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Abstract—The push to automate and digitize the electric grid
has led to widespread installation of Phasor Measurement Units
(PMUs) for improved real-time wide-area system monitoring
and control. Nevertheless, transforming large volumes of high-
resolution PMU measurements into actionable insights remains
challenging. A central challenge is creating flexible and scalable
online anomaly detection in PMU data streams. PMU data can
hold multiple types of anomalies arising in the physical system or
the cyber system (measurements and communication networks).
Increasing the grid situational awareness for noisy measurement
data and Bad Data (BD) anomalies has become more and
more significant. Number of machine learning, data analytics
and physics based algorithms have been developed for anomaly
detection, but need to be validated with realistic synchophasor
data. Access to field data is very challenging due to confidentiality
and security reasons. This paper presents a method for generating
realistic synchrophasor data for the given synthetic network as
well as event and bad data detection and classification algorithms.
The developed algorithms include Bayesian and change-point
techniques to identify anomalies, a statistical approach for
event localization and multi-step clustering approach for event
classification. Developed algorithms have been validated with sat-
isfactory results for multiple examples of power system events in-
cluding faults and load/generator/capacitor variations/switching
for an IEEE test system. Set of synchrophasor data will be
available publicly for other researchers.

Index Terms—Phasor Measurement Units, Synthetic data,
Wide-area Monitoring, Anomaly Detection, Event Detection and
classification.

I. INTRODUCTION

THE growing complexity of electricity generation and
consumption, along with more frequent natural and man-

made disruptions, are threatening the nation’s electric grid.
Efforts to build a smart grid aim to address these issues
to improve the reliability and resilience of the system. The
envisioned smart grid has real-time, wide-area system visual-
izations for operators to better inform their decision making
and reduce the system’s susceptibility to large outages [1], [2].
The basis for this improved system visibility are measurement
devices, such as Phasor Measurement Units (PMUs), which
produce GPS time-stamped, high resolution, high frequency
measurements of phasor quantities. The proliferation of sen-
sor data brings its own challenges, including handling data
anomalies, enabling real time processing and cyber-security
management [3]. Overall, converting high resolution PMU
measurements into actionable system insights in real-time
remains a largely open challenge, reflected in the limited
control room applications of PMU measurements [4]–[6].
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Multiple work have been reported to utilize these data but
validation requires realistic data with given anomalies and
events. Field data is difficult to acquire and not labeled for
anomalies and events.

This work aims to generate realistic but synthetic syn-
chrophasor data. Enhanced situational awareness utilizing syn-
chrophasor data are developed for anomaly detection and
event classification. The design of the tool integrates principles
from machine learning, data science, cyber-security, and power
engineering. The vision for the tool is that it will supplement
Energy Management Systems (EMS) to enhance the deci-
sion making capabilities of power grid operators especially
under challenging and extreme events [7]. One fundamental
component of this decision support tool is detecting and
classifying anomalies in the measurement streams, which is
critical for reliable grid operation. These anomalies may arise
from physical changes in the system (in which case they
are termed events), or issues in the cyber infrastructure that
handles the measurements (in which case they are termed bad
data). For example, a voltage sag is an event anomaly, while
a missing data packet is a bad data anomaly. Awareness and
differentiation of both anomaly types is essential for full cyber-
physical situational awareness.

A variety of techniques are described for anomaly detection.
They can broadly be categorized as graph-based [8], model-
based [9], density based [10] and clustering based [11]. Graph-
based methods detect outliers by estimating joint distributions
over data streams, but can face a dimensionality problem as the
number of streams grows. Model-based approaches are gen-
erally efficient, but developing accurate models of streaming
measurements is challenging. Clustering based models may
detect an evolving behavior of the underlying process as an
outlier. Density-based approaches such as local outlier factor
(LOF) may also fail due to the curse of dimensionality. For
detecting anomalies over a PMU data stream, A. Ahmed et
al. [12] use an deep autoencoder, Pan et al. [13] use data
mining techniques to monitor PMU measurements. Chen et
al. [14] [15] use linear basis expansion on PMU data. Paul et
al. [16] use machine learning on PMU data via Hadoop and
openPDC. In [17] Y. Zhou et al. use kernel based PCA to
build up statistical models for nominal state and then detect
anomalies on abnormal behavior. Moreover, research presented
in [18] uses a threshold based method for detecting outliers
from reconstructed output values of the autoencoder model.
Research presented in [19] uses z-score method for detecting
outliers. In [20], the authors have presented threaded ensemble
autoencoder for anomaly detection.

To accurately assess the real-world performance of our
tools, we must test them on realistic synchrophasor data.
However, obtaining real measurements and metadata from



operational systems is difficult due to strict security and
confidentiality regulations protecting most data sets. Instead,
we aim to generate highly realistic simulated PMU data
by adding realistic noise and bad data effects to noiseless
simulated measurements. Our choice of realistic noise is based
on studies of field deployed PMUs in [21] and [22].

The main contributions of this paper can be summarized as:
1) We present a method for creating realistic but synthetic

PMU measurements.
2) We introduce two techniques for event and bad data

detection. These are applied separately to current and
voltage measurements, which allows for redundancy in
the detection.

3) The detection methods associate a certainty or probabil-
ity measure with the flagged events or bad data which
reflects the certainty in the flagging.

4) Identification of key PMUs ’seeing’ events based on a
statistical technique.

5) A multi-step clustering approach is introduced to clas-
sify the detected events into five event categories: fault
event, load event, capacitor event, generation change
event, and generator switching event.

II. EXTRACTING NOISE AND FEATURES FROM FIELD
PMUS AND INTEGRATION WITH SYNTHETIC DATA

Due to the inaccessibility of real measurement datasets,
most proposed PMU applications are not tested on real or even
realistic data. Therefore, there is limited confidence in their
ability to succeed in the real world. To overcome this, we aim
to generate realistic simulated PMU measurements by adding
realistic noise and bad data effects to ideal, noiseless simulated
measurements. Our choice of noise level and model is based on
[21] and [22], which use two different approaches to estimate
the noise level from PMUs deployed on operational power
networks. In [21], noise in transmission PMU measurements
is found to be about 45 dB and follow a Gaussian model. In
[22], noise in higher accuracy distribution PMU measurements
is found to be about 55 dB. Based on these results, we generate
realistic measurements by adding Gaussian noise at two levels:
30 dB (a conservatively high noise level) and 45 dB (a realistic
noise level). We also generate measurements with Laplacian
noise to assess algorithm performance under a different noise
distribution.

The PMU communication network is vulnerable to malfunc-
tions such as response time, time delay or actual communica-
tion link failures thus resulting in bad data injection, dropped
data packets, and missing data samples. To address issues in
the cyber infrastructure, we also injected bad data, missing
data and missing packet cases to the simulated PMU data to
assess algorithm performance of the proposed method.

III. ANOMALY DETECTION AND CLASSIFICATION IN
SYNCHROPHASOR DATA

To convert high-resolution PMU measurements into useful
information and insight for operators, we must detect, localize,
and categorize anomalies, including physical events and data
anomalies. Anomaly detection is the problem of differentiating
anomalous measurements from normal data. Note that the
capability to distinguish between these categories is not only

important for common operations, but critical for reducing vul-
nerability to malicious cyber-attacks. For those anomalies that
are physical events, event localization consists of identifying
the bus or line where the event occurred. Finally, event catego-
rization consists of determining the event type to the highest
level of specificity. Figure-1 shows the complete architecture
of the proposed methodology for anomaly detection and event
classification.

A. Anomaly Detection

Statistical approaches are well suited to the problem of
generic anomaly detection. Their premise is that anomalies
always produce a change in the statistics of the measurements.
Therefore, these techniques are general and do not assume a
specific anomaly type or measurement signature. Statistical
approaches also associate a probability measure with detected
anomalies, which captures how far from normal the anomaly
data are, and therefore our certainty that the data capture
a real anomaly. Such certainty measures are valuable when
combining multiple approaches, generating warning flags, and
conveying results to human users in a trustworthy manner. We
propose two statistical approaches for anomaly detection. The
first, termed Bayesian anomaly detection, tracks and updates
moment estimates, then uses a Bayesian score to identify
anomalies. The second, termed Changepoint detection uses a
CUSUM (Cumulative Sum Control Chart) [23] algorithm to
track variations in time-series data.

1) Bayesian anomaly Detection: Consider a measurement
point at time t, denoted Xt ∈ Rm. The data point could
be multidimensional, m > 1 including measurements from
multiple PMUs. Let Dµ,σ2 denote the generative distribution
underlying the data under normal conditions, parameterized by
a mean µ and variance σ2. Then, an anomaly can be flagged
based on the posterior probability of Xt given some estimates
of µ and σ2. This is expressed as:

P (Xt | µ, σ2) < p −→ Xt is an anomaly. (1)

where p is the anomaly threshold probability. The challenge
is that µ and σ2 are not known a priori and may change
as the system moves between operating regimes. A standard
approach to Bayesian anomaly detection (commonly called
change point detection in the wider literature) is to estimate
µ and σ2 from a length w window of data preceding Xt:
Xt−1, ..., Xt−w. However, this approach is not suited to a
real-time application with streaming data, in which multiple
anomalies may occur over a length w window. Instead, here we
update our knowledge of µ and σ2 with each new measurement
in a Bayesian framework, where a prior over µ and σ2 captures
information from previous data points. Let pt(µ, σ2) denote
the prior distribution over µ and σ2 at time t. Given data
point Xt, we can compute a posterior distribution over µ and
σ2. This leads to the prior for the next time step:

pt+1(µ, σ
2) ∝ p(Xt | µ, σ2)pt(µ, σ

2) (2)

Using a Normal-inverse-chi-squared (NIX) distribution as the
prior leads to tractable updates [24]. At time t, the four
parameters of the NIX distribution are the mean of and
certainty over µ–denoted µt and κt–and the mean of and
certainty over σ2–denoted σ2

t and υt. These parameters are



Fig. 1: Measurement Data Generation and Data Flow Architecture for Anomaly Detection and Event classification

updated with new measurement Xt according to the following
equations:

κt+1 = κt + 1

υt+1 = υt + 1

µt+1 =
κtµt +Xt

κt + 1

σ2
t+1 =

1

υt

Å
υtσ

2
t +

κt
κt + 1

(Xt − µt)2
ã (3)

We initialize the prior with arbitrary estimates of mean and
variance, denoted µ0 and σ2

0 , and low certainty values, denoted
κ0 and υ0. Before carrying out the above update, we check the
likelihood of Xt given pt(µt, σ2

t ). When p(Xt | µt, σ2
t ) < p,

we flag an anomaly at t and reset µt+1 = µ0, σ2
t = σ2

0 ,
κt = κ0 and υt = υ0. Anomalies are detected in each data
stream independently in this Bayesian framework. We apply
the detector to voltage magnitudes measured at a subset of
the system buses. That is, Xt will be the voltage magnitude
measurement on one phase of one PMU at time t.

2) Changepoint Detection: We use the CUSUM algorithm
to identify the start and end timestamps of an anomaly as
well as the amplitude of the deviation. The number of false
positives and negatives associated with this identification can
be tuned by selecting a proper threshold.

B. Bad data identification
A detected anomaly can either be a physical event or bad

data. Bad data in PMU measurement streams is of several
types. Incorrect data are measurements which are randomly
corrupted. This manifests as noisy spikes distributed randomly
over the measurement stream. Missing data manifests as a
zero or “Not a Number” (NaN) value. Sometimes, an entire
packet of data is missing. These bad data instances must
be removed before events can be localized and classified.
However, it is critical that only bad data are removed and true
measurements—which carry informative event signatures—are

not erroneously replaced. Once all anomalies (encompassing
both physical events and bad data) are flagged as described
in Section III-A, bad data is identified by considering the
similarity of an anomaly across PMUs. A physical anomaly
will manifest across PMUs due to the physical links of the
network. If an anomaly does not appear across measurement
streams, it is classified as bad data. The assumption here is
that, the bad data is basically the sensor noise and not an
inherent noise in the electrical lines. A physical anomaly
carrying the signature of any event change or fault, will
propagate at the speed of light and hence its effect will be
manifested across the PMUs immediately based on the data
sampling interval. As we are working with data sampling rate
close to 0.0165 seconds, so any effect of event changes at
a particular bus is supposed to propagate to the other PMUs
within the same time interval if it is a physical anomaly. On
the other hand, the bad data is a random sensor noise which
does not appear across all PMUs in the same time interval.

Before the next steps of event localization and classification,
the identified bad data are removed. The missing data point
is then interpolated with a constant. A single missing point
is replaced with the preceding measurement value. Similarly,
all points in a missing packet are replaced with the preceding
measurement.

C. Event Localization
For event localization, we use nodal voltage measurements

only, normalized to be in per-unit (p.u.). With very high
time resolution, nodal voltage magnitudes are revealing of the
event location. Let V (i) denote the voltage magnitude time
series at node i. The i can denote a specific phase and bus,
though the events we consider here are visible across phases.
Once an event is detected at time t, we compute the absolute
value derivatives of the voltage magnitudes at all buses in
a 60 sample (1 second) window including the event—i.e.
30 samples preceding and 30 following. Let δV (i) denote
the absolute value of the 120 sample derivative time series



of voltage magnitude at bus i. Then, the event at time t is
localized to index i∗ according to:

i∗ = argmin
i
δV (i) (4)

Note that the minimum is over every time point at every
bus. The physical justification for this approach is based on
two simplifying assumptions:

1) An event consists of a change in the power injection at
a single bus.

2) The following power flow linearization holds: V ≈ RP
where V ∈ RN is the set of bus voltage magnitudes,
P ∈ RN is the set of real power injections at each bus,
and R ∈ RN×N is the system resistance matrix.

Under these assumptions, and using the fact that the diagonal
elements of R have the largest magnitude [25], Eq. (4) will
correctly localize the event to the source bus.

D. Event Classification
Once an event is localized to a particular bus, we aim to

classify it into one of five broad categories:
1) Category 1 (Fault Event: include the faulting of a line

in the network).
2) Category 2 (Load Event: include changes in load real

power demand, the switching of real power loads, and
load trips).

3) Category 3 (Capacitor Event: includes capacitor in or
out, capacitor switching)

4) Category 4 (Generation change events: changes in the
output of generators).

5) Category 5 Generator switching and tripping events)
To classify events, we depend on the distinctive time series
signatures in certain raw measurements and derived features
within a short window preceding and following the event
instance. The derived features we use are the percent change
in current magnitude, deviation of the rate of change of
frequency, and the change in the slope of current angle.

Let f i1, ..., f
i
m denote the m feature values corresponding to

event i. Suppose we have a total of n events. Then, we have
m feature sets: F1 = {f11 , ..., fn1 } to Fm = {f1m, ..., fm1 }.
We normalize each feature set as follows. For feature j, we
calculate the z-score of each point in the feature set Fj =
{f1j , ..., fnj }. We remove outliers from Fj based on the z-
score, and normalize the remaining points so they lie between
0 and 1. We then set all the outliers to 1 and return them to
Fj .

Classification begins by identifying fault (Category 1)
events, based on the change in the rate of change of frequency
(rocof ). If the change is greater than a threshold τ , the event
is classified as type 1. Classification proceeds with sequential
k-means clustering, as visualized in the right of Fig. 1. First
we cluster the events into two classes with respect to the
normalized rate of change of frequency (norm rocof ). The
cluster with the minimum centroid, denoted CA, consists of
events in Category (3) or (4) (Capacitor event and generation
change events respectively) while the other cluster, denoted
CB , consists of events in Category (2) or (5) (Load event
and generator switching or tripping events respectively). We
again cluster the events of CA into two sets, with respect
to the normalized percentage change in current magnitude

TABLE I: PMU Location and Observed Measurements.
PMU Location Measurements

1 Bus 1 V1, I1-2, f and ROCOF
2 Bus 2 V2, I2-3, f and ROCOF
3 Bus 3 V3, I3-4, f and ROCOF
4 Bus 4 V4, I4-2, f and ROCOF
5 Bus 5 V5, I5-1, f and ROCOF
6 Bus 6 V6, I6-11, f and ROCOF
7 Bus 4 V4, I4-5, f and ROCOF
8 Bus 9 V9, I9-10, f and ROCOF

TABLE II: Performance of Anomaly Detection

PMU
Event Detection Event & Bad Data Detection
Gaussian 30dB Gaussian 45dB Laplace Gaussian 45dB
Precision Recall Precision Recall Precision Recall Precision Recall

1 0.9 0.60 1.0 0.60 0.45 0.6 1.0 0.99
2 0.9 0.60 1.0 0.60 0.47 0.6 1.0 0.99
3 0.85 0.73 1.0 0.73 0.55 0.73 1.0 1.0
4 0.88 1.0 1.0 1.0 0.60 1.0 1.0 0.99
5 0.83 1.0 1.0 1.0 0.63 1.0 1.0 1.0
6 0.79 1.0 1.0 1.0 0.63 1.0 1.0 1.0
7 0.83 1.0 1.0 1.0 0.54 1.0 1.0 0.99
8 0.88 1.0 1.0 1.0 0.63 1.0 1.0 1.0

(norm pccm). The cluster with the smaller centroid consists
of events in Category 3, while the remaining events are in
Category 4. Similarly, we cluster the events of CB into two sets
with respect to the change in current angle slope (norm sca).
The cluster with the smaller centroid consists of events in
Category 2, while the other is events in Category 5. In this
way, we identify the five event classes.

IV. RESULTS AND DISCUSSION

A. Data Simulation Description

We demonstrate our algorithms on simulated measurements
from the IEEE 14 bus test system [26]. The system was
modeled in Real Time Digital Simulator (RTDS) and simulated
under several different events. Eight PMUs were placed on
different buses in the IEEE 14 bus system. The location of and
quantities measured by each PMU (three-phase voltages and
currents, frequency and rate of change of frequency (ROCOF))
are recorded in table I. The PMUs had a 60 Hz sampling rate.

We add noise and bad data effects to the ideal measurements
returned by RTDS. We create three noisy data sets each with
a different type of noise: Gaussian noise with SNR 30 dB,
Gaussian noise with SNR 45 dB, and Laplacian noise. We also
artificially add bad data of the three types described in Section
III-B: incorrect data, missing data, and missing packets.

B. Evaluation Metrics

We report two performance metrics when evaluating our
anomaly detection and bad data detection algorithms. The
precision is the ratio of the number of true detected anomalies
to the total number of detected anomalies (or bad data).

TABLE III: Performance of Bad Data Identification
Bad data
identification

PMU
number Precision Recall
1 0.9632 0.9771
2 0.9499 0.9779
3 0.9485 0.9727
4 0.9468 0.9788
5 0.9450 0.9738
6 0.9712 0.9864
7 0.9443 0.9746
8 0.9472 0.9814



TABLE IV: Event Identification on Noiseless Simulated PMU Data

S No. Time of operation Actual Event Actual Location
Simulated data

Classified Category Detected Bus Score
PMU A PMU B PMU A PMU B

1 56 Cap bank Closed 9 Category 3 9 6 4.5 2.5
2 76 3-Phase fault Between 2 & 3 Category 1 2 3 4.6×103 3.5 ×103

3 96 Load increased 3 Category 2 3 4 29 15
4 116 Generation increased 2 Category 4 2 4 3.0 2.7
5 136 Load Removed 6 Category 2 5 6 44 34
6 156 Generation Removed 3 Category 5 3 4 360 200
7 176 Load decreased 3 Category 2 3 4 83 43
8 196 1-phase to ground fault Between 3 & 4 Category 1 3 4 5.8×103 3.1×103

9 216 Generation decreased 2 Category 4 3 2 3.5 3.3
10 236 Load decreased 4 Category 2 4 9 28 26
11 256 Load Switched ON 6 Category 2 5 4 37 33
12 276 Cap bank Removed 9 No Detection - - - -
13 276 Load Removed 6 Category 2 5 4 41 32
14 296 3-Phase fault Between 2 & 3 Category 1 2 3 5.4×103 4.1×103

15 316 Load Decreased 9 Category 2 9 4 56 35

The recall is the ratio of the number of true detected
anomalies to the total number of true anomalies. A low preci-
sion implies many false positives, while a low recall implies
many false negatives. Let Td = {t1, ..., td} denotes the set of
detected anomalies or bad data and Tg = {t1, ..., tg} denote
the set of ground truth anomalies or bad data. Mathematically:

Precision =
Td ∩ Tg
Td

(5)

Recall =
Td ∩ Tg
Tg

(6)

C. Simulation Results and Validation

We separately report the performance of each piece of our
algorithm workflow.

First, we run the anomaly detection described in Section
III-A on PMU measurements with Gaussian noise and those
with bad data. The anomaly detection algorithm may flag
multiple points corresponding to the same anomaly (especially
in the case of events). Therefore, we consolidate all flagged
points within 2 seconds as a single event. Fig. 2 visualizes the
performance of the algorithm on one stream of noisy PMU
measurements for different choices of the anomaly probability
threshold p. We see that too small a p misses several events,
while too large a p leads to too much noise being flagged
as an event. Based on these results, we set p = 0.001 and
apply the anomaly detection to noisy measurements containing
both bad data and physical events. The algorithm flags both
bad data and physical events. These are then classified and
can be handled differently (for example, bad data is cleaned,
while physical events generate a warning). The results across
the PMU measurements are summarized in table II. Notice
the performance variation across PMUs. This is because,
depending on the event location, event visibility varies across
the PMUs. However, as long as every event is detected at some
PMU, the algorithm performance is unaffected.

Of the resulting anomalies, we must detect and replace those
that are bad data. It is necessary to identify three different types
of bad data, according to the algorithm of Section III-B. Table
III reports the performance of this algorithm. In table III, the
ability to detect the inserted bad data scores above 94% and

(a) p = 0.0001 (b) p = 0.001

(c) p = 0.01

Fig. 2: (a)-(c) Visualization of event detection performance
on one stream of PMU measurements for different choices

of anomaly threshold probability (p). Vertical blue lines
indicate ground truth of event occurrence. Red stars indicate

events flagged by algorithm.

100% in the precision metric for missing data and missing
packet, whereas the recall metric is above 97% for bad data
and 100% for missing data and missing packet for all PMU
streams.

Those anomalies which are not bad data are physical events.
These events are localized to a source bus by the algorithm of
Section III-C. The current limitation of our approach is that
it can not separately identify the locations of simultaneous
events. Similarly, events associated with lines between buses
are localized to a single bus. Once the event is localized,
measurements at the source bus are used to classify the event
type according to the process described in Section III-D.
The simulation result for noiseless simulated PMU data for
the test system can be seen from table IV. It is clear from
table IV that all the events were localized and classified
successfully except three events, the load event on bus 6 at



TABLE V: Event identification on Simulated PMU Data with Measurement noise

S No. Time of operation Actual Event Actual Location
PMU data with gaussian noise PMU data with Laplacian noise

Classified Category Detected Bus Score Classified Category Detected Bus Score
PMUA PMUB PMUA PMUB PMUA PMUB PMUA PMUB

1 56 Cap bank Closed 9 Category 3 9 6 4.6 2.5 Category 3 9 6 4.5 2.4
2 76 3-Phase fault Between 2 & 3 Category 1 2 3 4.6×103 3.5×103 Category 1 2 3 4.6×103 3.5×103

3 96 Load increased 3 Category 2 3 4 29 15 Category 2 3 4 29 15
4 116 Generation increased 2 Category 4 2 4 2.9 2.8 Category 4 2 4 2.9 2.7
5 136 Load Removed 6 Category 2 5 6 44 34 Category 2 5 6 44 34
6 156 Generation Removed 3 Category 5 3 4 360 200 Category 5 3 4 360 200
7 176 Load decreased 3 Category 2 3 4 83 43 Category 2 3 4 83 43
8 196 1-phase to ground fault Between 3 & 4 Category 1 3 4 5.8×103 3.1×103 Category 1 3 4 5.8×103 3.1×103

9 216 Generation decreased 2 Category 4 3 2 3.5 3.3 Category 4 3 2 3.5 3.3
10 236 Load decreased 4 Category 2 4 9 28 26 Category 2 4 9 28 26
11 256 Load Switched ON 6 Category 2 5 4 37 33 Category 2 5 4 37 33
12 276 Cap bank Removed 9 No Detection - - - - No Detection - - - -
13 276 Load Removed 6 Category 2 5 4 41 32 Category 2 5 4 41 32
14 296 3-Phase fault Between 2 & 3 Category 1 2 3 5.4×103 4.1×103 Category 1 2 3 5.4×103 4.1×103

15 316 Load Decreased 9 Category 2 9 4 56 35 Category 2 9 4 56 35

136 sec and 276 sec was wrongly localized but classified
correctly and Capacitor switching on bus 9 at 276 sec. At
276 sec, two events happened simultaneously and the load
event dominated the capacitor switching.Tables V contain the
results of event localization and classification on the noisy
measurement streams. In this work, we have considered two
noise models, namely (1) Gaussian noise with two levels, 30
dB (a conservatively high noise level) and 45 dB (a realistic
noise level); and (2) Laplacian measurement noise with zero
mean and scale parameter 0.001. By comparing the result in
table-IV and table-V shows that the proposed method is robust
enough to deal with the measurement noise.

V. CONCLUSIONS

In this work, realistic synchrophasor data has been generated
considering noise and cyber-physical events. Algorithms have
been developed using a suite of mathematical and statistical
techniques for anomaly and event detection and localization,
including a multi-step clustering approach for event classifi-
cation. The simulation results demonstrate the efficacy of the
algorithm to detect, locate and classify the events, even in
the presence of measurement noise. In the future, root cause
analysis and proactive control actions to minimize impact of
physical and cyber-intrusions using PMU, SCADA telemetry
measurement and cyber logs will be integrated into the de-
veloped algorithm. Furthermore, more cyber-attack scenarios
will be modeled and expanded for classification models to
distinguish known attacks, as part of the future work.
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