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Abstract—Edge and Fog computing paradigms are used to
process big data generated by the increasing number of IoT
devices. These paradigms have enabled cities to become smarter
in various aspects via real-time data-driven applications. While
these have addressed some flaws of cloud computing some
challenges remain particularly in terms of privacy and security.
We create a testbed based on a distributed processing platform
called the Information flow of Things (IFoT) middleware. We
briefly describe a decentralized traffic speed query and routing
service implemented on this framework testbed. We configure the
testbed to test counter measure systems that aim to address the
security challenges faced by prior paradigms. Using this testbed,
we investigate a novel decentralized anomaly detection approach
for time-sensitive distributed smart transportation systems.

Index Terms—Middleware, Distributed computing, Trans-
portation

I. INTRODUCTION

Internet of Things (IoT) are physically inter-connected

devices embedded with software, sensors and network connec-

tivity that enables them to both share and access information.

In today’s world, the number of IoT devices is expected to

reach 50 billion by 2023 [1] and radically transform aspects

of daily life such as health care and transportation systems. In

order to manage IoT networks and the large amounts of data

they produce, a combination of cloud, edge and fog computing

paradigms are increasingly being studied and leveraged.

Quality-of-Service (QoS) and Security are two key chal-

lenges in large decentralized IoT networks. QoS deals with the

ability to provide services within an acceptable time frame.

Security deals with resilience to unwanted interference and

monitoring. Recently, IoT systems have been targeted due

to (1) the sensitive information they handle, and (2) their

use in launching large-scale Distributed Denial of Service

(DDoS) attacks [2]. Compromised devices affect the system’s

QoS as resources like network bandwidth are diverted towards

unwanted tasks. Detecting these kinds of attacks is therefore

important.

Traditional networks use Intrusion Detection Systems (IDS)

to guard against such attacks. IDS’s deploy special devices

at key points in the network to collect and analyze network

traffic which can then be used to detect attacks [3]. Similar

approaches have already been proposed and implemented in

IoT, aiming to detect different kinds of security threats.

IDS’s provide network layer security to an IoT system,

allowing middleware to focus on authentication and autho-

rization at the application layer. Middleware are often flexible

enough to provide additional data that can also help in intru-

sion detection. These metadata can be passed alongside regular

information, at the cost of some network overhead. This cannot

be quantified well without an actual network in place. Thus,

an emulation testbed is necessary to study the effects of such

security measures.

Such a testbed can potentially be used to study the effects

of different attacks (e.g. DoS attacks, botnet infection, etc.)

on the network and its QoS. We investigate a novel decentral-

ized anomaly detection approach for time-sensitive distributed

smart transportation systems with a focus on data-integrity

attacks and implement it in a testbed. Our method is based

on related work in power systems [4], in which we extend

in two distinctive ways. First, we extend the work for time

sensitive applications. Secondly, we implement this approach

in a decentralized network architecture.

The testbed would also need to be built into an IoT

middleware platform which is capable of handling potentially

large amounts of data in near real-time. Said platform would

also need to be edge-based to minimize data transfer time.

Combining an edge-based platform with such a testbed would

be a novel approach in this case.

This paper describes the Information Flow of Things (IFoT)

[5] framework and develops a network delay emulation testbed

based on the IFoT middleware. The end goal is to be able to

test proposed security countermeasures for the issues detailed

above. A smart traffic routing service is deployed on the

platform to test its basic distributed processing capabilities,

and then data is obtained from the integrated emulation testbed

to quantify the overall delay introduced to the system.
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II. RELATED WORK

A. Edge, Fog, Cloud Computing

Due to the large amount of data produced by billions of IoT

devices, traditional centralized cloud servers will eventually

face the problem of non-negligible delays when providing

IoT-related services. Edge [6] and Fog [7] computing are

approaches to mitigating the reduced quality and increased

service costs of cloud computing.

Edge and fog computing are both “edge-heavy computing”

paradigms where data processing is executed on components

in or near the data source. However, the demerit of these

approaches is the investment needed to replace such network

constituents like Information-Centric Networks (ICNs). In this

paper we propose a more practical solution which extends edge

and fog computing by delegating the processing to the devices

at the source in a distributed manner.

B. Smart Mobility

These computing paradigms have been leveraged to process

and visualize data from sources such as road side units (RSU)

and Vehicular Social Networks [8] to provide services such

as Intelligent Transportation Systems (ITS) already present

in Japan [9]. These are able to provide users with real-time

wide-area traffic congestion information. One such application,

SpeedPro [10], uses GPS location data fused with historical

data to provide more reliable urban traffic speed estimates.

While Edge and Fog computing are promising for these

applications, a number of challenges still exist that must be

addressed. Eisele et al. [11] state that one challenge is to be

able to provide a stable application environment despite the

dynamism, heterogeneity, and increased failure potential of

computing resources at the “edge” away from data centers.

Security and privacy [12] are also points of concern. Due

to their reliance on spatio-temporal data, measures need to be

taken in order to preserve data integrity and to detect anomalies

within such systems [13]. A large focus of research in this

field is on implementation of sensor systems for transportation,

communication and infrastructure monitoring [14], [15], [16],

[17], [11]. Traditional anomaly detection in this context is

based on classification, statistical, state based, clustering or

information theory [18]. Classification methods are usually

based on Support Vector Machines (SVM), Bayesian Models,

Gaussian Processes or Neural Networks [19].

C. Information Flow of Things

Information Flow of Things (IFoT) is a proposed framework

aimed towards processing massive IoT data streams in real-

time manner by edge servers and IoT devices [5]. It is

designed to provide delay-aware services through mechanisms

such as in-situ distributed computing and data aggregation.

It aims to have a better cost-performance index than cloud-

based and edge-based approaches [20]. The goal is to achieve

an improved satisfaction level for delay-sensitive applications

(such as smart city or smart mobility) while being able to

aggregate user data in a secure and timely manner with a

certain level of robustness against privacy and security threats.

Fig. 1. IFoT Framework Architecture

III. IN-SITU DISTRIBUTED PROCESSING PLATFORM

To satisfy the requirements of the IFoT framework, we are

developing a middleware platform [20] which allows services

to be created by Service Creators. These services utilize the

spatio-temporal data generated by sensors and processes it into

useful information. The middleware system is comprised of a

Resource Broker and Service Brokers described in [20]. Only

Service Workers, which are new from the previous literature,

which execute tasks are created and assigned to each Service

Broker is discussed.

A. Service Worker (SW)

Service Workers are clusters of nodes that are able to per-

form operations on sensor data, and handle the computational

tasks required to provide services to users. Each node executes

tasks locally adhering to the shared-nothing architecture. To

meet certain quality of service agreements, more nodes can

be added to the cluster in order to scale up performance.

These are supported by three mechanisms: Environmental

Database, Messaging Protocols and Task Graphs.

Environmental Database: store the data generated by sen-

sors. These are time series DBs stored in the SWs.

Task Graph: are recipes that dictate how services are dis-

tributed and handled by the SWs. These contain instructions

on how the SWs should collect, process and aggregate the

sensor data for a particular service. These are generated by

the SB taking into account service level agreements and QoS

requirements to maximize the use of available nodes.

Publish-Subscribe-based Messaging Protocol (MQTT): used

to facilitate communication between devices. Task graphs,

heartbeat monitoring, and data for aggregation are sent via

MQTT to the participating nodes (such as between SWs and

SBs, or between SBs and RBs).

IV. SMART MOBILITY SERVICE

In this section, we present a service that takes advantage of

the IFoT middleware platform.

A. Smart Mobility Service

We assume that smart cities will feature roads and highways

equipped with road-side units (RSUs). These RSUs receive

information from vehicles such as speed. They are assumed

to be devices with computational resources equal to those of
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Fig. 2. Service Broker generated Task Graph for M clusters

Raspberry Pis or similar, and have their own wired network

infrastructure allowing communication with each other.

RSUs connected to the IFoT middleware will host a smart

mobility service that utilizes gathered data and publishes

information about accidents, hazards, detours to its users. The

service will also be able to respond to queries from users

regarding the best routes for travel given the current situation.

Due to the spatio-temporal data being collected and pro-

cessed by this service, it takes advantage of the properties of

the IFoT framework for distributed computing. The middle-

ware also allows security measures to be easily implemented

within the service.

Other use cases While the service described above focuses

on smart mobility, the infrastructure provided by the middle-

ware can take advantage of any spatio-temporally distributed

data. Distributed processing in this case decreases latency lead-

ing to improved QoS. The middleware also provides methods

for introducing new services using various task graphs.

B. Details of the Task Graph

Task graphs dictate how services handle a user query, and

are generated by the SB based on a particular service. Fig. 2

shows the task graph for the smart mobility service.

For this service, the task graph selects which RSUs will

participate in the processing of the query. Selected RSUs

would vary depending on the selected routes, desired QoS,

delay requirements and the current load of RSUs. Afterwards,

the tasks are distributed and executed.

1) Collecting Task: The collecting RSU will query ve-

hicular traffic data from other RSUs specified in the task’s

parameters. Once done, collected data will be distributed to

other RSUs for processing.

2) Processing Task: This includes all distributed processing

that must be done on the data to produce the required result.

In the case of smart mobility, traffic data will be checked for

anomalies and then processed to generate route contexts (e.g.

average speed information over a time-window, etc.) and other

information for the user.

3) Aggregation Task: Once all RSUs have finished process-

ing, their results will be aggregated by one RSU and returned

to the SB for visualization.

C. Resiliency

In terms of resiliency, we are primarily concerned with falsi-

fied data from orchestrated data-integrity attacks and hardware

faults at RSUs and sensors. We define such attacks as scenarios

Fig. 3. Q Response to Attack

where an attacker can compromise a subset of sensors or RSUs

by manipulating sensor readings. At each RSU, an anomaly

detection check is run at a specified time window using a

statistical means detection method based on Bhattacharjee et

al.’s approach to data falsification in power grids [4]. This

work extends their approach in two distinctive ways.

First, we extend their work to time-sensitive applications. In

the case of transportation, such an attack can have cascading

effects on traffic behavior throughout the system. Since these

effects are rapid, the time between the start of the attack

and detection is critical. We address this by using anomaly

detection time windows ranging from 15 to 30 minutes.

This method uses historical data to estimate the ratio of the

harmonic mean to the arithmetic mean, which we refer to as

the Q ratio. It was found on average that this process takes

between one to two time windows to detect an attack.

Secondly, their work focuses on large-scale data. We extend

this analysis to distributed transportation networks in which

anomaly detection is run independently at each RSU and

applied in the IFoT middleware. Using the testbed, we are

able to quickly simulate and investigate the effects of various

attacks on smart transportation networks, as well as the effects

of the anomaly detection on network performance.

Hardware faults at sensors result in missing data readings

at each time window, effectively simulating a large deductive

attack. Thus, this model inherently extends to system failures

in addition to data-integrity attacks.

As shown in Fig. 3, this metric proves to be stable over time,

and responds quickly to simulated data-integrity attacks. This

stability allows for easy integration with efficient sequential

on-line anomaly detection methods as well as historical thresh-

old methods. As anomaly detection done in this way does

not depend on the other RSUs in the network, the detection

process can be distributed throughout the network.

This approach provides numerous benefits over traditional

anomaly detection, including simplified deployment over de-

centralized IoT networks. Additionally, the statistical means

approach is computationally efficient compared to traditional

anomaly detection methods such as Support Vector Machines
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Fig. 4. RSU Locations - Grid Layout

(SVM), Bayesian Models, Gaussian Processes and Neural

networks which require large scale, accurate models of system

behavior and significant processing power. Statistical methods

such as this have shown to be a more computationally efficient

alternative [4]. This is particularly important for deployment

on resource-constrained IFoT devices.

D. RSU Location Considerations

An important component of designing a smart city IFoT

framework is in the placement of RSUs throughout the trans-

portation network. In this sense, the number of RSUs available

is a resource constraint in designing smart transportation grids.

The major challenge is therefore determining the optimal

spatial layout of these devices.

Optimal can be defined in any number of ways depending on

device constraints and system goals. By designing a distributed

testbed, optimal parameters such as delay and security can

be compared between various system configurations through

simulation. This reduces network design time and provides

analytic feedback regarding expected system performance.

In the context of the transportation example, we focus on

RSU layout in terms of network transmission delay and data

security. We consider the case where each RSU is responsible

for a subset of sensors streaming speed data into it. Thus, the

RSU location problem is how to efficiently map these sensors

to RSUs. The network layout is constrained by the number

of RSUs available and the processing power of each device,

corresponding to the number of sensors it can feasibly handle.

As a baseline RSU layout configuration we divide the

city into 8×8 grids, resulting in 64 RSUs as shown in Fig.

4. A detailed investigation of delay performance for this

configuration is provided in a later section.

Optimal RSU configurations can also be framed in terms

of data-integrity resiliency. The effectiveness of the anomaly

detection discussed in Section IV-C increases for RSU zones

consisting of sensors with traffic patterns similar and de-

pendent on each other. The grid layout provides a good

proxy for grouping dependent sensors together. We look to

improve this by providing a constrained hierarchical clustering

approach in which sensors are grouped together by historical

traffic pattern. To maintain network performance for data

transmission between sensors and RSUs, we constrain the

clustering procedure geo-spatially by restricting the maximum

distance sensors can be from an RSU. Additionally we set a

maximum number of sensors allowed per RSU in proportion

to RSU processing capability.

V. IMPLEMENTATION

In this section we discuss how the platform is implemented

on a testbed and how a service is deployed. To realize a

testbed based on this architecture, it must meet the following

requirements: (1) should be easy to deploy on heterogeneous

IoT devices and should able to deal with heterogeneous

data streams, (2) should have an area-by-area aggregation

mechanism for spatio-temporal data streams, and (3) should be

able to provide results in a timely manner, taking into account

communication and processing delay between devices.

A. Testbed Implementation

As the platform should be easy to deploy on heterogeneous

devices, it was initially implemented on Raspberry Pis with

Debian using Docker for ease-of-deployment.

We developed a testbed to implement and test the mid-

dleware using various configurations. The platform could be

deployed on the testbed to mimic a large number of nodes,

simulated on a single 2019 Mac mini with 6-core 3.0 GHz i5

processor and 64GB of RAM. Each SB and SW is virtualized

as a Docker service. To simulate constrained computation

resources like Raspberry Pis, each service is assigned a limited

amount of CPU and memory via Docker.

B. Service Simulation

Each RSU is assigned to a node and given unique parame-

ters to simulate real world deployment scenarios. Each one is

given location (latitude and longitude) information as well as

a unique ID for communication between RSUs. Each one also

has an envDB that contains data received from the vehicles

travelling along the road.

In our simulation, we divide a 80km2 map of Nashville,

TN into 8×8 grids, where each vertex corresponds to an RSU

collecting data from vehicles in specific sections of the road

network seen in Fig. 4. To evaluate the system, each RSU

is set to behave as either a SW or normal Worker. RSUs are

grouped into clusters with a single SW and one or more Worker

nodes. Data for the simulation uses the 2014 Nashville city

road records [21] which collected speed data from vehicles

travelling the roads. These roads contain sensors placed at

specific traffic message channel (TMC) points which make up

a segment of a road. A combination of speed data, TMC points

and optimal RSU locations are used to determine which RSU

will store which road’s data in their envDB.

Connections between RSUs are assumed to use wired Eth-

ernet connection. In order to simulate the real world work flow

of this service, users are able to query the platform through

the Service Broker’s web interface.

It is assumed that the SB determines the route the system

will select in response to the query of the user. The system

represents the variations of these routes as the variations of

the number of clusters and workers within the cluster. Once

the user has successfully sent a query to the SB, the execution
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Fig. 5. Injection Points for Delay Components in Simplified System

timer starts and the task graph for the service is sent to these

clusters.

C. Delay Emulation

Since the RSUs are simulated, data transfer delays are

obtained via synthetic calculations and injected wherever such

communications happen. For instance, after the collection task,

the RSU handling it passes off results to other RSUs for

processing. A short delay is injected here through a sleep

function right before data is sent to each processing RSU.

Since the simulated RSUs are also doing real processing on

the data, delays due to processing will be left as is.

dSB→SW = dGW + dCL (1)

Execution time measurement starts after the user query

arrives at the SB. The SB publishes a message to the cluster

gateway which then routes that message to the SW. This

introduces a delay given by Eq. 1, where dGW is the delay

between the SB and the cluster gateway and dCL is the delay

between the cluster gateway and any one of the cluster’s RSUs.

dW→W = 2dCL (2)

The SW then performs the task designated for it on the

received task graph. Usually, it is given the collection task

and the result - along with the task graph - is passed on to

other RSUs. These then proceed to perform their designated

tasks, using the results passed from the previous step. Passing

data between RSUs introduces a delay as shown in Eq. 2.

dW→SB = dGW + dCL (3)

Once all RSUs have finished processing, resulting data must

be aggregated back at the SB. The delay for this is given by

Eq. 3. Fig. 5 summarizes where these delay components are

injected in a simplified system.

dcomp = dtrans + dprop (4)

Each delay component is broken down further into relevant

parameters as shown in Eq. 4, where they are defined as:

dtrans = data length/bit rate
dprop = link length/propagation rate (5)

The link length, bit rate, and propagation rate can be

configured for the simulation, while data length is based on

Fig. 6. Different network configurations for the system

the actual quantity of data sent during run-time. For this

simulation, the values used are shown in Eqs. 6 and 7.

dGW :
bit rate = 2Mbps
link length = 17.6km
propagation rate = 299.792 ∗ 106m/sec

(6)

dCL :
bit rate = 2Mbps
link length = 8.0km
propagation rate = 299.792 ∗ 106m/sec

(7)

VI. EVALUATION

In order to evaluate the system’s utility, we use it to measure

the overall execution time of a service implemented over IFoT.

Overall execution times of tasks processed on a distributed

network can vary depending on the network architecture. In

this simulation, the network can be configured in multiple

ways as shown in Fig. 6. For example, with 8 total RSUs,

Fig. 6a shows how we can split RSUs into 4 clusters, each

having 1 RSU as the SW and 1 dedicated Worker. Fig. 6b

shows how the same network can be configured as 2 clusters,

each with 1 SW, and 3 dedicated Workers.

For example, the testbed can be used to identify which

configuration will lead to the least overall execution time.

Using a Command Line Interface (CLI), this experiment was

repeated with varying combinations of clusters and workers

within a cluster. Fig. 7 shows the total time for the different

combinations of clusters and workers. X axis represents the

different combinations with the following naming convention:

case AAxBB nodes where AA is the number of workers in a

cluster and BB is the number of clusters in the system.

As these results show, the testbed allows us to draw pre-

liminary conclusions about how changing the configuration of

the simulated network affects execution speed.

VII. CONCLUSION

Edge and Fog computing paradigms and IoT provide new

opportunities for distributed processing and data analytics.

However these paradigms still face challenges especially with

respect to security and privacy.

In this paper we designed and developed a middleware

platform that meet IFoT framework requirements. Compared

to the current mechanisms, this middleware utilizes the com-

putational capabilities of each node directly. This allows for
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Fig. 7. Overall Execution Time vs Clustering Configurations

high availability and low latency communication. In addition,

this middleware is suited for services that deal with spatio-

temporal data. We also developed a testbed that is highly

configurable and easy to deploy. A smart transportation service

was developed and deployed on the testbed to demonstrate

how the middleware deals with spatio-temporal data on mul-

tiple nodes. As an example, we show that the testbed can be

used to analyze how the middleware can meet certain QoS

level requirements by configuring its network architecture.

Experimental security measures on top of the middleware

could be evaluated in a similar way.
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