
Time Synchronization Services for Low-Cost Fog Computing
Applications

Peter Volgyesi, Abhishek Dubey, Timothy Krentz, Istvan Madari, Mary Metelko, Gabor Karsai
peter.volgyesi@vanderbilt.edu

Institute for So�ware Integrated Systems, Vanderbilt University
1025 16th Ave South

Nashville, TN 37212, USA

ABSTRACT
�is paper presents the time synchronization infrastructure for a
low-cost run-time platform and application framework speci�cally
targeting Smart Grid applications. Such distributed applications
require the execution of reliable and accurate time-coordinated
actions and observations both within islands of deployments and
across geographically distant nodes. �e time synchronization
infrastructure is built on well-established technologies: GPS, NTP,
PTP, PPS and Linux with real-time extensions, running on low-cost
BeagleBone Black hardware nodes. We describe the architecture,
implementation, instrumentation approach, performance results
and present an example from the application domain. Also, we
discuss an important �nding on the e�ect of the Linux RT PREEMPT
real-time patch on the accuracy of the PPS subsystem and its use
for GPS-based time references.

CCS CONCEPTS
•Hardware →Smart grid; •Computer systems organization
→Real-time system architecture;

KEYWORDS
Time Synchronization, Smart Grid, Fog Computing, GPS, PTP, Real-
time Systems
ACM Reference format:
Peter Volgyesi, Abhishek Dubey, Timothy Krentz, Istvan Madari, Mary
Metelko, Gabor Karsai. 2017. Time Synchronization Services for Low-Cost
Fog Computing Applications. In Proceedings of RSP’17, Seoul, Republic of
Korea, October 15–20, 2017, 7 pages.
DOI: 10.1145/3130265.3130325

1 INTRODUCTION
�e Smart Grid is envisioned as a complex, distributed embedded
system that brings computation and communication into power
system engineering. In a Smart Grid, for example, smart meters
installed at homes will autonomously buy and sell energy from
and to other prosumers who are themselves producers and con-
sumers of energy, while overall monitoring and control systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
RSP’17, Seoul, Republic of Korea
© 2017 ACM. 978-1-4503-5418-9/17/10. . .$15.00
DOI: 10.1145/3130265.3130325

autonomously maintain grid stability. Obviously, such functions
necessitate sophisticated embedded so�ware and hardware systems
that are resilient to faults and cyber a�acks.

Arguably, the embedded so�ware for such applications needs to
be built on a robust so�ware platform that provides programming
abstractions and speci�c services for distributed and decentralized
applications that run on a network of computing nodes. Such a
platform can be called a fog computing platform, in the sense that
it serves as a basis for running applications closer to the ‘ground’
instead of in the ‘cloud’. �is allows the computing power to be
closer to the sensors and actuators where time constraints impact
capability. Our team is working on such a platform, called Resilient
Information Architecture Platform for Smart Grid (RIAPS) [13].

One of the core capabilities of such a platform is a highly accurate
time synchronization service that ensures that the system clocks
of the individual nodes are synchronized. �is is necessary as it
is possible that not all nodes have an a�ached GPS receiver (that
would otherwise provide a GPS time base), and the nodes have to
rely on a network-clock for their work. Furthermore, particularly
in power systems, sensor data o�en have to be time-stamped in
order to get an accurate picture of the state of the system. Time-
critical systems are also sensitive to the time spent in calculations,
so knowing what the time is when a calculation is �nished could
be important.

When prototyping such time-sensitive applications one can use
a common master clock (say, a shared GPS receiver that emits a 1
PPS signal), but this is di�erent from the �elded system where not
all nodes have GPS. Hence, even for prototyping and development
one needs a network-based time synchronization mechanism so
that the testing happens in a realistic environment. In this paper,
we describe such a time synchronization service, its hardware sup-
port and its so�ware implementation that could be used both for
prototyping and deployment in real systems.

�e organization of this paper is as follows. First we discuss the
technological building blocks for the service, next we introduce the
fundamental concepts used in the design. �is is followed by a de-
scription of the implementation and its evaluation. Next, a practical
application example is described that shows how the service can
be used in decentralized applications where high-precision time is
required. �e paper concludes with a summary and plan for future
work.

2 BACKGROUND
�e targeted application domain presents critical requirements
for minimizing the ji�er and uncertainty when executing timed,
node-local actions. We evaluated several run-time options—using

57

RSP’17, October 15–20, 2017, Seoul, Republic of Korea P. Volgyesi et al.

the cyclictest [1, 3] tool for task scheduling measurements and
custom code for testing the timing accuracy of I/O actions. In al-
most all cases, the RT PREEMPT [10] Linux real-time extensions—an
extensive patch set for making the Linux kernel fully preemptible—
resulted in superior performance.

Satisfying time-deterministic requirements on a single node is
essential, but not enough for distributed systems or even for single
nodes that must interact with the physical environment on a global
timescale. In those cases we need to establish a common synchro-
nized time base and need to align each node’s local clock(s) to this
global reference. Even slight di�erences in each node’s local clock—
typically a few tens of parts per million (ppm)—accumulate fast and
become apparent over time. Based on environmental factors (tem-
perature, humidity, and voltage stability), the frequency di�erences
are not constant. �us, to provide an accurate globally synchronized
time base, the supporting services need to periodically measure
and compensate for these di�erences. �is periodic adjustment of
the local time on the node requires careful considerations to avoid
disruption of the local event scheduler. Fortunately, there are two,
well-established technologies for solving this problem.

�e Network Time Protocol (NTP) is a ubiquitous time synchro-
nization service using heuristic so�ware algorithms with no special
requirements on the networking hardware and communication in-
frastructure. �e Precision Time Protocol (PTP, IEEE-1588), on the
other hand, is built on accurate end-to-end hardware-level times-
tamping capabilities. It is no surprise that the a�ainable accuracy
of the two methods di�er by orders of magnitudes: tens of millisec-
onds with NTP vs. microseconds with PTP [8]. Considering the
timing requirements of the targeted application scenarios and the
expected performance of node-level time determinism, we selected
PTP as the primary approach for time synchronization among the
nodes.

PTP achieves excellent accuracy (on the microsecond scale) if
used within a local area network and/or all network equipment in
the packet forwarding path participate in the protocol. �e basic
building blocks of the protocol are: (1) a hierarchical master/slave
clock tree strategy supported by a leader-election (best master) pro-
tocol, (2) accurate time-of-�ight measurement of network packets
with the built-in assumption that these delays are symmetrical (3)
support for measuring and compensating for intermediate delays
across the communication medium (4) using link-level LAN frames
or IPv4/IPv6 UDP messages as the transport mechanism (5) support
for co-existing independent PTP clock domains on the same LAN.
In Linux, it is implemented by the Linux PTP [5] project with user-
space daemons and relying on essential kernel subsystems [4, 14]
for internal time keeping, network timestamping and accessing
PTP hardware clocks.

While PTP can establish a common time base among network
nodes (ideally on the same LAN with low-latency links), it is not
suited for acquiring a global time reference or for synchronizing ge-
ographically or topologically distant networks. For this service, the
RIAPS platform relies on the Global Positioning System (GPS) [6]
or—as a fall-back mechanism—on NTP. �ese services are required
only at the master nodes in the network and are supported by
well-established so�ware packages: chrony [2] or ntpd [9] with
the help of the GPSd [12] protocol daemon and relying on the PPS
subsystem of the Linux kernel.

MASTER1

ETH

GPS RECEIVER

UART PPS

SWTICH

SLAVE

ETH

SYSTEM

PHC

SLAVE

ETH

SLAVE

ETH

MASTER1

GM

ETH

SYSTEM

GPS

PHC

GPS RECEIVER

UART PPS
CHRONY / NTPD

PHC2SYS

PTP4L

GPSD

PTP4L

PHC2SYS

Figure 1: Time-coordination across several clock domains in
RIAPS with GPS-disciplined masters and PTP slaves

3 RIAPS TIME COORDINATION
ARCHITECTURE

�e network architecture and the various clock domains of a RI-
APS cluster are shown in Figure 1. Between each pair of clock
domains, dedicated Linux services are responsible for monitoring
and minimizing the time o�sets. �e �gure shows the correspond-
ing service processes and the direction of the synchronization chain.
�e various clock domains are:

• GPS time: �e global, absolute GPS time acquired by a
GPS receiver on the master node. �e GPS receiver period-
ically transmits the absolute time values and generates a
PPS (GPIO) event at the same moment. �e kernel PPS sub-
system measures the GPIO pulse using the system clock,
which is compared with the value from the receiver to
estimate and minimize the time o�set.

• Master system clock: the wall time maintained by the
kernel (CLOCK REALTIME) on the master. �is is being ad-
justed to minimize the di�erence from GPS time.

• Master PTP Hardware Clock (PHC): an independent
clock reference implemented inside the network interface
for accurate hardware-base timestamping of network mes-
sages. �e kernel PHC clock subsystem can measure and
provide the o�set between the system clock and PHC. On
the master node, the PHC is being adjusted to minimize
this di�erence.

• Slave PHC: the same independent clock embedded in the
network interface on the slave node(s). It is the goal of the
PTP protocol to align the slave PHCs to that on the master
node.

58

Time Synchronization Services for Low-Cost Fog Computing Applications RSP’17, October 15–20, 2017, Seoul, Republic of Korea

• Slave system clock: the kernel-maintained time on the
slaves. All actions on the slave (task scheduling, sensing,
actuation) are based on this reference, thus the goal of
the entire synchronization chain is to establish tight syn-
chronicity among these clocks. Note, that the direction of
synchronization is reversed on the slave: the system clock
is being aligned to the slave’s PHC.

In each cluster, multiple potential master nodes (nodes with GPS
receivers) may exist. At any given time only one master is selected—
becomes a grand master—by a built-in agreement protocol in the
PTP stack. �e remaining potential masters behave like slaves until
one of them is elected as the new grand master, in case the current
grand master node fails.

4 IMPLEMENTATION
�e time synchronization chain described in previous sections de-
pends on the coordinated actions of several hardware / so�ware
components. In the RIAPS platform, we used several open source
COTS solutions and extended them with custom components and
high-level management services, which are (see Figure 2):

• ChronoCape is our custom hardware solution for pro-
viding a GPS time reference and implementing additional
instrumentation tasks as described later

• GPSd is a standalone project and service daemon for es-
tablishing the connection to the external GPS receiver and
implementing various GPS receiver protocols

• chrony implements a robust time synchronization service
for aligning the master clock to either GPS or NTP refer-
ences

• phc2sys establishes the synchronization between the PHC
and system clocks – the actual synchronization direction
depends on the role of the node

• ptp4l implements the PTP network protocol and aligns
the PHC clocks on the slaves

• tsman is our custom management tool for con�guring and
monitoring all other components speci�c to the current
operational role of the node

�e GPSd daemon is con�gured to read and process UBX protocol
messages [17] through the UART interface on the master node. �e
results are provided via an IPC shared memory bu�er and contains
time-pair values for the UART (NTP0 bu�er). �e �rst element of
the pair is the system time when the last event (UART message)
arrived. �e second element is the time value received from the
other clock domain (GPS time in the UBX message). Note that the
�rst element is unreliable with UART (arrival time of the UART
message).

�e chrony daemon is con�gured to work with this shared mem-
ory segment (NTP0) and also process the PPS (/dev/pps0) interface.
�e �rst element of the PPS time pairs (system time when the event
happened) and the second element of the NTP0 record are needed
to do time synchronization. It monitors and combines these pairs
as described above and controls/tunes the system clock to minimize
the di�erence between the two clock domains.

�e phc2sys process only relies on the kernel PHC subsystem,
which can provide system time - PHC time pairs. Based on the

GPSD CHRONY PHC2SYS PTP4L

GPS
RECEIVER

ETHERNET
MAC

LINUX KERNELPPS UART PTP CLK TIMESTAMP

SYS CLK

NE
TS

HM

SO
CK

ET

RIAPS TIMESYNC SERVICE

RIAPS TIMESYNC API

Figure 2: So�ware components for implementing multi-step
clock synchronization on the master node(s)

current role of the node (master or slave) this daemon adjusts
one of these clock domains. ptp4l depends on another kernel
service: hardware-based timestamping of network packets. Using
the transmit and receive timestamps, this service aligns the PHC on
the slave nodes. Both programs are part of the LinuxPTP project.

Instead of running all these processes under the control of a
master integration daemon, we decided to rely on the more robust
and proven built-in service execution mechanisms (upstart [16] or
systemd [15]). However, the set of active services and their actual
con�guration depends on the assigned role of the node. �us, we
implemented a lightweight utility, called tsman (Time Synchroniza-
tion MANager), which ensures that all services are con�gured and
executed properly on the node. �e tool can write and verify the
con�guration �les, enables, disables, stops, and (re)starts services
when being invoked. �e necessary information for these tasks are
described in an extensible con�guration database. �e following
roles (pro�les) are currently supported:

• gps-master: the node is in a dedicated PTP master node
with a GPS reference, if no GPS signal is available it can fall
back to an NTP source. Requires either a locally a�ached
ChronoCape board or internet connection.

• ntp-master: a dedicated PTP master with external NTP
reference. Requires internet connection.

• slave: the node is forced into a PTP slave role. Requires a
PTP master on the LAN segment.

�e ChronoCape board (Figures 3 and 4) was designed for provid-
ing a highly accurate GPS reference clock and various instrumen-
tation services speci�cally for RIAPS applications running on the
BeagleBone Black hardware platform[7]. It hosts an ARM Cortex-
M4F microcontroller and a u-blox LEA-6T GPS receiver module.
�e microcontroller acts as a bridge for the various communication
interfaces: an external USB connector, UART interfaces to the GPS
and BeagleBone along with I2C, GPIO and analog connections. It
also supports a wired PPS reference with an on-board clock bu�er
where GPS is not feasible (e.g. indoor applications). For demonstra-
tion purposes, the add-on board is capable for generating precisely
timed stereo audio outputs via a TRS (audio jack) connector.

�e GPS UART interface is typically bridged to the BBB for
forwarding all UBX messages to and from the receiver module. �e

59

RSP’17, October 15–20, 2017, Seoul, Republic of Korea P. Volgyesi et al.

BBB Extension Headers
2 x 23

uC
ARM M4F

GPS
ublox LEA-6T

active
patch

antenna

UART

PPS

timestamp

TCXO

ext PPS

UART
digital

I/O

an
alo

g

audio
ampli�er

TRS

Figure 3: Functional model of the ChronoCape board sup-
porting time synchronization and evaluation

timing on this interface is not critical: the GPS module also provides
a PPS signal, which is directly connected to a GPIO pin of the BBB.
�is GPIO pin is registered as a PPS input, thus the Linux kernel
automatically a�aches a PPS (pps-gpio) driver to this. �e UART
interface is processed by the gpsd daemon, while the PPS values
are captured by chrony.

Our secondary goal with the ChronoCape board is to build a
reliable instrumentation and validation platform for evaluating the
performance of the time synchronization service and of the real-
time I/O interfaces of the nodes. �e board is capable for observing
and recording the actions (GPIO and external communication buses)
taken by the node on a global timescale. Instrumentation services—
implemented as �rmware on the MCU—can also generate events
for the nodes (pin changes, communication messages, and analog
values) at well de�ned and accurate time instants. For con�guring
the instrumentation tasks and for collecting data, we can use the
external USB connection—completely bypassing the BBB node—or
these can be sent over the UART communication link with the node.
�us, RIAPS applications can collect live real-time performance
data using an independent and globally synchronized clock domain.

5 EVALUATION
As described in Section 4, there are several clock domains in the dis-
tributed time synchronization architecture, with dedicated services—
using alternative timestamping technologies and protocols—establishing
pairwise synchronization in a cascade from the root reference clock
(e.g. GPS) to the leaf nodes (i.e. system clock on slave nodes). �us,
the performance of the time synchronization can be characterized
at di�erent points of the architecture. As a system-level metric, the
timing accuracy of the slaves—both relative to each other and to
an absolute time reference—is one of the most obvious choices.

In this section, we follow a systematic approach for charac-
terizing the performance and major factors of our architecture.
�erefore, we will evaluate the following steps:

• GPS to master node system clock: (a) by capturing GPS
PPS events using the system clock and (b) analyzing the
time o�sets values reported by chrony.

Figure 4: Manufactured and tested prototype of the Chrono-
Cape time reference and instrumentation add-on board for
the BeagleBone Black platform

• Master node system clock to master node PTP hard-
ware clock (PHC): by analyzing the time o�set values
reported by phcsys on the master node

• Master node PHC to slave node(s) PHC: by analyz-
ing the time o�set values reported by ptp4l on the slave
node(s)

• Slave node PHC to slave node(s) system clock: by an-
alyzing the time o�set values reported by phcsys on the
salve node(s)

• Slave node(s) system clocks: this is the system-level
end-to-end evaluation step by generating GPIO events on
multiple slaves at well-de�ned time instants and measuring
these events with a global reference clock

Note that most of the intermediate steps analyze the time o�set
values between adjacent clock domains as these are observed by the
corresponding time synchronization tool—the ultimate goal of these
so�ware programs is to minimize the mean and variance of the
o�sets by carefully adjusting one of the clock domains. Systematic
errors—especially in the timestamping approach—remain hidden
in these analyses. However, the �nal system-level characterization
provides objective performance results directly applicable to real-
world application scenarios.

5.1 Master node: GPS→ system clock
�is synchronization step is evaluated by observing the system
clock timestamps on the external PPS signal generated by a GPS.
Di�erences between consecutive timestamps can tell if the system
clock frequency is properly adjusted to the global GPS reference:
the mean value of these di�erences shows the frequency error
(should be as close to 1.0 as possible), while the variance can show
problems with the PPS signal measurement and/or erroneously
jumping system clock. Note that this evaluation approach does not
detect if we have a constant o�set bias between the GPS and system
clock domain. �is will be checked by integration-level tests later in
this section. We used the ppstest [11] and trivial post-processing
for this step. Based on a 100,000 point measurement run (more than
24 hours), the average di�erence between consecutive timestamps is
1.0 seconds (using double �oating point calculations). �e standard
deviation is 13.5 microseconds. �e actual distribution is shown in
Figure 5. Note, that two symmetric sidelobes and a small number of

60

Time Synchronization Services for Low-Cost Fog Computing Applications RSP’17, October 15–20, 2017, Seoul, Republic of Korea

20 15 10 5 0 5 10 15 20
Deviation of consecutive PPS events (s)

0

5000

10000

15000

20000

25000

30000

N
um

be
r

of
m

ea
su

re
m

en
ts

106804 data points, mean : 0.000 s, std deviation : 3.236 s

Figure 5: Deviation of consecutive PPS timestamps in mas-
ter’s system clock

4 2 0 2 4
Chrony offsets between GPS and system clock (s)

0

200

400

600

800

1000

1200

N
um

be
r

of
m

ea
su

re
m

en
ts

7005 data points, mean : 0.012 s, std deviation : 0.268 s

Figure 6: Time-o�sets reported by chrony a�er �ltering and
regression.

extreme outliers are the cause for the high RMS value. �e built-in
median �lter and regression model in chrony can easily take care
of these occasional outliers.

To verify our statement on outlier rejection, we analyzed the
same measurement run as reported by chrony. �e distribution
of GPS vs. system time o�sets is shown in Figure 6 with a much
improved RMS error of 0.268 microsecond. Note that due to �ltering
and regression, there are signi�cantly fewer aggregated measure-
ment points.

5.2 Master node: system clock→ PHC
For characterizing the performance of the next step on the master
node, we analyzed the time o�sets between the system clock and
the PTP hardware clock. �e phc2sys daemon periodically (every
second) measures and logs these o�sets and adjusts the PHC clock
for minimizing the values. �e o�set measurement is implemented
in the Linux kernel by rapidly triple polling the two clock domains.
�e results—based on 5500 data points—are shown in Figure 7
and demonstrate a very tight (sub-microsecond) synchronization
accuracy.

5.3 Master PHC→ slave PHC
�is synchronization step is executed across the network using the
PTP protocol. �e ptp4l daemon implements all elements of the
protocol both on master and slave nodes. �e results—estimated
time o�sets between the master and the slave PHC clock— can

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Time offsets between system clock and PHC on master (s)

0

100

200

300

400

500

N
um

be
r

of
m

ea
su

re
m

en
ts

5570 data points, mean : 0.000 s, std deviation : 0.135 s

Figure 7: Time-o�sets reported by phc2sys on the master
node

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Time offsets between the master and slave PHC clocks (s)

0

50

100

150

200

250

N
um

be
r

of
m

ea
su

re
m

en
ts

2804 data points, mean : 0.001 s, std deviation : 0.172 s

Figure 8: Time-o�sets reported by ptp4l on the slave node

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Time offsets between the PHC and system clocks on slave (s)

0

100

200

300

400

500

N
um

be
r

of
m

ea
su

re
m

en
ts

9332 data points, mean : 0.000 s, std deviation : 0.054 s

Figure 9: Time-o�sets reported by ptp4l on the slave node

be monitored on each slave node. �e results of the analysis of
such a log �le with 2800 data points are shown in Figure 8. In the
measurement setup, the master and slave nodes are connected via a
Fast Ethernet switch, which resulted in sub-microsecond variations
in the o�sets.

5.4 Slave node: PHC→ system clock
�e phc2sys daemon is used again in a reverse role for aligning the
system clock to the PHC on each slave. Again, accurate timestamp-
ing is provided by the kernel for this step. We use the same output
log and post-processing logic for evaluating the performance of this
last hop in the time synchronization chain. �e results— shown in
Figure 9—with 9300 data points are not surprising.

61

RSP’17, October 15–20, 2017, Seoul, Republic of Korea P. Volgyesi et al.

5.5 System-level performance: multiple slave
system clocks

All analysis results above showed microsecond-level accuracy at
each step in the time synchronization chain. However, the most
important and truly relevant performance metric is the time syn-
chronization accuracy across multiple slave nodes—as mentioned
before, systematic measurement errors may remain hidden in the
previous analysis steps.

For this validation step, we developed a custom application for
the slaves. A�er the time synchronization is established on all nodes,
the program starts to generate GPIO pulses based on the slave’s
own system time (CLOCK REALTIME) at well de�ned time instants.
�ese pulses are measured by dedicated standalone GPS receivers
and the measured timestamps are evaluated. We are interested in
the relative di�erences between the pulses and their alignment to
the global (GPS) timescale. Some additional considerations:

• Pulses are generated at every second but using a 500 ms
phase instead of the integer second boundary to minimize
the interference with the GPS timesync PPS pulse on the
master node

• �e pulse generation process runs with SCHED FIFO policy
and a high (90) real-time priority to minimize ji�er

• �e pulse generation process uses direct memory mapped
I/O operations to minimize ji�er and latency on the GPIO
pin

• �e pulse generation process uses a guard interval before
the deadline (500 ms phase boundary): it sleeps for a shorter
interval and uses a busy-loop for hi�ing the exact time
instant when the pulse is supposed to be generated

Relative accuracy: �e results of taking pairwise di�erences
between the actuation event timestamps on two slave nodes are
shown in Figure 10. Although we took several steps to minimize the
ji�er on the actuation signal, single glitches / hiccups still happen.
�erefore, we used a median �lter with a kernel size of 3 data points
to remove these single / intermi�ent errors (these are not indicative
to the performance of timesync).

Absolute accuracy: �e �nal validation step is to evaluate all
GPIO events—generated by multiple slaves concurrently—on the
absolute GPS timescale. �e results (see Figure 11) are surpris-
ing: all actuation signals have a signi�cant (∼195µs) bias. �is
common, systematic bias remain hidden in all previous steps and
suggests that all nodes in the network have a deterministic o�-
set from the GPS absolute time, most probably introduced by the
master node.

E�ect of RT PREEMPT: A�er evaluating several alternative sce-
narios and investigating the PPS subsystem of the Linux kernel, we
identi�ed the root cause of this deterministic bias. �e RIAPS plat-
form runs on a fully preemptable kernel using the RT PREEMPT [10]
patch for achieving minimal ji�er in critical user-space processes.
One of the most important changes introduced by RT PREEMPT is to
convert regular interrupt handlers into preemptible kernel threads.
�is means, that servicing most interrupts—such as the timestamp-
ing of a PPS GPIO pulse—requires a full context switch in the kernel.
�e deterministic o�set is indeed the context switching time on
the selected platform. Note that there is another potential pitfall of

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Relative time offsets between two slave nodes (s)

0

100

200

300

400

N
um

be
r

of
m

ea
su

re
m

en
ts

41373 data points, mean : 0.254 s, std deviation : 0.337 s

Figure 10: Relative slave-to-slave system-level timing accu-
racy of GPIO actuation signals

192 193 194 195 196 197 198
Absolute time errors on two slave nodes (s)

0

250

500

750

1000

1250

1500

1750

N
um

be
r

of
m

ea
su

re
m

en
ts

82746 data points, mean : 195.256 s, std deviation : 0.431 s

Figure 11: Absolute system-level timing accuracy of GPIO
actuation signals on multiple nodes

using so� interrupt threads for timestamping: any user space pro-
cess with a higher real-time priority than the kernel interrupt task
can introduce a signi�cant ji�er in the PPS subsystem. �is �nding
nicely resonates with common wisdom of carefully considering
what “real-time” really means in di�erent aspects of a system.

6 APPLICATION EXAMPLE
To demonstrate time synchronization and its potential uses within
the RIAPS platform, we created a sample application to estimate
phase angle and predict zero-crossings of a single-phase power
transmission line. Suppose an intelligent power grid determines
that multiple switches must open, and the switches are optimally
opened at a zero-crossing. Each intelligent switch could �nd a local
device providing phase information, then use this information to
calculate when a future zero-crossing will occur so as to safely open
the switch. �e success of this application is predicated upon highly
accurate time synchronization between the phase measurement
node and the switch controllers.

To demonstrate this use case, our RIAPS application runs on
four local BeagleBone Blacks that are synchronized by PTP and
o�er GPIO and analog outputs. One node must act as both the AC
signal generator—called the Signal Generator (Figure 12). �e Signal
Generator calculates the amplitude of a 60 Hz sinusoid every 1 ms,
then writes that value to an analog output (PWM) and publishes
said amplitude to the local network, alongside a Linux timestamp of
the local system time when that amplitude was calculated. All other

62

Time Synchronization Services for Low-Cost Fog Computing Applications RSP’17, October 15–20, 2017, Seoul, Republic of Korea

SIGNAL
GENERATOR

PHASE
ESTIMATORS

OSCILLOSCOPE

PWM GPIO

60 Hz

<sample, timestamp> @ 1ksps

Figure 12: Phase estimation and zero crossing prediction

Figure 13: Oscilloscope trace of the analog sine wave (Signal
Generator - yellow) with pulses at the estimated zero cross-
ings (Phase Estimators - magenta, cyan, green)

nodes are called Phase Estimators (Figure 12). �e Phase Estimators
subscribe to the amplitude-timestamp pairs being published by the
Signal Generator. �e Phase Estimators track these values and react
to a positive zero-crossing in the following way; �rst, each Phase
Estimator linearly interpolates between the last two values it read
to precisely calculate when zero was crossed. �en, it calculates
from its local system clock when the next positive zero-crossing
will be and sets a timer for the remaining delay. When that delay
timer expires, the Phase Estimator creates a single GPIO pulse,
representing a distribution switch opening.

To evaluate this application, both the analog output from the
Signal Generator and the GPIO pulses from the Phase Estimators
are viewed through a quad-channel oscilloscope (Figure 13). Ideally,
the oscilloscope would display a sinusoid with all GPIO pulses—
three Phase Estimator timed actions—are aligned with the positive
zero-crossings.

Note, that the described application is only a demonstrative
use-case of the time synchronization service not a benchmark ap-
plication for evaluating its performance. Timing bias and ji�er have
many other sources in this application—e.g. PWM and GPIO pe-
ripheral access, task scheduling, event propagation and messaging.
Although, these are all important factors for evaluating the system
level performance of the RIAPS platform, they are beyond the focus
of the current paper.

7 SUMMARY AND FUTURE WORK
We have presented an approach for high-precision time synchro-
nization for a network of small embedded devices. �e approach is
based on an accurate clock source (a GPS receiver) on, at least, one
of the network nodes, the Precision Time Protocol for clock distri-
bution, and a local daemon process that adjusts the system clock of
the nodes. Such a synchronized time base allows the precisely time-
triggered activation of tasks that is o�en required in distributed,
real-time embedded systems. Experimental results indicate that
we were able to achieve high accuracy with some very low-cost
solutions. We have also demonstrated the use of the service in a
speci�c application, similar to ones needed for Smart Grids.

�e approach is fault tolerant (due to the properties of the PTP)
but its performance under fault conditions need to be veri�ed. Ad-
ditionally, new API-s are needed, possibly implemented in the OS
kernel, that allow the very precise scheduling of time-triggered
tasks. An additional useful feature would be to notify applications
about the current (estimated) accuracy of the local clock.

ACKNOWLEDGMENTS
�e information, data, or work presented herein was funded in part
by the Advanced Research Projects Agency-Energy (ARPA-E) U.S.
Department of Energy, under Award Number DE-AR0000666. �e
views and opinions of authors expressed herein do not necessarily
state or re�ect those of the US Government.

REFERENCES
[1] Felipe Cerqueira and Bjrn Brandenburg. 2013. A Comparison of Scheduling

Latency in Linux, PREEMPT-RT, and LITMUS RT. In Proceedings of OSPERT 2013
9th Annual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, Vol. 1. Paris, France.

[2] Chrony 2017. A versatile implementation of the Network Time Protocol (NTP).
(2017). Retrieved June 14, 2017 from h�ps://chrony.tuxfamily.org/

[3] Cyclictest 2017. A high resolution process scheduling test program. (2017).
Retrieved May 2, 2017 from h�ps://rt.wiki.kernel.org/index.php/Cyclictest

[4] �omas Gleixner and Douglas Niehaus. 2006. Hrtimers and Beyond: Transform-
ing the Linux Time Subsystems. In Proceedings of the Linux Symposium, Vol. 1.
O�awa, Ontario, Canada.

[5] LinuxPTP 2017. The Linux PTP Project. (2017). Retrieved June 14, 2017 from
h�p://linuxptp.sourceforge.net

[6] P. Misra and P. Enge. 2006. Global Positioning System: Signals, Measurements,
and Performance (2nd edition ed.). Ganga-Jamuna Press, Lincoln MA.

[7] Derek Molloy. 2014. Exploring BeagleBone: Tools and Techniques for Building with
Embedded Linux. Wiley. h�p://www.exploringbeaglebone.com/

[8] T. Neagoe, V. Cristea, and L. Banica. 2006. NTP versus PTP in Com puter Net-
works Clock Synchronization. In 2006 IEEE International Symposium on Industrial
Electronics, Vol. 1. 317–362. h�ps://doi.org/10.1109/ISIE.2006.295613

[9] NTP [n. d.]. ([n. d.]).
[10] Daniel Bristot Oliveira and Romulo Silva Oliveira. 2016. Timing Analysis of

the PREEMPT RT Linux Kernel. So�w. Pract. Exper. 46, 6 (June 2016), 789–819.
h�ps://doi.org/10.1002/spe.2333

[11] pps-tools 2017. User-space tools for LinuxPPS. (2017). Retrieved June 14, 2017
from h�p://linuxpps.org/

[12] Eric Raymond. 2008. GPSD. In �e Architecture Of Open Source Applications,
Amy Brown and Greg Wilson (Eds.). lulu.com, Chapter 7, 101–112. h�p://www.
aosabook.org/en/

[13] RIAPS Website 2017. RIAPS. (2017). Retrieved June 14, 2017 from h�p://riaps.
isis.vanderbilt.edu/

[14] John Stultz, Nishanth Aravamudan, and Darren Hart. 2005. We Are Not Ge�ing
Any Younger: A New Approach to Time and Timers. In Proceedings of the Linux
Symposium, Vol. 1. O�awa, Ontario, Canada.

[15] systemd 2017. System and Service Manager. (2017). Retrieved June 14, 2017
from h�ps://www.freedesktop.org/wiki/So�ware/systemd/

[16] Upstart 2017. Upstart Intro, Cookbook and Best Practises. (2017). Retrieved June
14, 2017 from h�p://upstart.ubuntu.com/cookbook/

[17] Various Authors. 2013. u-blox 6 Receiver Description. Manual GPS.G6-SW-10018-F.
u-blox AG.

63

