
Power-Attack: A comprehensive tool-chain for
modeling and simulating attacks in power systems

Ajay Chhokra, Carlos Barreto, Abhishek Dubey, Gabor Karsai, Xenofon Koutsoukos
EECS Dept, Vanderbilt University, Nashville, TN, USA

Email:{ajay.d.chhokra; carlos.a.barreto; abhishek.dubey; gabor.karsai; xenofon.koutsoukos}@vanderbilt.edu

Abstract—Due to the increased deployment of novel commu-
nication, control and protection functions, the grid has become
vulnerable to a variety of attacks. Designing robust machine
learning based attack detection and mitigation algorithms require
large amounts of data that rely heavily on a representative
environment, where different attacks can be simulated. This
paper presents a comprehensive tool-chain for modeling and
simulating attacks in power systems. The paper makes the
following contributions, first, we present a probabilistic do-
main specific language to define multiple attack scenarios and
simulation configuration parameters. Secondly, we extend the
PyPower-dynamics simulator with protection system components
to simulate cyber attacks in control and protection layers of
power system. In the end, we demonstrate multiple attack
scenarios with a case study based on IEEE 39 bus system.

Index Terms—Cyber attacks, Power system simulation, Cyber
security, Protection System

I. INTRODUCTION

Securing the power system is one of the top national
priorities. However, the adoption of new sensing and dis-
tributed control technologies such as Phasor Measurement
Units (PMU) and advance protection relays have increased
the complexity of the system as well as expanded the attack
surface. As a result of the increased complexity and greater
attack surface, identification and mitigation of potential threats
have become very challenging.

To tackle system complexity, a number of machine learning
based approaches have been proposed in the literature that are
successful at detecting and preventing attacks [1]. It is well
known that the accuracy of any machine learning algorithm
depends heavily on the quality of operational data. Due to
limited number of successful attacks, these approaches seldom
rely upon synthetic data of different simulated attack scenarios.
Several testbeds [2] and simulation frameworks [3], [4] exist
in the scientific literature to simulate different scenarios.
Despite these efforts, there are still gaps that need attention,
such as, 1) Lack of an integrated framework to simulate
sophisticated attacks involving protection relays, breakers,
PMU and SCADA data. Majority of the frameworks allow
cyber attacks associated with manipulation of sensor data
(PMU and/or SCADA) to compromise state estimator and
other controllers in a control center. These frameworks lack
constructs to simulate attacks on protection relays and breakers
that have been shown to cause significant damage to the system
once compromised [5]. 2) Lack of a high level simulation
configuration and attack specification language. Most of the

simulation frameworks use academic or industry standard
simulators such as PowerWorld [6], OPNET [7] to simulate
different attack scenarios. Often these frameworks require
setting up a large set of parameters to execute a simulation
that requires in-depth knowledge of the complete parameter
space, different components of the system and semantics of
different simulators. A universal high level configuration and
attack language can greatly help analysts to quickly specify
various parameters and simulate different attack scenarios.

To this end, we present Power-Attack, a comprehensive tool-
chain for modeling and simulating attacks in power systems.
The contributions of this paper are the following: 1) We
describe a PyPower [8] and PyPower-Dynamics [9] based sim-
ulation engine that can simulate both the continuous dynamics
of generators, transmission lines, controllers (frequency and
voltage) as well as discrete dynamics of protection relays.
2) We introduce a generic relay and breaker model to simulate
nominal and compromised behavior within this simulation
engine. 3) Finally, we present a domain specific language that
can be used to create complex scenarios involving grounding
faults in transmission lines and buses as well as cyber attacks
on protection system, controllers, and sensing data. Our focus
in this paper is limited to device attacks that aim to compro-
mise a grid device in order to gain control and data attack
attempts to insert, alter, delete data or control commands in
the network traffic so as to mislead the smart grid to make
wrong decisions/actions.

The outline of the paper is as follows. We start with related
research in Section II. Section III discusses the Power-Attack
tool-chain. Section IV presents the evaluation results with the
help of three scenarios involving attacking multiple protection
relays and a load frequency controller using a IEEE 39 Bus
system [10] followed by concluding remarks in Section V.

II. RELATED RESEARCH

Several groups have developed testbeds to study the cy-
ber security of industrial control systems [11]. For instance,
one of the earliest initiative, National Supervisory Control
And Data Acquisition TestBed (NSTB) implemented actual
physical grid components including generation and trans-
mission, while also incorporating industry standard software
products [12]. Unfortunately, the substantial cost of deploy-
ing purely physical testbed limits its usability. A number
of software based testbeds such as Virtual Control System
Environment (VCSE) [13], Virtual Power System Testbed

Remote Terminal Unit

Relays Breakers PMU

Remote Terminal Unit

Relays Breakers PMU

TransformersTransformersGeneratorsGenerators LinesLines LoadLoad

SCADA and PMU network

State
Estimation

Automatic
Generation Control

Remedial Action
Schemes

Security Constrained
Economic Dispatch

X
X

X

X

X

X X
X

X Data Attack

X Device Attack

X

Grounding Fault

Load Change

Ph
ys

ic
al

 L
ay

er
Pr

ot
ec

tio
n

La
ye

r
(S

ub
-s

ta
tio

n
Le

ve
l)

C
on

tr
ol

 L
ay

er

Fig. 1: Power-Attack tool-chain capabilities

(VPST) [14], Testbed for Analyzing Security of SCADA
Control Systems (TASSCS) [15] and SCADASim [16] have
been designed to study performance of SCADA protocols
and power system equipment under cyber attacks. These
approaches use PowerWorld [6] to simulate physical layer
and OPNET [7] or RINSE [17] to simulate network traffic.
None of these approaches consider attacks on protection
system components such as IEDs. The authors in [1] and [2]
presented integrated testbeds that also allow users to simulate
device attacks in protection system components. However,
both of these testbeds rely on a licensed power simulator,
PowerFactory [18] from DIgSILENT.

On the other hand, the Power-Attack aims at providing
an open source simulation framework that gives the users
ability to model and simulate different cyber attacks along
with physical events in physical, control and protection layers
to generate synthetic data. Our proposed approach is similar
to the PSAT [19] based framework, GridSTAGE [4] to sim-
ulate cyber attacks (man in the middle) involving PMU and
SCADA data. Similar to other SCADA based testbeds, this
simulation framework does not allow device attacks on the
protection system. Another key feature that distinguish Power-
Attack from existing cyber attack simulation framework is the
availability of a high level domain specific language (DSL) to
define cyber attacks and simulation parameters. There exists
some DSLs for power systems that target simulation of power
systems for fault analysis [20], [21]. However, none of these
language are suited for modeling and simulating cyber attacks
in power systems.

III. APPROACH

In this tool-chain, we model a scenario as a sequence of
events that includes both cyber attacks and physical events
such as fault injection, disabling a branch, or changing the
load demand on a bus etc., as shown in Figure 1. Power-
Attack consists of two main components, 1) Domain Specific
Language (DSL) to define simulation parameters and attack
scenarios, and 2) A scalable simulation engine that executes

TABLE I: Power-Attack DSL Grammar
Deterministic scalar: (NUMBER | FLOAT | STRING);
Primitive pair: (key=Deterministic scalar : val=Deterministic scalar);
Probablistic scalar: (distribution=Distribution type , { params+=Primitive pair[,]
});
Distribution type: (Uniform | Discrete-Uniform | Gaussian);
Scalar: (Deterministic scalar | Probablistic scalar);
Vector: (real=Scalar , imag=Scalar);
Value: (Scalar | Vector);
Pair: (key=STRING : val=Value);
Time: @ time Value;
Case file: Case : case file=STRING;
Setup config: Configure (Breaker config | Relay config | Controller config |
Tracer config | Simulator config | Generator config);
Breaker config: breaker @ id=Branch type with { params+=Pair[,] };
Relay config: type=Relay type relay @ id=Branch type with { params+=Pair[,] };
Element type: (instantaneous | time-delayed-1 | time-delayed-2) ;
Relay type: (over-current | distance) ;
Bus type: bus id=Deterministic scalar;
Branch type: branch between to bus=Bus type and from bus=Bus type;
Controller type: (lfc | avr)
Controller config: type=Controller type in generator @ id=Bus type with {
params+=Pair[,] };
Tracer config: trace of metrics+=Metric type[,];
Metric type: (bus voltages | power flows | islands | load-loss | generator frequency);
Simulator config: simulation with { params+=Pair[,] };
Generator config: generator @ id=Bus type with { params+=Pair[,] };
Precondition config:(Load change | Trip node | Fault injection);
Load change: Change load on id=Bus type to val=Value time=Time;
Trip node: Trip id=Node time=Time;
Node: (Bus type | Branch type);
Fault injection: Inject fault in id=Node time=Time;
Attack scenario: label=ID : < attack sequence+=Attack[,] >;
Attack: Attack element=Attack type time=Time;
Attack type: (Pmu attack | Controller attack | Relay attack | Breaker attack);
Pmu attack: pmu @ id=Bus type with type= Data attack type attack of fac-
tor=Scalar;
Data attack type: (scaling | biasing);
Controller attack: kind=Controller type in generator @ id=Bus type with type=
Data attack type attack of factor=Scalar;
Relay attack: kind=Relay type relay element+=Element type element @
id=Branch type with type=Relay attack type attack;
Relay attack type: (missed | spurious);
Breaker attack: breaker @ id=Branch type with type=Breaker attack type attack;
Breaker attack type: (stuck open | stuck close);
PowerAttackModel:
Begin setup phase

case file=Case file setup configs*=Setup config[,]
End setup phase
(Begin preconditions

preconditions*=Precondition config[,]
End preconditions)?
(Begin scenarios

attack scenarios+=Attack scenario[,]
End scenarios)?;

the different attack scenarios. These components are described
in more detail in the following sub-sections.

A. Domain Specific Language (DSL)

Power-Attack DSL is an imperative language to represent
multiple configuration parameters and attack scenarios involv-
ing different protection system components, controllers and
sensing devices. Table I lists the grammatical rules of the DSL.
Each rule describes a concept of the Power-Attack language
along with its syntactic structure in a textual format. These
meta rules are expressed using Textx [22], a meta-language
and parser tool for creating DSLs in Python.

Power-Attack DSL provides a collection of tuples, see rule
Pair in Table I that allows users to specify arbitrary parameters
as key value pairs. According to the rule, Pair, a key can
be any STRING that signifies the parameter label and the
associated value can be a one or two dimensional scalar, see
rules Value, Vector and Scalar. The value associated with

1 Begin setup phase
2 Case : ’/Users/projects/gridmodels/arbitrary.py’
3 Configure simulation with { ’t_sim’ : 200} ,
4 Configure breaker @ branch between bus 10 and

bus 11 with { ’tto’ : (Uniform, {’mue’
:0.050, ’sigma’:0.008}) },

5 Configure generator @ bus 30 with {’inertia’ :
500},

6 End setup phase
7 Begin preconditions
8 Change load on bus 11 to (100, 43.78) @ time 9,
9 Trip branch between bus 11 and bus 9 @ time 90,

10 Inject fault in bus 21 @ time 76
11 End preconditions
12 Begin scenarios
13 Scenario1 : < Attack pmu @ bus 32 with scaling

attack of 1.23 @ time 3.50, Attack breaker
@ branch between bus 4 and bus 7 with stuck
close attack @ time 9 >,

14 Scenario2 : < Attack lfc in generator @ bus 32
with biasing attack of (Gaussian, {’mue’ :
0.2, ’sigma’ : 0.02}) @ time 4, Attack
distance relay instantaneous element @
branch between bus 16 and bus 21 with
missed attack @ time 7.45 >

15 End scenarios

Listing 1: Sample Attack Model

a key can either be a fixed or random value. The DSL
support multiple distribution types to specify random variables
such as Uniform, Gaussian and Discrete-Uniform
as shown in rule Distribution type. The language also de-
fines types related to power system component, mentioned
in rules Bus type, Branch type, Controller type and set of
types to specify attacks such as Attack type, Pmu attack,
Controller attack, Relay attack and Breaker attack. A key
feature of the DSL is that it allows probabilistic variables,
whose specific value is drawn from a defined distribution at
simulation time.

Listing 1 shows a sample attack model that conforms to
Power-Attack DSL. All attack files can be divided into three
sections, 1) set up, 2) preconditions and 3) scenarios, where
each section is enclosed within Begin <> phase ... End
<> phase statements as highlighted in lines 1-6, 7-11, and
12-15. In set up section, a user defines structure of the power
network and various parameters to execute the simulation. The
current implementation requires the power network definition
in the format accepted by PyPower, PandaPower or MAT-
POWER as a large number of standard network definitions
already exists for these load flow solvers. Power-Attack DSL
divides the configuration space into two categories, the first
category consists of parameters related to simulation engine
such as simulation time, tolerance, maximum iterations etc,
while the second category of parameters is associated with
equipment in physical, protection and control layers of power
system such as relays, generators etc. A user can specify
configurations of multiple components in set up section such
that configuration statement of each component starts with
keyword Configure followed by device identifiers and a
parameter key-value map. For instance, the line 4 in Listing 1
changes the default time to open the breaker, tto, between

Initialize
Models

Handle
Evenets @ t

Rebuild
Admittance

Matrix

Solve
Differential
Equations

Solve Algebraic
Equations

Step protection
system state

machinesParameters

STOP

Fig. 2: Simulation Loop

buses 10 and 11 to a Gaussian random variable (0.050, 0.008).
The device identifiers for different components are defined in
rule Setup config. The software repository [23] of the project
maintains the list of all parameters along with their description
and default values.

The second section, preconditions allows users to define
physical events to set up specific operating conditions for
attacks in a scenario. The supported preconditions (events)
include 1) changing a load attached to a bus, defined in rule
Load change. For instance, line 8 in Listing 1 changes the
load demand on bus 11 to 100 +j43.78 at time 9 secs. 2)
Injecting planned outages by removing buses or branches from
the system, see rule Trip node and 3) Injecting grounding
faults in equipment as described in Fault injection rule.

In the last section, scenarios, a user can define multiple
attack scenarios according to the rule Attack scenarios. An
attack scenario is a sequence of different types of attacks.
Power-Attack DSL supports four types of attacks described
in rules Pmu attack, Controller attack, Relay attack and
Breaker attack where the first two belong to data attack
category and the last two are device attacks. According to
rule Data attack type, a data attack can be of two types,
scaling or biasing. A scaling attack scales the target value
by a factor. For instance, in Listing 1 line 13, the attack
scenario with label, Scenario1 creates data falsification
attack by scaling the output of PMU at bus 32 by a factor
of 1.23. A biasing attack adds a bias to the target value as
illustrated in scenario, Scenario2 in Listing 1 (line 14)
where a random bias with Gaussian distribution is added.
The DSL also allows users to specify device attacks that
compromise an IED such as numerical relays and breakers. In
the current implementation, a relay can be compromised in two
ways such that 1) It fails to detect fault conditions in its zone
of protection and 2) It spuriously detects a fault conditions
and instruct a breaker to remove an equipment. We label
these relays attacks as missed and spurious respectively, as
mentioned in rule Relay attack type. Similar to relay attacks,
breakers can be subjected to two kinds of attacks, illustrated in
rule Breaker attack type, where attacks stuck open and stuck
close force the breaker to ignore the signals from relays and
remain in open and close position respectively.

B. Simulation Engine

Power-Attack tool-chain uses a sequence of steps to simu-
late attack scenarios specified in an attack model file. In the
first step, configuration parameters, P , precondition events,
E and attack scenarios, A are extracted from the model file
which can be fixed or random in nature. In the second step,

V I fsp fmiss

openclose trip

IDLE TRIPP
ED

MISSED

fmiss /

fsp / open = true,
trip = true

check_fault(V,I) /
open = true, trip = true

(a) Instantaneous

TRIPP
EDIDLE WAIT

ATTACK
WAIT

MISSED

check_fault(V,I)/

timeout(delay) /
open = true

trip /
open = true

fsp /
trip / open = true

timeout(delay) /
open = true

fmiss /

not
check_fault(V,I)/

fmiss /

fsp /

V I fsp fmiss trip

openclose

(b) Time-delayed

Fig. 3: Relay Elements

fixed and random parameters, precondition events and attacks
in jth scenario are segregated in disjoint sets as (Pf , Pr),
(Ef , Er), (Af,j , Ar,j). In the third step, simulation space, S is
created by sampling the distributions of random variables as
shown in Equations (1), (2) and (3)

S ′ =
(
Ef × {E1r , ., EKr }

)
∪
(
Pf × {P1

r , .,PK
r }
)

(1)

Sj =
(
Af,j × {A1

r,j , .,AK
r,j}
)
× S ′ (2)

S =
⋃
j

Sj (3)

where Ai
r,j , E ir, Pi

r are ith samples of set of random
variables in Ar,j , Er, Pr respectively and K is tool-chain
parameter that governs the maximum number of samples. In
the last step, for each element, s ∈ S, a simulation process
is spawned and assigned to a worker. Power-Attack utilizes
one or more workers to execute multiple attack scenarios in
parallel. Each worker process runs the simulation engine that
accepts simulation parameters and attack scenario over REST
end-point.

The underlying simulation engine in Power-Attack is based
on PyPower-Dynamics. Although PyPower-Dynamics can
simulate the dynamic behavior of synchronous machines and
controllers such as automatic voltage regulators (AVR), but
it lacks the constructs to model devices with discrete dy-
namics such as numerical relays. Power-Attack simulation
engine integrates the PyPower-Dynamics with state machine
based models to capture behavior of components in protection
layer. Figure 2 highlights the simulation loop of the extended
PyPower-Dynamics simulator. The simulation process begins
with solving the load flow using PyPower and building an
admittance matrix to initialize various dynamic models in
the system. At any time step in the loop, the simulator first
executes the scheduled events at current time step. These
events can be 1) changing the load attached to a bus, 2)
removing a branch or bus from the system, 3) generating
signals to induce data (scaling or biasing) or device (spurious,
missed, stuck open or close) attacks. In case the structure of
the network is changed as a result of tripping of branch or bus,
the admittance matrix is rebuilt. After handling external events,
differential equations and algebraic network equations (DAEs)
are solved using partitioned solution approach. Based on the
solution, the transition function of state machines is evaluated.

CLOSE OPEN
ING

STUCK
CLOSE

STUCK
OPEN

OPENCLOS
ING

open/
f_stuck / f_stuck /

timeout(tto) /
close/

f_stuck /

timeout(ttc) /

f_stuck /

close open fstuck

Fig. 4: Breaker Automaton

All the events produced in current time step are added to the
event queue and the simulator advances to the next time step
(t + ∆). The simulation ends when time step reaches user-
defined threshold (T) or the system fails to converge. The
following sub-section give more details on the implementation
of device and data attacks.

1) Device Attacks: Modern numerical relays consist of
different types of elements that implement various protection
functions. These elements can be categorized into two types 1)
Instantaneous and 2) Time-delayed elements. An instantaneous
element instructs a breaker to open as soon as the tripping
condition is satisfied, for instance, a zone 1 element of distance
protection. Whereas the time delayed elements wait for a pre-
defined duration of time before sending the trip command, for
example zone 2 or 3 elements of distance protection.

Figure 3a shows a generic state machine template that
captures the behavior of an instantaneous element. The state
machine contains 3 states (IDLE, MISSED, TRIPPED), 4
input ports (fsp, fmiss, V , I) and 3 output ports (trip, open,
close). The input ports are read only state variables that are
used by the state machine to synchronize with the connected
output ports of other state machines as well as changes in
voltage and current values in the physical layer. According
to Figure 3a, the state machine is in IDLE state initially
and at every time step, it checks for the condition on all the
outgoing transitions based on the latest value of the input ports.
If the function check fault(V, I) returns true, then the
state machine jumps to TRIPPED and instructs the associated
breaker to open by setting the output port open along with
generating a trip transfer signal for the relay element connected
on the opposite side of the branch. Similarly, if spurious attack
is performed in the current time step by setting the input port
fsp, then the state machine jumps to TRIPPED while updating
the output ports as before. However, in the case of missed
attack, the value of port fmiss is true which forces the state
machine to transition to MISSED state.

The behavior of the time delayed element as highlighted in
Figure 3b is same except after detecting fault conditions or
under the influence of spurious attack, the state machine first
transitions to an intermediate state, WAIT or ATTAK-WAIT
states respectively, for pre-defined amount of time, delay
before jumping to TRIPPED. While in the WAIT state, the
automaton checks for the fault conditions at every step. If
the fault is cleared by other relay elements, the state machine

returns back to IDLE state. In case missed or spurious attack
is injected while in WAIT state, the state machine transitions
to MISSED or ATTACK-WAIT respectively.

Figure 4 shows a state machine that captures behavior of
a breaker. Under normal conditions, the breaker transitions
from CLOSE to OPENING and then eventually to OPEN
state in tto secs after receiving command from a relay on
input port, open. However, when the breaker is attacked,
by setting the input port, fstuck, the breaker transition to
STUCK_CLOSE or STUCK_OPEN from (CLOSE, CLOSING)
or (OPEN, OPENING) states respectively. 1

2) Data Attack: One of the primary focus of the smart grid
paradigm is to move away from a centralized architecture and
adopt distributed or decentralized control methodologies in
which different control centers or sub-stations communicate
with each other and take consensus based decisions. Power-
Attack simulator provides such distributed consensus based
control algorithm for frequency control [24] defined by Equa-
tions (4), (5), (6) and (7)

Pm,i = P ref
m,i + µi (4)

µi = P d
i + Ωi (5)

P d
i = (ω∗ − ωi)Di (6)

Ω̇i = (ω∗ − ωi)−
∑

j
aij(CiΩi − CjΩj) (7)

where Pm,i is the mechanical power injected in the ith

generator, P ref
m,i is the power generation scheduled for the

ith generator, µi is the control variable, P d
i corresponds to

droop control and Di is the droop constant. The term Ωi is a
consensus variable and aij denotes the connectivity between
the generators i and j. The consensus-based control requires
that generators to share their consensus variables Ωi. Now we
analyze the effect of data attacks, scaling and biasing, in which
an adversary manages to compromise the consensus variable.

Biasing Attack: The adversary implements a man in the
middle attack on the ith generator and injects a bias to the
consensus variable, Ω̂i = Ωi+bi and transmits to the neighbors
of i. With this attack, the adversary manages to change the
setpoint of some generators as shown in Equations (8), (9).

Ω̇i = ω∗ − ωi −
∑

k
aik(CiΩi − CkΩk) (8)

Ω̇j = ω∗ − ωj −
∑

k
ajk(CjΩj − CkΩk) + ajiCibi (9)

Scaling Attack: In this attack, the adversary scales the
consensus variable, Ω̂i = γiΩi and transmits to the neighbors
of i. With this attack the droop control, P d

i can still reduce
the frequency error, that is, ωi → ω∗ but the attack changes
the power produced and leads to higher expenses as shown in
Equations (10) and (11).

Ω̇i = ω∗ − ωi −
∑

k
aik(CiγiΩi − CkΩk) (10)

Ω̇j = ω∗ − ωj −
∑
k 6=i

ajk(CjΩj − CkΩk)− aji(CjΩj − Ciγi)

(11)
1The execution of all state machines follows a pre-defined order in which

state of each automaton is updated and the order of checking outgoing
transitions from every state is also fixed.

Fig. 5: Effect of multiple biasing attacks on system frequency

IV. RESULTS

In this section, we show three scenarios involving data and
device attacks using an IEEE 39 Bus system. These attack
scenarios are outlined in Listing 2. All scenarios depend upon
a common operating point that stems from creating a load
disturbance at bus 30, specified in preconditions section (Lines
4-7). The scenarios labeled as Sc1 (Line 9) and Sc2 (Line
10) inject biasing and scaling attacks in the load frequency
controller of a generator at bus 30 (labled as Gen0) at time t =
5 secs. In Sc1, the bias parameter, bGen0, is a random variable
such that yields in 10 simulations (K = 10) where bGen0 for
each simulation is sampled from the Gaussian distribution,
N (0.01, 0.005) defined in Sc1 attack specification (Line 9).
The biasing attack with bGen0 ≥ 0.01 raises the frequency of
the system to an abnormal range as shown in Figure 5. The
scaling attack (with parameter γGen0 = 2.1) doesn’t change
the system’s frequency, but can increase the cost of generation
output, indicated by the reduction germination control signal
µ0 as shown in Figures 6a and 6b.

The scenario, Sc3 in Listing 2 is related to a device attack in
the protection system. The scenario, Sc3 compromises a time-
delayed-2 or zone 3 element of the distance relay attached
to a branch between buses 15 and 16 with spurious attack
at time t = 16.00 secs. As a result, the input port, fsp of
the corresponding state machine is set to true and the state
machine jumps from IDLE to ATTACK-WAIT at t=16.00. The
state machine stays in the ATTACk-WAIT state for delay =

1 Begin setup phase
2 Case : ’/Users/projects/power-attack/grid-models/

case39.py’
3 End setup phase
4 Begin preconditions
5 Change load on bus 30 to (80, 30) @ time 1,
6 Change load on bus 30 to (97.60, 44.20) @ time 2
7 End preconditions
8 Begin scenarios
9 Sc1 : < Attack lfc in generator @ bus 30 with

biasing attack of (Gaussian, {’mue’: 0.01, ’
sigma’: 0.005} @ time 5 >,

10 Sc2 : < Attack lfc in generator @ bus 30 with
scaling attack of 2.1 @ time 5 >,

11 Sc3 : < Attack distance relay time-delayed-2
element @ branch between bus 15 and bus 16
with spurious attack @ time 16 >

12 End scenarios

Listing 2: Attack Model for Scenarios Sc1 Sc2 and Sc3

(a) System Frequency (b) Generator control signal

Fig. 6: Effect of scaling attack

1.44 secs (zone 3 wait time). At t=17.44 secs, the condition
on the outgoing transition, timeout(delay) evaluates to true
and the state machine moves to TRIPPED while setting the
output port open to true. At t=17.44 secs, the connected
breaker acknowledges the change in the input port open
and moves to OPENING . The breaker automaton stays in
OPENING for tto = 0.048 secs and at t=17.488 secs transitions
to OPEN.

V. CONCLUSIONS

In this paper, we presented a comprehensive tool-chain for
modeling and simulating attacks in the modern power system.
We described the core components of the tool-chain, 1) a
domain specific modeling language to define configuration
parameters and attack scenarios. 2) Python based simulator
that is capable of simulating continuous dynamics of com-
ponents in physical and control layer as well as discrete
behavior of protection system. In the end, we demonstrated
the simulation of multiple attack scenarios, involving data and
device attacks on a controller and a numerical relay in IEEE
39 Bus System. The current implementation only supports
two types of protection functions, over-current and distance.
However, in future we would like to extend the simulation
engine to include other relay elements such as differential
protection etc. We also plan to integrate a discrete event
network simulator to allow user to analyze the effects of
network availability attacks.

ACKNOWLEDGMENT

This work is funded in part by the National Science Foun-
dation under the award number CNS-1840052. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] J. Hong, S. Wu, A. Stefanov, A. Fshosha, C. Liu, P. Gladyshev, and
M. Govindarasu, “An intrusion and defense testbed in a cyber-power
system environment,” in 2011 IEEE Power and Energy Society General
Meeting, 2011, pp. 1–5.

[2] A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, “Cyber-physical
security testbeds: Architecture, application, and evaluation for smart
grid,” IEEE Transactions on Smart Grid, pp. 847–855, 2013.

[3] S. Hasan, A. Chhokra, A. Dubey, N. Mahadevan, G. Karsai, R. Jain,
and S. Lukic, “A simulation testbed for cascade analysis,” in 2017 IEEE
Power & Energy Society Innovative Smart Grid Technologies Conference
(ISGT). IEEE, 2017, pp. 1–5.

[4] S. P. Nandanoori, S. Kundu, S. Pal, K. Agarwal, and S. Choudhury,
“Model-agnostic algorithm for real-time attack identification in power
grid using koopman modes,” IEEE International Conference on Com-
munications, Control, and Computing Technologies for Smart Grids.,
2020.

[5] J. Weiss, “Aurora generator test,” Handbook of SCADA/Control Systems
Security, p. 107, 2016.

[6] “Powerworld: The visual approach to electric power systems.” [Online].
Available: https://www.powerworld.com/

[7] X. Chang, “Network simulations with opnet,” in WSC’99. 1999 Winter
Simulation Conference Proceedings.’Simulation-A Bridge to the Fu-
ture’(Cat. No. 99CH37038), vol. 1. IEEE, 1999, pp. 307–314.

[8] R. Lincoln, “Pypower.” [Online]. Available: https://github.com/rwl/
PYPOWER

[9] J. Susanto, “Pypower dynamics.” [Online]. Available: https://github.
com/susantoj/PYPOWER-Dynamics

[10] T. Athay, R. Podmore, and S. Virmani, “A practical method for the direct
analysis of transient stability,” IEEE Transactions on Power Apparatus
and Systems, vol. PAS-98, no. 2, pp. 573–584, 1979.

[11] H. Holm, M. Karresand, A. Vidström, and E. Westring, “A survey of
industrial control system testbeds,” in Nordic Conference on Secure IT
Systems. Springer, 2015, pp. 11–26.

[12] “National scada test bed — department of energy.” [On-
line]. Available: https://www.energy.gov/oe/technology-development/
energy-delivery-systems-cybersecurity/national-scada-test-bed

[13] M. McDonald, J. Mulder, B. Richardson, R. Cassidy, A. Chavez,
N. Pattengale, G. Pollock, J. Urrea, M. Schwartz, W. Atkins et al.,
“Modeling and simulation for cyber-physical system security research,
development and applications,” Sandia National Laboratories, Tech.
Rep. Sandia Report SAND2010-0568, 2010.

[14] D. C. Bergman, D. Jin, D. M. Nicol, and T. Yardley, “The virtual power
system testbed and inter-testbed integration,” in Proceedings of the 2nd
Conference on Cyber Security Experimentation and Test, ser. CSET’09.
USA: USENIX Association, 2009, p. 5.

[15] M. Mallouhi, Y. Al-Nashif, D. Cox, T. Chadaga, and S. Hariri, “A testbed
for analyzing security of scada control systems (tasscs),” in ISGT 2011,
2011, pp. 1–7.

[16] C. Queiroz, A. Mahmood, and Z. Tari, “Scadasim—a framework for
building scada simulations,” IEEE Transactions on Smart Grid, vol. 2,
no. 4, pp. 589–597, 2011.

[17] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier,
“Rinse: the real-time immersive network simulation environment for
network security exercises,” in Workshop on Principles of Advanced
and Distributed Simulation (PADS’05), 2005, pp. 119–128.

[18] “Powerfactory - digsilent.” [Online]. Available: https://www.digsilent.
de/en/powerfactory.html

[19] F. Milano, “An open source power system analysis toolbox,” IEEE
Transactions on Power systems, vol. 20, no. 3, pp. 1199–1206, 2005.

[20] A. Chhokra, A. Dubey, N. Mahadevan, and G. Karsai, “A component-
based approach for modeling failure propagations in power systems,” in
2015 Workshop on Modeling and Simulation of Cyber-Physical Energy
Systems, 2015.

[21] S. Hasan, A. Dubey, A. Chhokra, N. Mahadevan, G. Karsai, and
X. Koutsoukos, “A modeling framework to integrate exogenous tools for
identifying critical components in power systems,” in 2017 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
2017, pp. 1–6.

[22] I. Dejanović, R. Vaderna, G. Milosavljević, and v. Vuković, “TextX:
A Python tool for Domain-Specific Languages implementation,”
Knowledge-Based Systems, vol. 115, pp. 1–4, 2017.

[23] A. Chhokra, “Power attack.” [Online]. Available: https://github.com/
chhokrad/power-attack

[24] H. Tu, Y. Du, H. Yu, A. Dubey, S. Lukic, and G. Karsai, “Resilient
information architecture platform for the smart grid (riaps): a novel open-
source platform for microgrid control,” IEEE Transactions on Industrial
Electronics, 2019.

https://www.powerworld.com/
https://github.com/rwl/PYPOWER
https://github.com/rwl/PYPOWER
https://github.com/susantoj/PYPOWER-Dynamics
https://github.com/susantoj/PYPOWER-Dynamics
https://www.energy.gov/oe/technology-development/energy-delivery-systems-cybersecurity/national-scada-test-bed
https://www.energy.gov/oe/technology-development/energy-delivery-systems-cybersecurity/national-scada-test-bed
https://www.digsilent.de/en/powerfactory.html
https://www.digsilent.de/en/powerfactory.html
https://github.com/chhokrad/power-attack
https://github.com/chhokrad/power-attack

	Introduction
	Related Research
	Approach
	Domain Specific Language (DSL)
	Simulation Engine
	Device Attacks
	Data Attack

	Results
	Conclusions
	References

