDDs and utilization of BDDs for prognosis of future
cascades (if any) given the current system state. We also
presented an extensible optimization methodology based on
OpenMDAO and OpenDSS to identify load control actions to
avoid cascading outages. In the end, we presented the timing
overheads in the construction of the two BDDs followed by
the scalability analysis. As part of the future work, we would
create a database of BDDs for different probable loading
profiles by considering the load distributions and past data.
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“Propagation dynamics on networks featuring complex topologies,”
Physical Review E, vol. 82, no. 3, p. 036115, 2010.

[4] P. S. Bearman, J. Moody, and K. Stovel, “Chains of affection: The
structure of adolescent romantic and sexual networks1,” American
journal of sociology, vol. 110, no. 1, pp. 44–91, 2004.

[5] P. Crucitti, V. Latora, and M. Marchiori, “A topological analysis of
the italian electric power grid,” Physica A: Statistical mechanics and
its applications, vol. 338, no. 1, pp. 92–97, 2004.

[6] M. J. Eppstein and P. D. Hines, “A random chemistry algorithm for
identifying collections of multiple contingencies that initiate cascading
failure,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp.
1698–1705, 2012.

[7] B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman, “Critical
points and transitions in an electric power transmission model for
cascading failure blackouts,” Chaos: An interdisciplinary journal of
nonlinear science, vol. 12, no. 4, pp. 985–994, 2002.

[8] D. P. Nedic, I. Dobson, D. S. Kirschen, B. A. Carreras, and V. E.
Lynch, “Criticality in a cascading failure blackout model,” Interna-
tional Journal of Electrical Power & Energy Systems, vol. 28, no. 9,
pp. 627–633, 2006.

[9] M. Bhavaraju and N. Nour, “Trelss: A computer program for trans-
mission reliability evaluation of large-scale systems,” Electric Power
Research Inst., Palo Alto, CA (United States); Public Service Electric
and Gas Co., Newark, NJ (United States), Tech. Rep., 1992.

[10] J. Song, E. Cotilla-Sanchez, G. Ghanavati, and P. D. Hines, “Dynamic
modeling of cascading failure in power systems,” IEEE Transactions
on Power Systems, vol. 31, no. 3, pp. 2085–2095, 2016.

[11] P. Hines and S. Talukdar, “Controlling cascading failures with cooper-
ative autonomous agents,” International journal of critical infrastruc-
tures, vol. 3, no. 1-2, pp. 192–220, 2006.

[12] A. Berizzi, “The italian 2003 blackout,” in Power Engineering Society
General Meeting, 2004. IEEE. IEEE, 2004, pp. 1673–1679.

[13] J. Jung, C.-C. Liu, S. L. Tanimoto, and V. Vittal, “Adaptation in load
shedding under vulnerable operating conditions,” IEEE Transactions
on Power Systems, vol. 17, no. 4, pp. 1199–1205, 2002.

[14] M. R. Almassalkhi and I. A. Hiskens, “Model-predictive cascade
mitigation in electric power systems with storage and renewablespart
i: theory and implementation,” IEEE Transactions on Power Systems,
vol. 30, no. 1, pp. 67–77, 2015.

[15] A. Chhokra, A. Kulkarni, S. Hasan, A. Dubey, N. Mahadevan, and
G. Karsai, “A systematic approach of identifying optimal load control
actions for arresting cascading failures in power systems,” in Proceed-
ings of the 2nd Workshop on Cyber-Physical Security and Resilience
in Smart Grids, 2017.

[16] S. Akers, “Binary decision diagrams,” IEEE Transactions on Comput-
ers, vol. 27, no. 06, pp. 509–516, jun 1978.

[17] J. Gray, K. T. Moore, and B. A. Naylor, “Openmdao: An open
source framework for multidisciplinary analysis and optimization,”
in AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
Proceedings, vol. 5, 2010.

[18] R. C. Dugan, “Reference guide: The open distribution system simu-
lator (opendss),” Electric Power Research Institute, Inc, 2012.

[19] [Online]. Available: http://www2.ee.washington.edu/research/pstca/
pf14/pg tca14bus.htm

[20] F. L. Alvarado, “Computational complexity in power systems,” IEEE
Transactions on Power Apparatus and Systems, vol. 95, no. 4, pp.
1028–1037, July 1976.

[21] T. Athay, R. Podmore, and S. Virmani, “A practical method for the
direct analysis of transient stability,” IEEE Transactions on Power
Apparatus and Systems, no. 2, pp. 573–584, 1979.


