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Abstract—Public transit is a vital mode of transportation in
urban areas, and its efficiency is crucial for the daily commute of
millions of people. To improve the reliability and predictability
of transit systems, researchers have developed separate single-
task learning models to predict the occupancy and delay of
buses at the stop or route level. However, these models provide
a narrow view of delay and occupancy at each stop and do
not account for the correlation between the two. We propose
a novel approach that leverages broader generalizable patterns
governing delay and occupancy for improved prediction. We
introduce a multitask learning toolchain that takes into account
General Transit Feed Specification feeds, Automatic Passenger
Counter data, and contextual temporal and spatial information.
The toolchain predicts transit delay and occupancy at the stop
level, improving the accuracy of the predictions of these two
features of a trip given sparse and noisy data. We also show that
our toolchain can adapt to fewer samples of new transit data once
it has been trained on previous routes/trips as compared to state-
of-the-art methods. Finally, we use actual data from Chattanooga,
Tennessee, to validate our approach. We compare our approach
against the state-of-the-art methods and we show that treating
occupancy and delay as related problems improves the accuracy
of the predictions. We show that our approach improves delay
prediction significantly by as much as 4% in F1 scores while
producing equivalent or better results for occupancy.

I. INTRODUCTION

Public transportation plays a crucial role in facilitating the
daily commuting needs of a significant portion of modern
communities owing to its affordability. However, ridership
in public transportation has steadily declined in the USA,
particularly in the South and Midwest [1]. As a result, transit
agencies across the country are seeking to undertake funda-
mental transformations in our infrastructure, technology, and
problem-solving approaches to further improve the current
transportation system [2]. A key aspect of this transformation
is the enhancement of methodologies that can accurately
predict delays and occupancy, thereby improving the reliability
and efficiency of transit systems. This ability also enables
transit agencies to optimize their services leading to enhanced
customer satisfaction. Many agencies now collect, analyze, and
provide real-time data for all of their public bus fleets, which
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includes information about occupancy levels collected through
automated passenger counters (APC) and spatial position col-
lected through Global Positioning System (GPS) [3, 4]. Transit
agencies use this data to (a) provide real-time information
and short-term forecasts about expected arrival and departure
times to enable commuters to make informed decisions about
their travel, (b) use the predictions to optimize and plan future
service, e.g., bus fleets use forecasting models to optimize
headways (i.e., the distance between successive buses on the
same route), and (c) plan long-term bus schedules [5].

Challenges: Developing delay and occupancy forecasting
models is far from trivial. The major challenges in developing
prediction models are the sparsity of data and the presence of
noise. Data collected through automated passenger counters
and GPS devices are often sparse, featuring significant gaps
in the data that must be either imputed or filled. Data sparsity
makes it challenging to develop robust prediction models.
Moreover, mid-sized cities typically do not have a vast network
of public transit routes/buses to collect additional data; the
sample size is generally not enough for prediction models to
perform and generalize well. Buses record time information
at designated stops along trips called “timepoints”. Here only
a bus’s temporal information is recorded, which differs from
the time entries when collecting boarding and alighting data.
These cause mismatches in arrival times, making it more
difficult to model delays accurately. Also, noise in APC and
GPS devices makes it more difficult to detect patterns and
trends as incorrect readings can happen because of human
error (incorrect labeling or data entry errors), and technical
issues (faulty sensors or software bugs), which can result in
incorrect counts or missing data.

State of the art: There has been considerable work done
to solve the challenges of noise and sparsity in delay and oc-
cupancy prediction. One approach estimates short-term delays
in buses through the use of General Transit Feed Specification
(GTFS) data and historical patterns. Sun et al. leverage shared
route segment networks and multi-task deep neural networks to
address data sparsity and improve the accuracy of severe delay
prediction. Similarly, long short-term memory (LSTM)-based
travel time prediction has been used to accurately predict road



segment travel times by incorporating contextual information
such as weather data, public holidays, and traffic speed [7].
This approach outperforms traditional methods such as moving
averages, linear regression, and support vector machines.

For predicting occupancy, models such as negative binomial
regression and random forest have been built using context-
specific information related to bus trips and road segments [8].
These models mainly utilize GTFS data generated by transit
agencies. Talusan et al. employ a multi-step process including
cleaning and merging real-time data from multiple sources,
and building various classification models (random forest,
XGBoost) and LSTM models to enhance transit ridership
predictions [9]. The problem has been explored in both clas-
sification and regression settings [10, 11].

Research Gaps and Motivation: Despite several efforts to
effectively predict delay and occupancy, learning from tempo-
rally sparse data remains a challenge, and public transit agen-
cies often resort to ad-hoc decision-making approaches. We
hypothesize that there are occupancy and delay are correlated,
and oftentimes, the same set of (possibly abstract) features
determine the realizations of these random variables. Captur-
ing these broad interrelated patterns can tackle data sparsity—
each “task” can learn from data and feature abstractions from
the other task (we refer to learning data-driven abstractions
as tasks, as is common in the machine learning literature).
Training separate models for each task, as commonly done
in prior work, ignore generalizable information that is not
explicitly modeled in the feature space. To address these
limitations, a more integrated approach is needed that can
capture the broader patterns that govern both bus delays and
occupancy.

Contributions: In this paper, (1) we propose a multi-task
learning model that captures broad patterns governing both
occupancy levels and delays to produce more accurate and re-
liable predictions. Our approach also mitigates the challenges
of sparsity, noise, and the lack of enough samples by using the
information from related tasks to improve the prediction per-
formance. (2) We show that APC data is inherently noisy and
discuss how it must be preprocessed before it can be used in
any machine learning modeling. We highlight that addressing
transit issues in the real world involves the task of gathering,
refining, and merging data from multiple sources, each with
different formats and levels of accuracy. To accomplish this,
we utilize a combination of APC data and GTFS along with
contextual information like weather.(3) Finally, we conduct a
systematic study of the transit operations in Chattanooga using
the APC and GTFS data provided by our partner transit agency
Chattanooga Area Regional Transportation Authority. We then
train an LSTM-based Multi-task learning (MTL) model on the
processed data to predict occupancy and delay. Our approach
is described in figure 1.

We evaluate the MTL model using precision, recall, and
F1-score for delay and occupancy. We show that the proposed
MTL approach outperforms state-of-the-art single-task learn-
ing (STL) models in terms of accuracy and robustness, even
when faced with the challenges of data sparsity, noise, and
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lack of enough samples. Moreover, we also show that our
pre-trained MTL model trains better on fewer samples of new
routes as compared to pre-trained STL models shown in figure
2. By considering these two variables as interrelated problems,
we are able to improve the accuracy of the predictions and
provide a more robust solution to this complex problem.

II. RELATED WORK

Optimizing public transit schedules and efficiency is a
research area that has gained significant attention in recent
years. Several studies have been conducted to explore different
techniques and methods to improve the efficiency and reliabil-
ity of public transportation systems. In this section, we discuss
related works that have contributed to this field and how they
addressed predicting delay and occupancy separately.

In the domain of predicting delay in transit schedules, Basak
et al.[5], and Ou [7] proposed data-driven approaches that
use machine learning techniques to predict passenger demand,
travel time, and bus arrival time. These methods have shown
promising results and can help to improve the efficiency and
reliability of public transportation systems. However, these
studies did not address the issues of data sparsity.

On the other hand, there is a significant amount of re-
search being conducted to develop effective methods for
understanding the factors that influence the occupancy level
of transit buses, as well as predicting occupancy at the stop
level. Arabghalizi and Labrinidis [8] proposed data-driven bus
crowding prediction models that use contextual information
such as weather, time of day, and special events to predict
bus crowding levels accurately. These models can help to im-
prove passenger experience and reduce overcrowding. Talusan
et al. [9] proposed a day-ahead and same-day ridership level
prediction model that utilizes machine learning techniques
to predict ridership levels accurately using noisy APC data.
This model can help transit operators to adjust schedules and
resources based on expected ridership levels. Zhang et al. [11]
utilized crowdsensing and semantic trajectory mining to pre-
dict passenger demand and travel patterns accurately. This
method can help to improve transit planning and management.
The aforementioned methods are certainly useful for compre-
hending the various factors that contribute to the occupancy



levels of transit buses, as well as forecasting these levels
for upcoming trips. However, it should be noted that these
approaches may not be applicable to all transit data, especially
those that lack adequate samples or have limited data available.
This is because the effectiveness of these methods largely
depends on the availability and quality of the data, and in
cases where the data is sparse or insufficient, these techniques
may not yield accurate or reliable results. Additionally, these
studies similar to the ones mentioned above do not account for
the correlation with delays in the buses that could potentially
improve the accuracy.

Some studies, such as Sun et al.[6], have utilized multi-
task learning to overcome data sparsity in predicting multiple
transit performance outcomes simultaneously. This approach
can help to address the interactions between different factors
and improve the accuracy and robustness of public transit
optimization methods. Although these methods successfully
address the issue of insufficient data in predicting delay and
occupancy, they fail to consider the larger underlying patterns
that dictate delay and occupancy levels, which are necessary
to generate dependable and precise outcomes.

Overall, these studies demonstrate the potential of data-
driven and machine learning-based approaches for optimizing
public transit systems. By utilizing historical and real-time
data, these methods can help improve transit efficiency, re-
duce congestion, and enhance the passenger experience. One
common challenge faced by prior studies is data sparsity. This
occurs when there is a lack of available data for specific loca-
tions or periods, making it difficult to predict transit demand
accurately. While some works attempt to address this issue
of data sparsity, the resulting models are not generalizable
to models predicting occupancy levels. Furthermore, some
studies have only focused on predicting a single aspect of
transit performance, such as travel time or occupancy, and have
not considered the interactions between different factors. This
is where multi-task learning can be useful, as it allows for the
simultaneous prediction of multiple outcomes. A model that
predicts both delay and occupancy can take into account how
delays affect passenger demand and crowding levels and vice-
versa. By addressing the issue of data sparsity and leveraging
multi-task learning, future research can improve the accuracy
and robustness of public transit optimization methods.

III. PROBLEM STATEMENT

Our primary objective is to predict occupancy and delay
at particular stops in a specific transit route. Specifically, we
want to estimate the occupancy level and delay of buses at
the next stop after it has crossed a certain number of stops.
Our problem consists of a set of buses traveling on a set of
assigned routes R, where r ∈ R denotes an arbitrary route.
Each route r consists of nr number of stops {s1, · · · snr}. We
denote the set of all stops by S. A vehicle visits a subset of
these stops for one trip. Given a bus traveling on a route r
and having passed through p stops (where p ≤ n), the delay
and occupancy prediction problem deals with estimating their
realizations at {sp+1, sp+2, .., sp+t} where t marks the number

TABLE I: Symbols table

Symbol Description
R Set of routes
r A single route
S Set of all stops
si Stop i
Y Output space of Occupancy and Delay
(o, d) Occupancy and Delay level of a vehicle at a particular stop
Ŷ Prediction of Occupancy and Delay
O Set of possible categories for occupancy
D Set of possible categories for delay
X Sequential Data containing stop and contextual attributes

of stops of the route we want to predict. In this paper, we
focus on estimating delay and occupancy at the next stop, i.e.,
at sp+1. Our approach is generalizable though, and we also
show experimental results for stops further ahead in the route.

We discretize occupancy and delay into a set of categories.
We chose classification models for various reasons. Firstly, our
partner agency CARTA was more interested in the levels of
delay and occupancy have a better understanding of perfor-
mance of buses. Another reason for choosing a classification
model is that it is more intuitive and easy to communicate the
percentage of times that a particular bus or train route is likely
to be delayed or full. This is more helpful for transit planners
who are looking for actionable insights.

Let D represent the set of possible categories for the delay,
i.e., D = {Very Early, Early, On-Time, Late, Very Late}, and
O represents the set of possible categories for occupancy,
i.e., O = {Low, Medium, Medium-High, High, Very-High}.
Then, we use Y = {(o, d) | o ∈ O, d ∈ D} to denote
the “joint” output space of our problem. A particular y ∈ Y
denotes a pair of occupancy and delay. Our goal is to learn
an estimate ŷ = f(o, d | X, θ), where f is a function
approximator, X denotes the input features, and θ is the set
of model parameters that we seek to learn.

IV. DATA COLLECTION AND PROCESSING

In a complex real-world problem such as occupancy and
delay prediction, it is imperative we collect, harmonize, and
clean heterogeneous data. Before describing our model, we
first focus on three major steps: data collection—the sources
from which data was collected; data preprocessing and data
merging— cleaning of the data, outlier removal, and merg-
ing of data from various sources; and feature selection—the
features used and how they were derived.

A. Data Collection:

We collected data from various sources with the help
of sensors and publicly available datasets; all datasets were
merged with APC data from the city of Chattanooga.

• Automatic Passenger Counting (APC): Each entry in the
APC is a log of the current state of the bus at a stop
sn on a trip. This log also includes scheduled and actual
stop arrival times.

• Weather: Numerical values of weather data (precipita-
tion, humidity, temperature) are collected from DarkSky
API [12]. The weather data set used in this study has a



temporal resolution of one hour and covers a period of
three years.

• General Transit Feed Data(GTFS): This data set con-
tains schedule and geographic transit information for a
trip [13]. we leverage the information from the aforemen-
tioned dataset to impute missing values in the scheduled
data in the Automatic Passenger Counter.

• Calendar: It includes all events that can affect traffic such
as public holidays and school breaks.
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Fig. 3: Count of issues faced when dealing with APC data.

B. Data Preprocessing and Data Merging:

We used three years (2020-2022) of APC transit data from
Chattanooga. The raw APC data consisted of 20.7 million
records. However, this data is very sparse and noisy as shown
in Fig. 3. Our original raw APC data consisted of 19.2 million
stops with no values for the “scheduled time” attribute, which
is imperative for the calculation of delay (naturally, we cannot
compute delay without the expected arrival time). The missing
data points in the APC dataset were imputed using GTFS data
from the transit agency. . Next, the “on-off error” (on means
passengers boarding and off means passengers alighting) was
calculated for each vehicle, transit date, and block using
equation 1, and all those blocks were filtered out where the
“on-off error” was > 0.2.

on off error =
(total ons - total offs)

total ons
(1)

Another challenge encountered in the data analysis process
was the presence of records with timepoints, indicating that
buses arrived earlier than recorded at a specific stop and stayed
at the stop to depart at their scheduled time. To address this,
timepoint data points were merged with data corresponding to
those stops, provided that they shared the same “time sched-
uled,” “trip ID,” and “transit date” attributes. Furthermore, the
data had incorrectly reported arrival times for certain stops,
where the stop entries were not in chronological order. To
ensure data accuracy and quality, all such trips were filtered
out from the dataset. The delay was calculated using equation
2, as part of the pre-processing steps. Finally, to ensure the
validity of the data analysis, all trips meeting the following
conditions were removed: Scheduled time or arrival entries
are null, occupancy at any stop is null or negative, and trips
whose delay is > |15| minutes (based on empirical distribution
of data, see below). We also added weather conditions for the

specific transit date using Darksky, public holidays, and school
breaks.

delay = time actual arrive − time scheduled (2)

Finally, occupancy and delay were binned into groups of 5
each. Occupancy was classified as: Very Low: ≤ 3, Low : 4–6,
Medium : 7–55, High 56–75 and Very High: ≥ 76. Delay was
classified as: Very Early: -15 minutes to -9 minutes, Early: -9
minutes to -3 minutes, On-Time: -3 minutes to 3 minutes, Late:
3 minutes to 9 minutes, Very Late: 9 minutes to 15 minutes. A
negative delay indicates that the bus arrived at a stop before the
corresponding time scheduled, and a positive delay indicates
that the bus arrived late at the stop. The binning was done
with the help of mean and standard deviation of delay; we
chose 15 minutes as our ideal starting and ending points
as they were two standard deviations away from the mean
covering 95.4% of our data. The classification was done due
to the sparse nature of our data. Our approach is generalizable
to other forms of discretization, such as categorizing delay
by using congestion or categorizing occupancy by using the
“crowdedness” factor [9].

C. Feature Selection:

We chose a total of 17 features after integrating APC, GTFS,
weather, public holidays, and school holidays datasets. To
convert these features into values that our machine learning
model can understand we made use of three different encoders
over the 17 features: one-hot-encoding, label encoding, and
numerical feature encoding. One-hot encoding was applied to
route ID direction, public holiday, school holiday, and day
of week features; this was done to convert string values into
numerical binary values. Further, features such as stop ID,
stop sequence, month, hour, day, year, binned delay and binned
occupancy were encoded into corresponding categorical values
using label encoder. Finally, numerical values such as tem-
perature, humidity, precipitation and scheduled headway were
scaled using min-max scaler.

V. PREDICTION MODELS

As discussed in the introduction, this paper focuses on the
prediction of occupancy and delay for public transit busses
and our goal is to help transit agencies/applications (such as
Transit, Google maps) provide more accurate arrival time and
occupancy data to their users. We propose an MTL-based
LSTM model. Our model was compared to single-task LSTM
models used for occupancy and delay prediction. The objective
of the models was to minimize the categorical loss for our
binned occupancy and delay.

A. Multitask Learning

Multi-Task Learning (MTL) is a machine learning approach
that involves training a single model to learn multiple tasks
simultaneously, offering several advantages over traditional
single-task learning methods [14]. A key advantage of MTL
is its ability to enhance model accuracy by exploiting shared



TABLE II: Data Features and Sources

Dataset Features Source Frequency Type Description

Transit

Transit date APC Variable Temporal Date when trip takes place
Route ID GTFS Variable Spatio-temporal Unique route identifier given by GTFS
Route direction name APC Variable Spatio-temporal Name of route direction
Scheduled headway APC Variable Spatio-temporal Duration between buses headed in the same route and direction at a stop
Load Derived Variable Spatio-temporal Total occupancy at the stop (after alights and boards)
Stop sequence GTFS Variable Spatio-temporal Trip sequence number for a stop
Stop ID APC/GTFS Variable Spatio-temporal Stop Identifier
Delay Derived Variable Spatio-temporal Difference between arrived time and scheduled time of the bus
Time Window Derived Variable Temporal Window of time of the day (each window is 15 min each)

Weather
Temperature Darksky 1 hour Spatio-temporal Recorded temperature
Precipitation intensity Darksky 1 hour Spatio-temporal Recorded humidity
Humidity Darksky 1 hour Spatio-temporal Amount of precipitation

Holidays School breaks Calendar 1 day Temporal Scheduled school breaks and holidays in a calender year
National holidays Calendar 1 day Temporal National holidays
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Fig. 4: Models Architecture Multitask Learning Model and Single Task Learning Models for occupancy and delay.

information across tasks, thereby enabling the model to gen-
eralize better [14]. Furthermore, MTL can help mitigate over-
fitting by encouraging the model to learn more generalizable,
robust, and universal representations that can be applied to a
wide range of related tasks [15].

The superior performance of MTL models compared to their
single-task counterparts is largely attributed to the fact that
MTL models are particularly effective in scenarios where the
tasks being performed are related to each other [15]. This char-
acteristic of MTL can be leveraged in various domains, such
as natural language processing, computer vision, and speech
recognition, among others, to simultaneously perform multiple
tasks while also improving overall model performance [14].

In our implementation of MTL, the shared branch consists
of one LSTM layer and two dense layers with ReLU as
the activation function and two dropout layers. The branched
layers have three dense layers each with ReLU [16] and finally
a dense layer with softmax activation function to get the
probabilities of each class for delay and probability as shown
in 4b. The precision, recall, and F1-score of the MTL model
are compared to those of the single-task models to assess the
MTL model’s performance. The single-task models have a
similar model architecture as that of MTL as described in

figure 4a. This model takes sequential data and features from
APC, GTFS, weather, and calendar as inputs and predicts
occupancy and delay simultaneously.

B. Transfer Learning

Transfer learning is a technique where the knowledge
learned by a pre-trained model is transferred to a new model
for a new task, the advantage is that the transferred knowledge
is used as a starting point, instead of training from scratch [17].
Another advantage of this technique is that the amount of
training data required is reduced [17].

We also analyze the amount of data required to accurately
predict the occupancy and delay for routes that were not
present in the pre-trained model. Knowledge is transferred
from the pre-trained model, which is then used to train a new
model on only a specific route, by configuring the percentage
of trips used for training (1%, 2%, 5%, 10%, 15% trips from
untrained routes). Finally, we compare our results with that
of our baseline single-task models to showcase the benefits
of using transfer learning with our Multi-task learning model.
The idea behind this approach is, if in the future a transit
agency adds a new route, we can determine the amount of



0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

MTL Occupancy STL Occupancy

1 3 5 10
Past Stops

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

MTL Delay

1 3 5 10
Past Stops

STL Delay
score_name

precision
recall
F1

Fig. 5: Precision, Recall, and F1 scores comparison of MTL
and STL models for predicting delay and occupancy.

data that is required to predict occupancy and delay for that
newly added route.

VI. RESULTS AND DISCUSSIONS

After preprocessing and merging features from different
datasets, we train and test on the remaining 2.75 million data
points ranging from 2020-01-01 to 2022-06-12. We use 90%
of the data for MTL Model training and the remaining 10%
for evaluation. We withheld 10% of the training dataset to be
used as the validation set. We use this validation set during
the training.

We group the data into trips and uniformly at random
assigned them into either training, validation, and testing sets.
We do not account for the dates as a criterion to divide the
dataset, the goal is to make our model more robust to seasonal
trends. We also wanted to avoid using data collected during
the pandemic as the majority of our training data, which would
have been the result of simply dividing the dataset sequentially.
Transit activities during this period might not be suitable to use
as training for predicting the current state of transit occupancy
and delays.

A. Hyperparameter Tuning and K-fold Cross-Validation

We performed a random grid search with K-fold cross vali-
dation for our MTL model using the Python library Ray [18].
For K-fold cross validation, we set K=5. We assessed and
validated the performance of hyperparameters configurations
using holdout data. In this hyperparameter search, we test
shared hidden LSTM layer widths of {64,128,256}, batch sizes
of {32,64,128} and the learning rates of {0.0001, 0.0005,
0.001, 0.005, 0.01, 0.05}. Sparse Categorical Cross-entropy
(SCC) is used for the loss function and Adam algorithm as
optimizer. The shared layers also include 2 dense layers of
width 128 and 64, respectively. We use 3 task-specific Dense
layers for occupancy and delay with configurations 64, 32, and

MTL STL
Model

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

Occupancy

score_name
precision
recall
F1

MTL STL
Model

Delay
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models for predicting next 10 stops, using 5 stops as input.

16 each. The best-performing configuration is shown in figure
4b, which consists of one shared hidden LSTM layer of 256
neurons followed by 2 shared hidden Dense layers of 128 and
64 fully connected neurons with ReLU activation functions,
and 3 task-specific hidden layers of 64, 32, and 16 hidden
neurons respectively[16]. We found the batch size of 256 and
learning rate of 0.001 to be optimal for this model.

For our baseline models, we created two separate state-of-
the-art LSTM models to predict delay and occupancy. The
entire model architectures for each are shown in figure 4a.
The selected configurations for these models were also de-
cided after performing a random grid search over the same
hyperparameters mentioned above.

B. MTL Evaluation

Since our MTL model performs multi-label classification,
we use the precision, recall, and F1 score as our evaluation
criteria to judge the performance of our MTL model compared
to single-task baseline models. Since our data is both sparse
and our labels imbalanced, precision and recall allows us to
correctly validate our results.

We first train the two MTL models using the hyperparameter
configurations found during the grid search. The model is
trained on the randomly sampled trip data set. For evaluation,
we randomly sampled around 900 unique trips from the test
set, which have at least 10 stops. We aggregated these trips in
15-minute time windows of the day. We use both MTL and
STL models to predict the occupancy level, and delay of buses
for the next stop after looking at the past 1, 3, 5, and 10 stops.
Since it is multi-label classification problem, we use precision,
recall and F1 score as our evaluation criteria to assess how well
the model has perform. The results are presented in figure 5. In
terms of predicting occupancy, our MTL model is consistently
outperforming STL model marginally on any number of past
stops. However, it is consistently outperforming STL model
for delay prediction by as much as 4% in all metrics. We
also evaluated the performance of our models in predicting
the subsequent 10 stops in a trip, given only the data from the
initial 5 stops. We show in figure 6, that our proposed MTL is
performing better than its STL counterparts in predicting both
the delay and occupancy of the buses 10 stops into the future.
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C. Transfer Learning Evaluation

To evaluate the performance of MTL, we developed a
transfer learning model based on the MTL model to predict
delay and occupancy on an entirely new route by leveraging
the knowledge learned from the pre-existing set of routes.
First, we trained our MTL model and baseline STL models
on the entire training dataset excluding two routes that were
randomly selected. We used transfer learning to transfer the
shared hidden layer weights of these models to a separate
model. This new model is then retrained on the two excluded
routes using varying percentages of available data (1%, 2%,
5%, and 10%). We repeated this experiment ten times to
capture the general trend. We evaluated the performance of
these models on the new routes. In this evaluation, we test the
performance of the MTL model in predicting bus delay and
occupancy at the 6th stop after the vehicle passes through 5
stops, and compare it to its STL counterparts. The results are
presented in figure 7.

Our findings suggest that the transfer learning model based
on MTL learns more efficiently given fewer samples for
training compared to the transfer learning models based on
STL when it comes to predicting occupancy. The MTL model
achieves a 95% F1 score for delay prediction with just 5%
of the additional route data with narrow distribution, whereas
the STL model requires 15% of the additional route data to
achieve similar results, indicating significant differences in
their performance for occupancy prediction. However, we also
observe that, in the case of delay prediction, the pre-trained
STL model learns much quicker as compared to our MTL
model, indicating the STL performs better for delay prediction
if it is given 5% of the data for newly added routes while
MTL model requires 10% of the data to achieve the same

performance. It is important to note that the distribution of
prediction scores for delay is very large for both STL model
and MTL models when these models are trained on less than
5% of the samples. This indicates at least 5% of the data is
necessary for even STL model to perform predict reliably for
the new routes.

D. Discussion

Our MTL framework demonstrated better performance in
predicting occupancy and delay, as measured by F1 scores,
when compared to the baseline STL models. Specifically, the
MTL model outperformed its STL counterpart in predicting
delay, while performing similarly for occupancy.

Secondly, our MTL model exhibited the ability to produce
reliable predictions for occupancy given fewer samples of
new, unseen data, thus overcoming the challenge of data
sparsity. We achieved better or comparable F1 scores by
training our pretrained MTL model on fewer samples of newly
added routes when compared to the STL model. We strongly
believe that the MTL approach mitigates the challenges in
the case of occupancy posed by data sparsity and the lack of
sufficient samples by leveraging the generalized representation
of knowledge in the shared layers. This allows our model to
make accurate predictions for occupancy, even when there are
limited samples available for certain routes. In other words,
the shared layers enable the model to learn features that are
relevant across different routes, which reduces the impact of
data sparsity and the lack of samples for individual routes.
These observations are particularly relevant as we hypothe-
sized that MTL can address the data sparsity challenges by
capturing the interrated patterns of these two tasks.

Thirdly, as far the the prediction of delay on the new
data is concerned, we have observed that STL is better at
learning on fewer samples of data as STL takes 5% of the
data of new routes to predict optimally as compared to MTL
which takes 10%. Moreover, the performance of MTL and
STL model becomes similar for delay when both models
are trained on 10%-15% of the data. We believe that the
reason for the differences between such performance is MTL
is still in the process of accounting for the correlation between
occupancy and delay in order to predict delay for newly added
routes. After it has completely accounted the correlation during
training, it starts performing better as compared to its STL
counterpart.

Finally, we observed a significant improvement in predict-
ing delay levels using the MTL framework as compared to
occupancy levels. Furthermore, our MTL model showed the
same trend when we used it to predict occupancy and delay of
the next 10 stops after it has passed through the first 5 stops,
indicating that delay as a feature depends on the occupancy
levels of previous stops, while occupancy acts independently.
This finding is reasonable since a higher occupancy level on
previous stops translates to more people boarding the bus,
ultimately causing delays. Furthermore, delay ranging from
-15 min to +15 min in our processed data (outliers were
eliminated) does not significantly affect occupancy levels.



These results suggests that people are generally willing to wait
for up to 15 minutes for buses.

VII. CONCLUSION

Urban areas heavily depend on public transit as a primary
mode of transportation, making the efficiency of transit sys-
tems crucial for the daily commute of millions of individuals.
Passengers rely on accurate information to plan their schedules
and travel comfortably, while transit agencies seek to optimize
their public bus services. Predicting occupancy and delay
accurately is therefore of great importance. However, state-of-
the-art methods for predicting these features face challenges
due to data sparsity and insufficient samples in the transit
domain. To address these challenges, we proposed an MTL
approach that outperforms the current state-of-the-art methods,
which predict occupancy and delay separately. Our MTL
model considers the correlation between the two features,
thus providing a more comprehensive view of the transit
system. We showed that our MTL model outperformed the
baseline STL models in predicting occupancy and delay, while
overcoming data sparsity.

Our approach significantly improves the prediction of delays
compared to its STL counterpart. Furthermore, our MTL
model requires only 5% data from newly added routes to
achieve the same level of accuracy for occupancy as a model
trained on a subset of the routes, whereas STL models require
three times as much data. Our findings suggest that a multitask
learning approach is a promising tool for accurately predicting
transit occupancy and delay in the presence of sparse and noisy
data.

REFERENCES

[1] Freemark, Yonah , “US Public Transit Has Struggled to
Retain Riders over the Past Half Century. Reversing This
Trend Could Advance Equity and Sustainability.” The
Urban Institute, 2021.

[2] U.S. Department of Transportation, “U.s. department
of transportation FY2022-26 strategic plan,”
https://www.transportation.gov/sites/dot.gov/files/2022-
04/US DOT FY2022-26 Strategic Plan.pdf, 2022,
accessed on March 15, 2023.

[3] J. P. Chanchico, P. C. M. Garcia, C. M. Festin, and
W. M. Tan, “Waypoint: Online semi-automatic vehicle
occupancy data collection system,” in 2021 International
Conference on Information and Communication Technol-
ogy Convergence (ICTC), 2021, pp. 961–966.

[4] Transportation Research Board and National Academies
of Sciences, Engineering, and Medicine, Using
Archived AVL-APC Data to Improve Transit
Performance and Management. Washington, DC: The
National Academies Press, 2006. [Online]. Available:
https://nap.nationalacademies.org/catalog/13907/using-
archived-avl-apc-data-to-improve-transit-performance-
and-management

[5] S. Basak, F. Sun, S. Sengupta, and A. Dubey, “Data-
driven optimization of public transit schedule,” in Big

Data Analytics, S. Madria, P. Fournier-Viger, S. Chaud-
hary, and P. K. Reddy, Eds. Cham: Springer Interna-
tional Publishing, 2019, pp. 265–284.

[6] F. Sun, A. Dubey, C. Samal, H. Baroud, and C. Kulkarni,
“Short-term transit decision support system using multi-
task deep neural networks,” in 2018 IEEE International
Conference on Smart Computing (SMARTCOMP), 2018,
pp. 155–162.

[7] Y. Ou, AI for Real-Time Bus Travel Time Prediction
in Traffic Congestion Management. Cham: Springer
International Publishing, 2022, pp. 63–84. [Online].
Available: https://doi.org/10.1007/978-3-030-72188-6 4

[8] T. Arabghalizi and A. Labrinidis, “Data-driven
bus crowding prediction models using context-
specific features,” ACM/IMS Trans. Data Sci.,
vol. 1, no. 3, sep 2020. [Online]. Available:
https://doi.org/10.1145/3406962

[9] J. P. Talusan, A. Mukhopadhyay, D. Freudberg, and
A. Dubey, “On designing day ahead and same day
ridership level prediction models for city-scale transit
networks using noisy apc data,” in 2022 IEEE Interna-
tional Conference on Big Data (Big Data), 2022, pp.
5598–5606.

[10] R. Silva, S. M. Kang, and E. M. Airoldi, “Predicting
traffic volumes and estimating the effects of shocks
in massive transportation systems,” Proceedings of
the National Academy of Sciences, vol. 112, no. 18,
pp. 5643–5648, 2015. [Online]. Available: https://
www.pnas.org/doi/abs/10.1073/pnas.1412908112

[11] N. Zhang, H. Chen, X. Chen, and J. Chen, “Forecasting
public transit use by crowdsensing and semantic trajec-
tory mining: Case studies,” ISPRS International Journal
of Geo-Information, vol. 5, no. 10, 2016.

[12] The Dark Sky Company, LLC, “Dark Sky API,” https:
//darksky.net/dev, 2012–2021, accessed: March 15, 2023.

[13] B. McHugh, “Pioneering open data standards: The gtfs
story,” in Beyond Transparency: Open Data and the
Future of Civic Innovation. Code for America Press,
2013, ch. 10, pp. 125–135.

[14] M. Crawshaw, “Multi-task learning with deep neural
networks: A survey,” ArXiv, 2020.

[15] Y. Zhang and Q. Yang, “A survey on multi-task learning,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 34, no. 12, pp. 5586–5609, 2022.

[16] V. Nair and G. Hinton, “Rectified linear units improve
restricted boltzmann machines vinod nair,” vol. 27, 06
2010, pp. 807–814.

[17] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,
H. Xiong, and Q. He, “A comprehensive survey on
transfer learning,” Proceedings of the IEEE, vol. 109,
no. 1, pp. 43–76, 2021.

[18] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gon-
zalez, and I. Stoica, “Tune: A research platform for
distributed model selection and training,” arXiv preprint
arXiv:1807.05118, 2018.


