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Abstract—Internet of Things (IoT), edge/fog computing, and
the cloud are fueling rapid development in smart connected
cities. Given the increasing rate of urbanization, the advancement
of these technologies is a critical component of mitigating
demand on already constrained transportation resources. Smart
transportation systems are most effectively implemented as a
decentralized network, in which traffic sensors send data to small
low-powered devices called Roadside Units (RSUs). These RSUs
host various computation and networking services. Data driven
applications such as optimal routing require precise real-time
data, however, data-driven approaches are susceptible to data
integrity attacks. Therefore we propose a multi-tiered anomaly
detection framework which utilizes spare processing capabilities
of the distributed RSU network in combination with the cloud for
fast, real-time detection. In this paper we present a novel real
time anomaly detection framework. Additionally, we focus on
implementation of our framework in smart-city transportation
systems by providing a constrained clustering algorithm for
RSU placement throughout the network. Extensive experimental
validation using traffic data from Nashville, TN demonstrates
that the proposed methods significantly reduce computation
requirements while maintaining similar performance to current
state of the art anomaly detection methods.

Index Terms—Smart Cities, Transportation, Anomaly Detec-
tion, Decentralized

I. INTRODUCTION

Emerging trends and challenges: Internet of Things

(IoT), edge/fog computing, and the cloud are fueling rapid

development in smart connected cities. Given the increasing

rate of urbanization, the advancement of these technologies

is a critical component of mitigating demand on already

constrained transportation resources. Recent research on smart

transportation systems has focused on optimal route planning

for congestion reduction, which has shown huge potential

impact on maximizing existing transportation resources [1].

The costs of optimizing route planning are relatively low

compared to large scale infrastructure upgrades, making this an

attractive option for city planners and transportation experts.

Approaches to optimal route planning are typically data-

driven [2], [3], [4]. The scale and real-time nature of these

systems require shared computing architectures to handle the

high velocity and volume of data originating from small sen-

sors placed throughout the network. One solution is edge/fog
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computing. In this case, services are moved to road-side units

(RSUs), which are low-powered edge devices [5] situated

between the sensor level and the cloud. Each RSU hosts

various computation services for a collection of sensors, and

communicates with the cloud. Implementing a network of

RSUs moves computation to the edge of the network, creating

a decentralized data processing system.

Data-driven approaches are susceptible to data integrity

attacks. The dynamic nature of real-time routing systems

means that the effects of such an attack have immediate impact

and substantial cascading consequences [6]. Additionally, the

distributed and shared nature of the underlying architecture

provides multiple points of entry, making data integrity attacks

even more likely. Given the potential human and economic

impacts of such an attack, the trustworthiness of data in

smart transportation networks is of critical importance. While

there is substantial research regarding anomaly detection in

transportation networks [7], these approaches are often com-

putationally costly and do not adapt well to the real-time nature

of distributed smart transportation data networks. Despite the

critical importance of data integrity in such systems, research

in this area remains underdeveloped.

Current state of the art statistical detection methods typically

rely on measures of central tendency such as median and mean

or their variants. While this approach works for deductive
attacks and additive attacks, in which sensor readings are

decreased or increased respectively, it fails for camouflage
attacks in which sensor readings are increased at some sensors

and decreased at other sensors. Camouflage attacks are of

particular importance when working with data-integrity attacks

in transportation networks, as such an attack would aim to

divert traffic and resources to specific regions or roads and

thus, maximize the effects of an attack.

Therefore we aim to improve data integrity in decentralized

smart transportation systems by proposing a novel real-time

anomaly detection algorithm for deductive and camouflage

data integrity attacks. Our approach maintains similar ac-

curacy to traditional methods, while addressing two critical

components of scaling anomaly detection to decentralized

systems. First, it reduces the computational costs associated

with computationally expensive traditional anomaly detection

by avoiding continuous computation on all sensors in real time.

This is accomplished by continuously monitoring anomalies at

the RSU level using a statistical means approach for aggregate

anomaly detection and reserving the more computationally

costly sensor level detection for cases in which anomalies are

found at the RSU level. Second, our approach is designed
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so that the anomaly detection process itself is distributed,

mirroring the natural architecture of modern decentralized

smart networks and allowing seamless integration with such

systems.

We also provide a constrained hierarchical clustering algo-

rithm for RSU placement in an existing transportation system

fitted with traffic sensors. As shown later, this approach

improves zone level detection while also maximizing spare

processing capacity at the RSU level.

Contributions: This paper presents a decentralized anomaly

detection approach and architecture for distributed smart trans-

portation systems. Our focus is on orchestrated data-integrity
attacks, in which an organized attacker falsifies data in a

systematic attack process. This paper’s main contributions are

as follows:

• Anomaly detection is framed as a decentralized com-

putational system allowing for real-time processing and

scalability.

• An algorithm is provided for RSU placement which

maximizes processing capacity of the RSU network and

optimizes central tendency anomaly detection methods.

• We present a novel real time anomaly detection algorithm

which reduces the computational costs associated with

traditional anomaly detection methods while maintaining

similar accuracy.

Outline: We start by defining the problem and model

assumptions in Section II. Related work is covered in III. The

System Model is covered in Section IV, while the Sensing

Architecture is covered in Section V. RSU placement is

outlined in Section VI and the anomaly detection framework

is proposed in Section VII. Finally, simulations and results are

provided in Section VIII.

II. PROBLEM STATEMENT

Our primary concern is orchestrated data integrity attacks

in smart, decentralized transportation systems.

A. Problem Overview

The goals of our system are the following:

• Real-time identification of orchestrated data-integrity at-

tacks.

• Decentralized implementation. The system should inte-

grate easily with modern smart-city infrastructure and

be optimized for common hardware limitations in such

systems.

• Deductive and Camouflage Attacks - extend traditional

statistical means anomaly detection to camouflage attacks

in which mean and median are unchanged.

• Reduce computation requirements compared to tradi-

tional anomaly detection methods.

B. Assumptions

To achieve the above goals, we make the following assump-

tions.

1) Sensor Model: We assume that the city has sensors

capable of transmitting traffic speed data wirelessly to an RSU.

Fig. 1. System Architecture

In our investigation, speed data is collected by the sensor and

sent to its associated RSU.

2) Road-side Units: RSUs are low-powered fog nodes

[5] placed throughout the transportation network which are

capable of collecting and transmitting data from a collection

of sensors to a centrally located cloud-based routing system.

3) Centralized Cloud: A centralized cloud network is avail-

able to provide additional processing capabilities for sensor

level anomaly detection.

4) Attack Model: The attacker is capable of compromising

a subset of sensors or RSUs by manipulating their outputs.

These attacks occur at the sensor level. As the focus of this

paper is orchestrated data-integrity attacks, sensor or RSU

faults from physical failures is outside the scope of this paper.

C. Our Approach

The architecture for our system is detailed in Figure 1,

and consists of three fundamental components: the Sensor

level, RSU level and Cloud. Our anomaly detection framework

thus consists of two components, zone level detection and

sensor level detection. Zone level detection is run at the

RSU level, while the more computationally expensive sensor

level detection runs at the cloud. Framing detection in this

way maximizes existing hardware resources while reducing

computation requirements compared to traditional detection

approaches.

A major focus of this paper is on the integration and

implementation of the anomaly detection framework in de-

centralized smart transportation networks. As RSUs are fog

nodes, a fundamental question is how to deploy these devices

throughout the network. We identify three critical consid-

erations to answering this question. First, RSUs should be

located as close to possible to the sensors streaming to it in

order to minimize network latency. Second, as RSUs are low-

powered devices, the maximum number of sensors mapped to

a single RSU is to be constrained. Lastly, we look to group

sensors together as to maximize the efficiency of our anomaly

detection approach.
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III. RELATED WORK

Smart city research has advanced rapidly in recent years.

A large focus of this research has focused on implemen-

tation of sensor systems for transportation, communication

and infrastructure monitoring [8], [9], [10], [11], [12]. In

general, anomaly detection is focused on finding deviations

in single (point) or sequence (collective) values from normal

expected behavior. Traditional anomaly detection is based on

classification, statistical, state based, clustering or informa-

tion theory [7]. Classification methods are usually based on

Support Vector Machines (SVM), Bayesian Models, Gaussian

Processes or Neural Networks [13]. These methods require

large scale, detailed and accurate models of system behavior.

Additionally, supervised classification models require careful

consideration regarding user data privacy. This is of particular

concern when dealing with transportation systems and the

specific movement of users over time. State based methods

use Kalman Filtering [14] to estimate normal behavior. These

methods require making realistic assumptions on data distribu-

tions, a challenging task. Additionally hardware considerations

must be accounted for [15].
Our primary concerns regarding the anomaly detection prob-

lem are accuracy, computational requirements and easy distri-

bution over a decentralized network. For this reason, our zone

level detection uses a statistical approach. Related statistical

approaches include auto-regressive, exponential or cumulative

weighted moving averages (ARMA, EWMA, CWMA) and

Cumulative Sum Control Chart (CUSUM) of data as metrics

under normal operating behavior. These approaches are light

weight, and do not necessarily require anomalous data. Our

work presents a hybrid approach which uses a statistical

mean ratio that has proven effective in detecting data-integrity

attacks in power grid networks [16] and Gaussian Processes

for sensor level detection [17].
Hierarchical anomaly detection has shown to be useful

in monitoring large scale distributed web architectures [18].

The advantage of hierarchical anomaly detection is that the

detection computation can be balanced between low-powered

edge devices and central computation clusters. One approach is

to keep a central model of expected data behavior to compare

with current data [19]. In this case, when anomalous patterns

are found in the system the second, more computationally

expensive, procedure of identifying anomalous nodes within

the subsystem is performed [20], [21].
RSU placement has been studied in relation to maximizing

connectivity for smart cities using intersection-priority [22],

minimizing event reporting times along highways [23] and

maximizing information flow in urban areas [24]. Approaching

RSU placement through the context of anomaly detection

efficiency is a new topic.

IV. SYSTEM MODEL

A. Data Overview
To simulate the framework provided in Figure 1, historical

data is collected from the HERE API [25] for use as real-

time sensor data for Nashville, TN. Two months of data was

extracted from February 12, 2018 to April 12, 2018 for use as

historical training and reference data. Additionally, two weeks

of data from April 16, 2018 to April 27, 2018 was extracted

for testing and simulation. Only weekdays (Monday-Friday)

are considered.
The HERE data is composed of time stamped speed record-

ings, identified by its Traffic Message Channel identification

(TMC ID), [26]. Each TMC represents a segment of road in

which the speed was recorded. In our framework each TMC

ID acts as a sensor which provides speeds for optimal routing.

There are 9,979 TMCs, and therefore sensors, in our data set.

B. Data Integrity Attack Overview
Traditional anomaly detection in transportation systems

focus on detecting faulty sensors [13] [17], whether from

hardware failure or software issues in the collection of data.

In this model, anomaly detection is run in the cloud for each

sensor in isolation. Data-integrity attacks on the other hand

are orchestrated from a collection of sensors simultaneously to

maximize the effect of the attack on the global transportation

system.
The shared nature of computing resources in smart con-

nected cities provide multiple entry points for attackers, mak-

ing attacks likely events. Additionally, the dynamic real-time

nature of such systems means that well designed attacks will

have substantial cascading effects throughout the system. In

this sense, focused localized attacks on a collection of sensors

will propagate throughout the network quickly.
While traditional anomaly detection operate at the sensor

level, the identification of orchestrated attacks requires ag-

gregate detection across groups of sensors. In this context,

organized data integrity attacks spanning multiple sensors

within a selected region can have cascading effects throughout

the transportation system.
Our focus is primarily on two types of data integrity attacks.

In the first type of attack a selected percentage of sensors have

their speed values reduced and is referred to as a deductive

attack. These attacks aim to diverge traffic away from attacked

sensors by convincing the routing system that certain roads

have more congestion than in reality.
The second type of attack is camouflage attacks, in which

an organized attacker balances additive and deductive attacks

to evade detection and exert certain behaviors on the system.

Camouflage attacks are of particular concern in transportation

routing systems as an attacker can deviate network behavior

at a fine granular level to maximize impact of the attack. One

scenario would be an attack aimed at gathering vehicles along

a specific road segment or crowding drivers in a highly dense

area. Identifying attacks of this nature is of critical importance

to first responders and the defense industry, yet as this ap-

proach would leave mean and median unchanged, camouflage

attacks evade traditional central tendency approaches.

C. Simulated Deductive and Camouflage Attacks
To simulate deductive attacks and camouflage attacks, we

use the historical standard deviation of a sensor’s speed, repre-

sented by σs, as a basis for altering speed value d at attacked
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sensor s. Therefore das represents the speed value at sensor s
when attacked while ds is the actual speed recorded at sensor

s when not attacked. The severity of the attack is governed by

δ. Equation 1 represents the process for altering speeds from a

deductive attack at a single sensor while Equation 2 represents

the process for altering speeds from an additive attack at a

single sensor.

das = ds − δ ∗ σs (1)

das = ds + δ ∗ σs (2)

Each RSU r is responsible for a subset of sensors Sr ⊂ S
where Sr is the subset of sensors at RSU r and S represents all

the sensors in the network. Therefore, if we look to simulate

a deductive attack at RSU r during time window k affecting

p percentage of sensors, then p percentage of sensors are

randomly selected for the attack.

Conversely, to simulate a camouflage attack during time

window k, then p percentage of sensors at that RSU are

selected for attack and each of the attacked sensors is randomly

assigned to have its speed readings altered by a deductive

attack from Equation 1 or an additive attack from Equation

2.

V. SENSING ARCHITECTURE

In this section, we present a decentralized system architec-

ture for efficient sensing over a large city in real time. The

system is comprised of three central components as shown in

Figure 1.

A. Road Sensor System - Sensor Level

Traffic information is maintained by sensors distributed

throughout the network edges. The sensor units are responsible

for capturing current speed values at each road. Together, the

sensor network provides real-time monitoring of the trans-

portation network. In the context of our data, each TMC ID

[26] represents a sensor streaming real-time vehicle speed

information.

B. Roadside Unit System - RSU Level

Roadside Units (RSUs) are small, low powered devices with

wireless capabilities [5]. RSUs have two main responsibilities.

First, the RSU level is responsible for communicating data

from the sensors to the central cloud. Second, spare processing

capacity is used for zone level anomaly detection described

in Section VII-A. A depiction of the interaction between the

sensor level and RSU level is shown in Figure 2.

C. Utility System and Cloud Service

The cloud service is a broad term incorporating the utility

system, routing services and long term data storage. For this

work we are primarily concerned with the utility system, which

is a collection of high powered computation nodes residing in

the cloud. The role of the utility system is providing processing

for sensor level detection.

Fig. 2. Data Collection Framework - RSU-Sensor Interaction

VI. RSU DEPLOYMENT - CLUSTERING PROCEDURE

The way in which RSU devices are deployed affects re-

source utilization and network efficiency. Therefore in this sec-

tion we provide a constrained hierarchical clustering algorithm

for RSU deployment.

As each RSU is responsible for a subset of sensors, ulti-

mately the goal of the algorithm is to match each sensor si
with an RSU. Through a mapping process, each RSU r will

be responsible for the data collected from a subset of sensors

Sr ⊂ S where Sr is a collection of sensors mapped to RSU

r.

Since zone level detection outlined in Section VII-A is op-

timized when sensors with similar traffic patterns are grouped

together (see Section VIII-C), feature sets are generated for

each cluster using training speed data from the HERE API. For

cluster c consisting of sensors Sc, the speed data from these

sensors is broken into 30 minute time windows from 7:00AM

to 9:00PM, resulting in 28 features total. By taking the mean

speed at each time window k, the feature set for cluster c
is represented by F c = {f c(k1), ..., f

c(k28)}. Clusters are

grouped together by similarity. We therefore use euclidean

distance to measure the similarity between two clusters.

Algorithm 1 RSU Clustering

1: Input: m, η
2: Initialize: C ← S
3: while len(C) > m do
4: lmin =∞
5: for i = 0 to len(C) do
6: cj ← nearest(ci, C)
7: if (len(Sci )+len(Scj )) ≤ η then
8: l(i,j) ← euclideanDist(F ci , F cj )
9: if l(i,j) < lmin then

10: lmin ← l(i,j), cv ← ci, cw ← cj
11: end if
12: end if
13: end for
14: cnew ← merge(cv, cw)
15: add cnew to C
16: remove cv and cw from C
17: end while
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Fig. 3. Cluster RSU - full layout and downtown Nashville. The clustering
approach results in multiple RSUs in the highly travelled downtown area,
allowing for resources to be deployed according to demands of the sensor
network.

The clustering procedure is detailed in Algorithm 1. Algo-

rithm 1 relies on three helper functions:

• nearest(ci, C): returns the cluster whose centroid is geo-

spatially closest to the centroid of cluster ci, according

to haversine distance.

• euclideanDist(F ci , F cj ): returns the euclidean distance

between the feature sets of clusters ci and cj .

• merge(cv, cw): returns a new cluster. The feature set of

the new cluster is recalculated using the combined set of

sensors in the new cluster.

Line one specifies the input parameters where m is the target

number of clusters and η is the maximum number of sensors

in a cluster. In the initialization step, C represents the set of

all clusters. C is initially set such that each cluster consists of

a single sensor.

The clustering procedure starts at line (3) and continues until

the number of clusters equals m. As we loop through each

cluster ci, the geographically nearest cluster cj is identified. If

the η constraint is satisfied and the euclidean distance between

Fi and Fj is less than lmin then we reassign lmin to l(i,j) and

update cv and cw accordingly. After each cluster is iterated

through, (cv , cw) are merged into a single cluster cnew which

is added to C and cv , cw are subsequently removed.

The visual representation of the cluster RSU network is

provided in Figure 3. For comparison, a grid RSU layout

where the geo-spatial boundary of the sensor network is

divided into a square grid with an RSU located at the center

of each grid was generated as shown in Figure 4.

Comparing the two layouts, the cluster RSU layout does a

better job concentrating RSUs in areas where there are a high

number of sensors. Additionally, by only merging spatially

adjacent clusters, the subset of sensors at each RSU maintains

a connected sub-graph of road edges.

The effect of η is illustrated by the sensor distributions in

Figures 5 and 6. By limiting the maximum number of sensors

in each RSU, the processing and networking demands placed

on each RSU can be controlled. Conversely, the grid layout

includes two RSUs that taken together, are responsible for

approximately 30% of all the sensors in the network. This

imbalance in sensor distribution creates high stress on a few

RSUs while under-utilizing the resources at the remaining

RSUs.

Fig. 4. Grid RSU - full layout and downtown Nashville. The grid layout
results in only one RSU in the highly travelled downtown area.
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Fig. 5. Grid RSU layout histogram - sensors per RSU distribution. This layout
places high stress on a small number of RSUs while under-utilizing the full
processing capabilities of the network.

0 10 20 30 40 50
0

5

10

15

20

Number of sensors per RSU

F
re

q
u
en

cy

Fig. 6. Cluster RSU layout histogram - sensors per RSU distribution. Number
of sensors in an RSU does not exceed η = 50. Constraining the number of
sensors at an RSU places an upper bound on processing demand and ensures
processing requirements do not exceed the capacity of RSU hardware.

VII. ANOMALY DETECTION

This section describes our novel two-tiered anomaly detec-

tion approach in which zone level detection is continuously

run at the RSU network and sensor level detection is used to

identify sensors compromised by data integrity attacks. Sensor

level detection is only performed on a set of sensors when an

attack is first identified at the zone level.

A. Zone Level Detection

The zone level detection provides a mechanism for identify-

ing data integrity attacks at the RSU level. Zone level detection

is processed at the RSUs.

Each sensor continuously transmits time-stamped speed data

to its RSU. Since each RSU r is responsible for a subset of

sensors, the RSU collects the data from its set of sensors in

278



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Attack Started

Attack Stopped

Time Window (k)

Q
R

at
io

No Attack

Deductive

Camouflage

Fig. 7. Qr(k) under deductive and camouflage attacks at a single RSU. Time
Window (k) set to 30 minute intervals, δ=2.5 and p=35%.

the last time window k. At each time window k, the harmonic

mean HMr(k) and arithmetic mean AMr(k) are calculated

per Equations 3 and 4 respectively. The statistical metric used

for anomaly detection is the ratio of HMr(k) to AMr(k), as

shown in Equation 5.

HMr(k) =
S

∑S
s=1

1

ds

(3)

AMr(k) =

∑S
s=1 ds
S

(4)

Qr(k) =
HMr(k)

AMr(k)
(5)

While traditional central tendency detection methods based

on arithmetic mean or median are effective in detecting ad-

ditive or deductive attacks, camouflage attacks go undetected

since arithmetic mean and median remain the same. As shown

in Figure 7, where speed readings for 35% of sensors at a

selected RSU were subjected to a δ attack of 2.5, Qr responds

to camouflage attacks as well as deductive attacks.

For detection, Qr(k) is compared to the historical average

and standard deviation of Qr(k) at time window k as shown in

Equations 6 and 7. εr is a threshold that is unique to each RSU.

An investigation for determining εr is provided in Section

VIII-A

Qr(k) < Qr
ave(k)− εr ∗Qr

std(k) (6)

Qr(k) > Qr
ave(k) + εr ∗Qr

std(k) (7)

B. Sensor Level Anomaly Detection

For many smart transportation applications, such as optimal

routing systems, we must identify which sensors are attacked

to mitigate the effects of data integrity attacks in real time.

Therefore sensor level detection is required.

For sensor level detection we use Gaussian Processes to get

the expected speed and standard deviation at a given sensor

using the 15 sensors closest to that sensor. This approach

assumes a high correlation between speed readings at nearby

sensors [17]. We use CUSUM for detection, however as sensor

level detection is not continuous in our two-tiered anomaly

detection approach the process is restricted to two windows.

As a kernel function, the commonly used RBF (squared

exponential) kernel is used. A study of detection accuracy and

computation time between continuous sensor level detection

compared to two-tiered anomaly detection is provided in

Section VIII.

VIII. SIMULATIONS AND RESULTS

A. Determination of ε For Zone Level Detection

The effectiveness of zone level detection is highly dependent

on ε. For each RSU we simulated 100 deductive and 100

camouflage attacks with δ held constant at 2.5 in which 35% of

the sensors at an RSU are attacked. For each attack, a random

time window in the testing set between 7:00AM and 9:00PM

was attacked and zone detection was performed. To obtain

false positive and true negative results, zone detection was

also run at the same time window without the presence of a

data integrity attack. The process was repeated for εr values

ranging from 0 to 10 and recall (TPR) and false positive rate

(FPR) were recorded at each simulation step.

The cost of false positives at the zone level in two-tiered

anomaly detection is only in terms of the increased computa-

tion time required to run sensor level detection. Since the cost

of false positives is low, the value of εr is set such that the

number of false positives is approximately 20% at each RSU.

Therefore while the exact value of εr is unique at each RSU,

we can expect the resulting false positive rate to be roughly

20%.

Figure 8 provides a graphical representation of this process

for an example RSU, where recall was 99% and 94% for

deductive and camouflage attacks respectively when FPR was

20%. As discussed in the following section, recall at the zone

level remains relatively consistent across the RSU network

following this procedure.

B. Zone Level Detection - Investigation of δ and p

Here we investigate the bounds for which our zone level

detection is viable. There are two primary considerations in

quantifying the severity of a data integrity attack. First, the

severity of the attack on each affected sensor is represented

by δ (see Equations 1 and 2). Second, the percentage of sensors

affected by the attack (p) represents the breadth of an attack

at each RSU.

Two simulations are configured. First, p was held constant

at 35% and δ was varied from 0 to 3.5. For each δ value,

100 deductive attacks and 100 camouflage attacks were again

simulated at each RSU in the network. However for this

simulation, true and false positives and negatives at each RSU

were aggregated together at each value of δ, resulting in a

single recall value for the entire network at every δ. The results
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Fig. 8. Epsilon true positive rate (TPR) vs false positive rate (FPR) for a
single RSU, deductive and camouflage attacks. These curves were generated
for each RSU and the value of εr was selected such that FPR was 20%.
Attack parameters: δ = 2.5, p = 35%

of this simulation are provided in Figure 9, and show that for

both deductive and camouflage simulations the recall is greater

than 90% when δ is greater than 2.25.

For the second simulation the same procedure was followed

except this time δ was held constant at 2.5, while p was varied

from 0% to 60%. As shown in Figure 10, zone level detection

retains 90% accuracy for attacks affecting as low as 25% of

the sensors at an RSU.

C. Zone Level Detection Comparison - Grid vs Cluster RSU
Deployment

In Section VI we discussed the advantages of constrained

hierarchical clustering for RSU placement in terms of maxi-

mizing hardware resources. Here we investigate the benefits

of this approach in terms of anomaly detection.

The same zone level attack simulation as detailed in Section

VIII-A was applied to the cluster RSU and grid RSU networks

respectively, with δ = 2.5 and p = 35%. For detection, εr,

generated from Section VIII-A, is used. To find εr for each

RSU in the grid network, the process in Section VIII-A was

repeated for the grid network. Recall statistics for each RSU

is provided in Figure 11 while precision is shown in Figure

12.

Both networks are capable of running zone level detection,

as average recall was over 90% for both RSU configurations.

This implies that our zone level detection algorithm is an

adequate solution regardless of RSU layout. However, recall

is higher for the cluster RSU configuration showing that

clustering groups of sensors by traffic pattern similarity has

a positive effect on zone level anomaly detection.

D. Two-Tiered Anomaly Detection vs Sensor Only Detection

In Section VII two-tiered anomaly detection was outlined.

We now move on from zone level detection and investigate

two-tiered anomaly detection compared to continuous sensor
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Fig. 9. Recall (TPR) aggregated across all RSUs with five or more sensors vs
magnitude of attack (δ). εr used for detection and the percentage of sensors
attacked p is held constant at 35%. Recall for the network is greater than 90%
when δ is greater than 2.25 for both deductive and camouflage attacks.
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Fig. 10. Recall (TPR) aggregated across all RSUs with five or more sensors
vs percentage of sensors attacked at each RSU (p). Full network simulation -
each unique εr used for detection and δ is held constant at 2. Recall for the
network is greater than 90% for attacks affecting 25% or more sensors for
both deductive and camouflage attacks.

only detection with Gaussian Processes. The simulation proce-

dure remains the same as outlined in Section VIII-C, however

now we find true positives, true negatives, false positives and

false negatives at the sensor level.
Recall and precision are provided in Figures 13 and 14

respectively. Note that while true and false positives and neg-

atives were calculated at the sensor level, recall and precision

as shown in Figures 13 and 14 are aggregated at the zone

level. This procedure allows us to visualize the interaction

between zone level detection in the previous section and two-

tiered detection provided here, as well as directly compare

computation time per RSU as shown in Figure 15.

We find that precision and recall are similar between two-

tiered and sensor only detection. The major difference between

these approaches is in computation time, where two-tiered

detection is 35% less than sensor only detection and the
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Fig. 11. Zone level recall of (a) grid RSU layout - deductive attack simulation,
(b) Cluster RSU layout - deductive attack simulation, (c) grid RSU layout -
camouflage attack simulation, (d) cluster RSU layout - camouflage attack
simulation. Each data point represents recall at a single RSU in the network.
Only RSUs with more than 5 sensors considered. Attack parameters: δ =
2.5, p = 35%

50% 60% 70% 80% 90% 100%

(a)

(b)

(c)

(d)

Precision

Fig. 12. Zone level precision of (a) grid RSU layout - deductive attack
simulation, (b) Cluster RSU layout - deductive attack simulation, (c) grid RSU
layout - camouflage attack simulation, (d) cluster RSU layout - camouflage
attack simulation. Each data point represents precision at a single RSU in the
network. Only RSUs with more than 5 sensors considered. Attack parameters:
δ = 2.5, p = 35%

computation time of zone level detection was negligible in

relation to the other two approaches.

An important observation is that our simulation procedure

effectively attacked 50% of the time, a much higher percentage

than can be expected in an actual deployment scenario. As

two-tiered detection only requires sensor level detection when

an attack is detected at the zone level and the computation time

from zone level detection is negligible, it can be assumed that

a 35% reduction in computation time between two-tiered and

sensor only detection is a conservative estimate.

IX. CONCLUSION AND FUTURE WORK

In this paper we presented a novel two-tiered anomaly

detection framework that maintains similar accuracy to current

state of the art systems with a significant reduction in pro-

cessing requirements. Additionally we covered the integration

of our anomaly detection framework in decentralized smart

transportation systems and provided a constrained hierarchical

clustering algorithm for RSU deployment.

Our current work focuses on deductive and camouflage

attacks. We would like to extend this to a variety of potential

attacks. Therefore, future work will include extending this

work to additive attacks as well as strategic attacker events

in which the attacker has a comprehensive understanding of

transportation system behavior. Additive attacks have worked

in other aggregate anomaly detection cases [16]. These attacks

80% 90% 100%
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(d)

Recall (TPR)

Fig. 13. Sensor level recall of (a) sensor only (GP) - deductive attack simu-
lation, (b) two-tiered detection - deductive attack simulation, (c) sensor only
(GP) - camouflage attack simulation, (d) two-tiered detection - camouflage
attack simulation. Each data point represents aggregate recall of sensor level
detection at a single RSU in the network. Only RSUs with more than 5 sensors
considered. Attack parameters: δ = 2.5, p = 35%

80% 90% 100%

(a)

(b)

(c)

(d)

Precision

Fig. 14. Sensor level precision of (a) sensor only (GP) - deductive attack sim-
ulation, (b) two-tiered detection - deductive attack simulation, (c) sensor only
(GP) - camouflage attack simulation, (d) two-tiered detection - camouflage
attack simulation. Each data point represents aggregate precision of sensor
level detection at a single RSU in the network. Only RSUs with more than 5
sensors considered. Attack parameters: δ = 2.5, p = 35%
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Fig. 15. Computation time (seconds) of (a) sensor level detection (GPs),
(b) zone level detection, (c) two-tiered detection

cause an increase in the Q value, which is capped at one. By

taking the inverse of our metric in relation to a jam factor,

which is also available as one of the data streams from the

HERE API, we can extend this work to such attacks.

Additionally, we would like to investigate the cascading

effects of data-integrity attacks on routing systems. We also

plan to use additional information, such as weather or planned

events, to predict anomalies ahead of time.
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