
Cluster Computing
https://doi.org/10.1007/s10586-018-1708-z

Transit-hub: a smart public transportation decision support system
with multi-timescale analytical services

Fangzhou Sun1 · Abhishek Dubey1 · Jules White1 · Aniruddha Gokhale1

Received: 3 October 2016 / Accepted: 4 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Public transit is a critical component of a smart and connected community. As such, citizens expect and require accurate
information about real-time arrival/departures of transportation assets. As transit agencies enable large-scale integration of
real-time sensors and support back-end data-driven decision support systems, the dynamic data-driven applications systems
(DDDAS) paradigm becomes a promising approach to make the system smarter by providing online model learning and
multi-time scale analytics as part of the decision support system that is used in the DDDAS feedback loop. In this paper, we
describe a system in use in Nashville and illustrate the analytic methods developed by our team. These methods use both
historical as well as real-time streaming data for online bus arrival prediction. The historical data is used to build classifiers
that enable us to create expected performance models as well as identify anomalies. These classifiers can be used to provide
schedule adjustment feedback to the metro transit authority. We also show how these analytics services can be packaged into
modular, distributed and resilient micro-services that can be deployed on both cloud back ends as well as edge computing
resources.

1 Introduction

1.1 Emerging trends and challenges

Public transit ridership in the United States increased by 37%
from 1995–2015, which is roughly twice as much as the
country’s population growth (21%) in the same years [1].
In 2013 alone, there were 10.7 billion trips taken on US pub-
lic transportation [2].Meanwhile, people in theUS have been
reducing the use of personal vehicles [3]. Public transporta-
tion has become an essential part of communities and cities.

Bus services, which is one of the most important seg-
ments of public transportation, are vulnerable to delays and
congestion due to traffic congestion, weather conditions, spe-

B Fangzhou Sun
fangzhou.sun@vanderbilt.edu

Abhishek Dubey
abhishek.dubey@vanderbilt.edu

Jules White
jules.white@vanderbilt.edu

Aniruddha Gokhale
a.gokhale@vanderbilt.edu

1 Institute for Software Integrated Systems, Department of
Electrical Engineering and Computer Science, Vanderbilt
University, Nashville, TN 37212, USA

cial events, etc. Travel and arrival time variation was found
to have a substantial impact on commuter satisfaction [4].
Moreover, people’s tolerance to errors in bus time predic-
tions is quite low [5]. Providing real-time bus schedules
reduces this uncertainty and improves passenger experience
and increases ridership. A direct benefit of increased rid-
ership on public transport is the reduced use of personal
vehicles and hence reduction in both traffic congestion and
greenhouse emissions.

Recently, transit agencies have been integrating real-time
sensors into public transit systems. A number of technolog-
ical systems have been developed by academic researchers
and commercial companies to utilize this real-time data. For
instance, automatic vehicle location (AVLs) and automatic
passenger counter (APCs) can provide real-time data such as
vehicle travel time, arrival and departure time, and passenger
boarding counts. This data can be used for at-stop displays
[6], bus time prediction [7–9], schedule planning optimiza-
tion [10,11], real-time control strategies [12,13], etc.

However, these sensors have some problems. Accurate
real-time bus arrival and departure data that many prediction
systems use is not always available. In Nashville, for exam-
ple, only special bus stops called timepoints are equipped
with sensor devices that record exact times. There are over
2700 bus stops all over the city but only 573 timepoints. In

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-1708-z&domain=pdf
http://orcid.org/0000-0002-8937-146X


Cluster Computing

addition, the timepoint dataset is not real-time. It is available
at the end of each month when the Nashville metropolitan
transit authority (MTA) summarizes and analyzes the his-
torical data. Automatic passenger counter can help provide
accurate timing of when a bus stops at a transit stop, which
can be used in analysis. On the contrary, AVLs do not provide
that. Many transit systems, including the city of Nashville,
do not have APCs on buses and use automatic vehicle loca-
tion (AVL) data to estimate the arrival and departure time at
bus stops and use the estimated data for bus delay prediction
in real-time. The issue with this approach is that the lack of
quality data results in worse predictive analytic performance.
Even for systems with APCs, real-time sensor systems can
havemany problems in the real world [14,15], due to reasons,
such as low networking bandwidth and delays in uploads. As
a result, often GPS position data is noisy.

A typical mechanism for handling noise is to normalize
the data. However, normalization requires large data sets,
often clustered around transit routes. This is helpful because
the transit data of preceding buses may be used to create the
models for the current trip on that route. However, if a city
does not have high-frequency operations across its routes,
then such data is not available.

1.2 Solution approach and contributions

To address the lack of quality data for transit data analytics,
yet make effective predictions for bus arrivals, we surmise
that the dynamic data driven applications systems (DDDAS)
paradigm [16] holds promise as a solution approach. In
DDDAS, both real-time and/or historical data is used to learn
the model of the system that must be controlled, and subse-
quently a decision support system uses these learned models
to make informed decisions and control the system in a feed-
back loop. This is the approach we utilize in this paper. It
integrates historical and streaming real-time bus location data
from multiple routes for short-term delay prediction as well
as long-term delay pattern analytics. We also use the data
feedback loop to provide results to city planners and end
users.

This paper significantly extends our prior work onTransit-
Hub [17,18] and provides the following contributions to the
study of real-time and predictive analytics for public trans-
portation using DDDAS principles:

– We present a better short-term delay prediction model
that combines clustering analysis and Kalman filters and
uses real-time data from shared route segments.

– We show the efficacy of our short-term delay prediction
model.When predicting the travel time delay of segments
15 min ahead of scheduled time, our model reduced the
root-mean-square deviation (RMSD) by about 30 to 65%
compared with an SVM-Kalman model [9]. The SVM-

Kalman model that we used for comparison is a dynamic
prediction model that combines SVM and Kalman fil-
ters, two of the most widely used models in bus delay
prediction [7,19–21].

– We provide an algorithm that generates shared bus route
segment networks from standard general transit feed
specification (GTFS) datasets.

– We illustrate how the analytical algorithms can be pack-
aged into independently deployable and self-contained
micro-services.

– We describe how the system’s data feedback loop works
to provide decision support to city planners by assisting
metro transportation authority (MTA) in identifying real-
time outliers and optimizing bus timetables to improve
bus services and availability.

1.3 Paper organization

The remainder of this paper is organized as follows: Sect. 2
compares the enhanced Transit-Hub system with related
work, specifically how we differentiate from and improve on
an SVM-Kalmanmodel that also used bus data frommultiple
routes; Sect. 3 outlines the key challenges faced in realiz-
ing a DDDAS-enabled system for accurate prediction of bus
schedules; Sect. 4 describes the integrated data sources and
potential feedbackmechanism toMTA;Sect. 5 describes how
we construct the bus delaymodels and integrate real-time bus
data to predict arrival delay in real-time; Sect. 6 presents the
system deployment; Sect. 7 describes the performance eval-
uation of travel time delay in route segments and arrival time
delay at bus stops; and finally Sect. 8 presents concluding
remarks and future work.

2 Related work

This section comparesTransit-Hubwith relatedwork on tran-
sit data analysis using differentmodels. In the end,we explain
the differences between Transit-Hub models and an SVM-
Kalman model that also used shared route segment data.

2.1 Statistical models

The basic average models directly use the average delay
from historical data as the estimated delay for future and are
often constructed for performance comparison purposes. For
example, Jeong et al. [22] developed a basic average model
and found that the basic average model was outperformed
by regression models and artificial neural network (ANN)
models for bus arrival time prediction. The reason is that the
basic average models only use historical data and perform
simple average analysis, the model does not reflect real-time

123



Cluster Computing

conditions and is limited by the consistency of route delay
patterns.

Many researchers have conducted studies that utilize both
historical and real-time bus data. Weigang et al. [23] pre-
sented a model to estimate bus arrival time at bus stops
using the real-time GTFS data. Their model contains two
sub algorithms to determine the bus speed using the histori-
cal average speed and the real-time speed information from
GPS. Their main algorithm utilizes the calculated real-time
speed to predict the arrival time. Sun et al. [24] proposed a
prediction algorithm that combines real-time GPS data and
average travel speeds of route segments.

Regression models are also used to explain the impact of
variables for delay prediction. Since the variables in transit
systems are correlated [25], regression models are typically
limited to delay prediction. Patnaik et al. [26] presented a
set of regression models that predict bus travel times on a
route segment. The data they used is real-world data (num-
ber of passengers boarding, stops, dwell time and weather)
collected by automatic passenger counters (APC) installed
on buses. They also found that weather did not have a signif-
icant effect on the prediction.

2.2 Kalman filter models

Kalmanfilters have been usedwidely for bus delay prediction
because of their ability to filter noise and continuously esti-
mate and update actual states from observed real-time data.
Chien et al. [21] presented a dynamic travel time prediction
model that used real-time and historical data collected on the
New York State Thruway (NYST). Shalaby et al. [27] pro-
posed a bus delay prediction model based on two Kalman
filter algorithms: one for estimating the running time and
another for estimating the dwell time at bus stops. Yang et
al. [28] developed a discrete-time Kalman filter model to
predict travel time using collected real-time global position-
ing system (GPS) data. Bai et al. [9] proposed a dynamic
travel time prediction model that employed support vector
machines to provide a base time estimate and a Kalman filter
to adjust the prediction using the most recent bus trips on
multiple routes.

2.3 Machine learningmodels

Artificial neural network (ANN) [20,22,29] and support vec-
tor machine (SVM) [7,9,19,20] are two of themost popularly
used machine learning techniques in bus delay prediction.
For example, Jeong et al. [30] developed an ANN model for
bus arrival time prediction using Automatic vehicle location
(AVL) data. Mazloumi et al. [31] used real-time traffic flow
data to develop ANN models to predict bus travel times. Yu
et al. [20] proposed a machine learning model that used bus
running times of multiple routes for predicting arrival times

of each bus route and proposed bus arrival time prediction
models that include support vector machine (SVM), Artifi-
cial Neural Network (ANN), k-nearest neighbors algorithm
(k-NN) and linear regression (LR).

2.4 Comparison with our work

Prior work emphasized long-term and short-term transit data
analysis and prediction. However, most of them, as men-
tioned above, focused on a single route and few noticed that
many bus routes share segments with other routes. In 2011,
Yu et al. [20] recognized that the data from multiple routes
can help to improve the delay prediction. In 2015, Bai et
al. [9] proposed a dynamic travel time prediction model that
combines SVM and Kalman filter using multiple bus routes
data. However, when solving the shared-segment prediction
problem, they only used the actual travel time of preced-
ing buses and did not consider the scheduled time difference
of separate bus routes. Also, their model included the data
of all recent preceding buses, which may contain outliers
that should be excluded. Transit-Hub extends these concepts,
presents a solution to generate shared route segment network
(explained later in Sect. 5.2.1) using standard static GTFS
dataset, and provides transit data predictive analysis at mul-
tiple timescales. The benefit is that the analysis results can
be used to provide schedule adjustment feedback to MTA,
and real-time delay prediction to commuters.

3 Buildingmulti-timescale analytical
services for public transit

In this section, we present the key problems associated with
building multi-timescale analytics models for public trans-
portation systems.

3.1 Problem 1: integrating andmanaging
heterogeneous data frommultiple sources

Transportation agencies are employing advanced technolo-
gies, such as (AVL) and (APC) to monitor and manage bus
services to improve service quality. However, the data col-
lected from multiple data sources may require significant
effort to be integrated in order to learn a model for the fol-
lowing reasons: (i) Data are collected at different sampling
rates: systems such as AVL and APC have different hard-
ware specifications. Data from different sources need to be
sampled before being used by the system; (ii) Data may be
missing, duplicated or faulty: these issues need to be detected
and handled differently before conducting the data analytics.

Furthermore, the scale of the transit system brings its own
challenges and requires efficient and reliable data storage
management for the following reasons: (i) Data is large-

123



Cluster Computing

scale: the real-time transit data, for instance, is accumulated
at the scale of several gigabytes per day currently. IfNashville
MTA expands its services and updates the devices for faster
data rates, more data will be generated and may require
more sophisticated management; (ii) Data replication is also
required since the system is accessible by the public and
needs to be fault-tolerant and reliable.

We address these challenges in Sect. 4 by describing the
heterogeneous data sources and how we integrate, store, and
prepare the data for use.

3.2 Problem 2: utilizing real-time bus data for
multiple routes that sharing similar segments

Delay prediction models rely on training data. The predic-
tion accuracy depends greatly on the quality of training data.
However, the data quality varies for the following reasons:
(i) The bus timing is vulnerable to various conditions such
as accidents, congestion, road constructions, weather condi-
tions, etc. Therefore, the bus travel time of the preceding bus
on the same route may just be an outlier and not reflect the
future delay trends; (ii) In mid-sized cities there are limited
public resources to support public transportation compared
to large metropolis. For example, route 3 (one of the bus-
iest bus routes in Nashville) has 37 trips on weekdays in
“From Downtown" direction [32], while M15-SBS in New
York has 144 trips in one direction [33]. The quantity of data
available for historical analysis and future time prediction
in mid-sized cities is less than those in their larger coun-
terparts, which makes it harder to learn accurate models of
the system; and (iii) Software bugs, hardware malfunctions
and wireless communication issues may occur occasionally
and result in missing or faulty real-time data. For example,
during our experiments, often AVL data was not uploaded
in proper sequence and often had repetitions. Curating such
data becomes a challenge in itself.

We address these concerns in Sect. 5.2.1 by discussing
how our short-term prediction model improves the data qual-
ity by dividing all bus routes in the city into shared route
segments and utilizing real-time bus data from segments
shared by multiple routes.

3.3 Problem 3: providing schedule adjustment
feedback tometro transit authority

Improving existing bus schedules is a critical task for metro
transportation authorities such as Nashville MTA. MTA reg-
ularly examines the historical bus operation reports and
updates its bus schedules. Recently real-time sensors are
being installed on buses and MTA can track the bus oper-
ation in real-time. However, it is still difficult for them to be
aware of the actual bus status. For example, by combining
real-time bus location feed and static bus schedule, it is not

difficult to tell if a bus has deviated from its schedule or not.
However, the capability to differentiate a delay event from
a normal delay that fits historical delay patterns and thereby
identify outliers that need to be further investigated is still
lacking at present.

We present our solution to this challenge in Sect. 4.3 to
by designing a data feedback loop for metro transportation
authority that tracks the real-time status of the bus operating
using analytics result from both historical as well real-time
prediction models.

3.4 Problem 4: building and deploying the system
with high availability and scalability

Traditional applications are often built in a monolithic style
where all logic for handling requests runs in a single service
process. Even though the monolithic architecture is easy to
develop, deploy and it is also easy to scale if a load balancer
is used, when the scale of the application increases, it will
become too large and complex for developers to understand,
improve and conduct continuous deployment [34]. Also, the
reliability of the monolithic application will be a problem
because a break down in one component has the potential to
impact the entire application [35].

To improve the scalability and availability of the sys-
tem, we adopted a microservice architecture, which is a
modular architectural pattern for building and deployment
[36,37]. The microservice architecture is well-suited for
cloud environments andhasmany advantages over traditional
architectures: (1) Smaller modules are easier to develop and
therefore improve the productivity of developers, (2) Ser-
vices can be developed and deployed independently, (3) The
source of faults is more apparent.

However, the microservice pattern is not perfect. It has
some unique drawbacks including (1) it is not easy to par-
tition an existing large-scale system into microservices, (2)
additional inter-microservice communication mechanism is
needed, (3) memory consumption may increase especially if
the microservices do not share the same environment. In our
current implementation, the microservices are deployed in a
single environment to avoid this problem.

Sect. 6 explains howwe addressed this challenge by using
a microservices architecture to develop and deploy the back-
end services.

4 Datamanagement and feedback

In this section,wefirst present the heterogeneous data sources
that the system is using and then describe how we integrate
and manage the collected data to address the issues raised in
Sect. 3.1.

123



Cluster Computing

Table 1 Realtime and static datasets collected and stored in the system

Bus Schedules

Format Static GTFS

Source Nashville MTA

Update Every public release

Total size 193MB (Version: Mar. 9 2016)

Real-time Transit

Format Real-time GTFS

Source Nashville MTA

Update Every minute

Total size 278 GB

Time Points

Format Excel

Source Nashville MTA

Update Every month

Monthly size 300,000 entries/month

4.1 Data sources

We have been collaborating with the Nashville Metropolitan
Transit Authority (MTA) for accessing the static and real-
time transit data all across theNashville city. The data sources
that we are collecting are as follows (Table 1).

– Static GTFS data sets Static bus schedules and associated
geographic information in the general transit feed speci-
fication (GTFS) [38] are collected. The data sets include
routes, trips, stops, stop times and physical layout.

– Real-time GTFS data feed Real-time transit fleet feed in
GTFS real-time [39] format that contains three types of
data: service alerts, trip updates and vehicle positions.
The data source of the feed includes streaming AVL data
on operating buses.

– Timepoint data sets TimepointDatasets are the historical
bus data at time points, including route ID, trip ID, drive
ID, actual departure and arrival time, etc. This data is not
available in real-time and is only made available at the
end of the month.

– Crowd-sourced data feed Crowd-sourced data feed is
collected anonymously from theTransit-Hubmobile app.
Anonymous data generated by users is updated to the
server when a user uses the app for route planning and
navigation. It should be noted that this data set is not
being used in the system described in the paper, however,
we will exploit the integration of user-supplied data for
closing the loop to the users in the future release.

4.2 Datamanagement

4.2.1 Data collection

We have to handle data from each source differently as they
have different update rates and formats. For example, (i) Bus
schedule data (static GTFS) is updated onlywhenMTAmod-
ifies its bus routes or schedules; (ii) Historical time point
data set is collected by MTA at the end of the month and is
then manually transferred and imported into our MongoDB
database. On an average,we collect approximately three hun-
dred thousand entries each month; and (iii) For the real-time
transit data, our back-end server requests the data from these
real-time feeds every minute and stores the responses in the
database (see Table 1).

4.2.2 Data cleaning

Data cleaning is a crucial step for data pre-processing to
handle the following issues:

– Duplicated data Detecting and eliminating duplicated
data is one of the major tasks for data cleaning. We com-
pare and remove data with the same time stamps and
key-value pairs.

– Data with logistic errors This type of data exists mainly
in the real-time bus location data. To deal with it, for
example, we remove the records where a bus’ distance
from a stop changes too fast, or if it moves in the wrong
direction. This is done using some custom filters created
by us.

– Missing data This can happen for various reasons, which
are: (a) operational disruptions due to service alerts, (b)
hardware failures, or (c) data transmission issues. The
missing data is filled in using linear interpolation on the
sampled data.

4.2.3 Data storage

The large scale of the historical and real-time transit data
that are accumulated over time requires efficient storage and
management methods. Also, the stored data must be acces-
sible to multiple clients in the system at the same time. To
meet this scale requirement, we employ JSON as the data
structure and MongoDB [40] for data storage. MongoDB is
a distributed NoSQL database that can efficiently store and
query data on the scale of terabytes.

4.3 Opportunities for closing the DDDAS loop

This section shows how data feedback in the transportation
decision support systemcanbeused to help (MTA) to identify

123



Cluster Computing

Fig. 1 Proposed DDDAS Loop in Transit-Hub transportation decision
support system between MTA, Transit-Hub and end users

real-time outliers and perform long-term delay optimization
to improve bus services and availability.

Figure 1 illustrates the data feedback cycle. We utilize the
multi-source data from Nashville MTA to conduct real-time
and long-term data analytics, and the results can be sent back
to them as feedback in different ways:

– Metro transportation authority (MTA) By doing long-
term bus data analysis, our models can find the delay
patterns that are associatedwith seasons, day of theweek,
and time of day. This feedback can be used by MTA
to identify bottlenecks within routes and adjust the bus
timetable or route layout accordingly. Also, by tracking
the real-time bus data and comparing it with the histor-
ical delay patterns, we are able to find the outlier trips
that deviate from the normal ones, which will be used to
inform MTA to investigate and avoid these in the future.

– End UsersWe are collecting anonymous usage and loca-
tion data from application users. This data can be used
to provide an alternative real-time data source for buses.
If a user plans to take a bus that is full of people, the
system can send notifications to advise him/her to take
some other bus or routes. In addition, it can also help to
optimize the bus route network and reduce rider walking
distances as it shows the origins of users to the bus stops
and helps MTA to identify areas with low/high transit
service availability.

5 Model construction

In this section, we present how we construct the long-term
delay model, short-term travel-time model and arrival delay
predictionmodel. In particular, we solve Problem2described
in Sect. 3.2 by creating a shared route segment network and
utilize real-time data from multiple routes.

5.1 Buildingmodel for analyzing long-term delay
patterns

The section describes a long-term analytics model that con-
structs historical bus delay patterns at time points. In this
model, clustering methods are applied to historical arrival
delay and travel delay data.

5.1.1 Clustering analysis

For eachweekday, K-means clustering algorithm [41] is used
to obtain the cluster of the delay data in accordance with the
delay and time of the day by minimizing the within-cluster
sum of squares (WCSS).

argmin
S

k∑

i=1

∑

x∈Si
‖x − μi‖2 (1)

where μi denotes the mean of all points in the cluster Si .
Silhouete analysis [42] is an approach to measure how

close each point is to others within one cluster.

s(i) = b(i) − a(i)

max{a(i), b(i)} (2)

where for each data point i in the cluster, ai is the average
distance between i and the rest of data points in the same
cluster, bi is the smallest average distance between data point
i and every other cluster, and s(i) is the silhouette score. We
calculate the silhouette scores for 2–5 clusters derived from
K-means algorithm to find the optimal number of clusters
with the lowest silhouette score.

The normal distribution of the clustered data helps to iden-
tify the typical delay patterns of previous buses, which can be
given to users when they want an estimate for a future time,
or if there is no real-time data available. The time point data is
imported into the database at the end of eachmonth. Then the
data is stored according to weekday. We subsequently gen-
erate the clusters and normal distributions for all the route
segments in each group. Meanwhile, the clustered data and
normal distributions are cached and stored in the database.
Thus, when we have to query the model, there is no need to
run clustering analysis again.

Example Consider a time point ’HRWB’ on route 3 in
Nashville. The historical bus arrival delay datawe select is for
Wednesday, outbound direction, between June 1, 2016 and
June 30, 2016 (for a total of 185 points). Figure 2 displays
the delay data for a day during that month. In the figure, there
are two obvious groups (yellow and red), one is between 5–
2 PM and the other one is between 2 and 12 AM. The two
groups reveal that there exist two different delay patterns
which happen in the morning and in the afternoon separately.

123



Cluster Computing

Fig. 2 Cluster historical delay data according to the delay and time in
the day at time point “HRWB" on route 3. The figure shows that there
are two active delay patterns, one before and one after 2 PM. The blue
dots are outliers identified by analysis in Sect. 5.1.3

Fig. 3 Normal distribution of the clustered historical delay data at time
point “HRWB” on route 3

This information can be provided to end users to help them
plan trips.

5.1.2 Normality test and analysis.

The analytics is based on the assumption that historical delay
data has a normal distribution. In order to ensure this, we
perform normality test on each cluster that we get in the
previous step. We can calculate the confidence interval for
long-term delay analysis from the distribution curve.

Example These are the two normal distributions in Fig. 3 that
we obtain after performing the normality test on the clusters
generated from the data described in the previous example.
The cluster for the delay in the afternoon has a higher mean
value (92.0 vs. 58.0 s) and a wider normal distribution curve,
which indicates that buses on route 3 are more likely to be on

Table 2 Mean value of the delay data distributions for 4 time points on
route 3 in morning and afternoon in June

Timepoints

WE23 WE31 HRWB WHBG

Morning 116.90 127.71 93.14 443.52

Afternoon 121.03 146.28 114.48 545.49

time in the afternoon. In the afternoon, the 95% confidence
interval of delay is between −60.4 and 244.4 s while in the
morning the 95% confidence interval of delay is between
−73.5 and 189.6 s (the negative seconds mean the buses are
predicted to arrive earlier than scheduled time).

5.1.3 Outlier analysis

In order to identify outliers from historical bus data, the first
step is to generate the normal distribution for each of the
clustered data groups described in the former sections. Since
for a normal distribution where μ is the mean value and
σ is the standard deviation, 95% of all data is within the
confidence interval of [μ − 2σ , μ + 2σ ], we define that the
outliers are the historical data with delay greater thanμ+2σ
or less than μ − 2σ in the distribution.

Example For the dataset mentioned in the previous two
examples, there exist some outliers (blue points) in Fig. 2.
These outliers belong to the two clusters obtained from clus-
tering analysis and are identified by outlier analysis. The
outliers mostly emerged during rush hours in the morning
and in the evening. One hypothesis is that during rush hours,
there are more passengers and more traffic congestion on
the route, which will increase the boarding time at stops and
travel time on the road. Since our back-end server is moni-
toring the real-time transit feeds and in the meantime records
real-time data, trips that have severe outliers and do not fit in
the typical delay pattern can be easily detected and used for
further investigation.

5.1.4 Bottleneck identification

After mean delay patterns of all time points and all route
segments are derived, we can then identify the bottlenecks
along the routes by using those patterns. This also helps so
that actions to optimize the route performance can be taken
afterwards.

There are 4 time points “WE23”, “WE31”, “HRWB”
and “WHBG” on route 3 (traveling away from downtown
Nashville). Table 2 shows the findings that the typical arrival
delay for “WHBG” is 443.52 s in the morning and 545.49 s
in the afternoon. Considering the fact that the typical arrival
delays for “WE23”, “WE31” and “HRWB”, timepoints

123



Cluster Computing

Fig. 4 Finding shared route segments between two bus routes. The
segment that contains the three center points is shared by route 1 and
route 2

before “WHBG”, in the morning and afternoon are all below
150s, we can draw the conclusion that the bus stops between
“HRWB” and “WHBG” are the bottlenecks for route 3.

5.2 Real-time data integration

This section describes a short-term bus arrival delay predic-
tion model that we have developed to address the challenges
presented in Sect. 3. Themodel integrates real-time bus loca-
tion data of shared route segments and combines clustering
analysis and Kalman filters for delay prediction.

5.2.1 Utilizing shared route segment data

Problem2 fromSect. 3.2 describes the issue that real-timebus
data is not always available due to infrequency of buses. To
address this challenge, the short-term delay predictionmodel
in Transit-Hub creates a shared bus route segment network,
and uses the real-time data from shared route segments for
short-term predictive analysis.

Our prior work [17] was based on shared route segments,
but at that time we used shared segments that were manually
selected and we did not provide a solution to automatically
identify shared route segments. In this paper we present an
algorithm to create a shared bus route segment network for
all the existing routes in the city [43]. Also, the data that the
algorithm uses is in standard GTFS format, so the algorithm
can be easily applied to other cities that use the same data
format.

A Route segment is defined as a maximal part of bus route
that is shared by a set of bus routes. In GTFS format, the
physical path of bus routes is described using a sequence of
coordinate points (in the shapes.txt file) on the map. If there
are two segments from two bus routes that share the same
sequence of coordinate points, then we can assume that the
routes share that road segment. The outline of the algorithm
to generate the shared route segment network is described as
below (The key steps are illustrated in Fig. 4):

Input: Static GTFS dataset Static bus and associated geo-
graphic information are loaded from database.

Output: Shared route segment network Segment layout
for each bus route is saved in the database.

Step 1: Map grid initialization The Nashville map is
divided into map grids of squares. The length of each square
is about 8.97 meters, so each grid cell covers about 80.51
square meters on the map.

Step 2: Route path re-sampling and smoothing The
sequences of points in all bus routes are re-sampled to the
centers of grid cells if the point is covered by the cell. Also,
if the distance between adjacent points in the sequences is
larger than the width of a grid cell, points will be interpolated
to fill the cells that are missing points. The re-sampled points
of each route are cached in the database for determining the
shared route segments in the later step. As shown in Fig. 4,
the paths of route 1 and 2 are re-sampled to the center points
of grid cells.

Step 3: Calculating segments for bus routes Each cell is
tagged by every route that uses that cell. If a cell contains tags
from multiple routes then it becomes part of a new shared
segment. For example, the three-point segments in Fig. 4 are
shared by route 1 and 2, so this segment is marked as a shared
route segment. New segments are checked to make sure no
duplicated segments are generated.

Step 4: Segment length limitation Any segment that has
a length that is greater than 1 mile is divided into smaller
segments. because our model is based on the assumption that
the travel delay within each segment is equally distributed,
and hence the division of larger segments into smaller ones
will satisfy this assumption and reduce prediction error.

UsingNashville’s staticGTFS (version ofMarch 9, 2016),
wegenerated a shared route segment network shown inFig. 5.
The 57 bus routes in Nashville city were divided into 5139
segments. The lines in different colors show different route
segments. Since the static bus schedules are updated regularly
byMTA, the shared route segment network shouldbeupdated
when new schedules are released.

There are many benefits to using real-time data of shared
route segments, such as: (1) Utilizing the real-time data from
other routes can greatly increase the volume of data that are
available for short-term delay prediction analysis. For exam-
ple, the route 3 in Nashville fromWhite Bridge to Downtown
has a schedule interval of 40 min at holiday and weekends.
Only using route 3 data means the most recent data is at
least 40 min old, which is not recent enough to predict the
currently delay on route 3. (2) The length of each segment
in the network can be controlled by the one-mile limitation
mentioned in the last step of the algorithm. Since the delay
pattern varies along a bus route, segments with longer length
are divided by the algorithm to produce more accurate ana-
lytics results. (3) By creating a shared route segment model,
the divide and conquer design pattern is used. Individual and
self-maintained microservice model can then run for each of
the segments concurrently.

123



Cluster Computing

Fig. 5 Generated shared bus route segment network in Nashville. The lines with different colors represent the 5139 shared route segments in all
57 bus routes in the network. The length of the segments are limited to less than 1 mile

5.2.2 Estimating the arrival time at bus stops

Since the actual arrival time at bus stops are not included in
the real-time GTFS feed in Nashville, we integrate the real-
time bus location data and the static bus stop locations to
estimate the arrival time of buses.

From the real-time bus location feed, we can get the
bus location and timestamps in the following array format:
[(t1, d1), . . . , (tk, dk), . . .]. Because the update rate of the
original data varies from seconds to minutes, we first aggre-
gate the collected data into 1-min average data using sliding
time windows. Then, we assume that bus speed is approxi-
mately the average of the two adjacent data points and apply
the following equation to calculate the bus arrival time at
stops:

tstop = tk−1 + (tk − tk−1)
dstop − dk−1

dk − dk−1
(3)

where tstop denotes the estimated arrival time, dk is the bus’s
distance from the current location to the first bus stop of the

route along the route path at time tk . Also, dk−1 <= dstop <

dk .

5.2.3 Updating the travel delay prediction using K-means
algorithm and smoothing filter

Excluding the outliers If the travel time of a preceding bus
differs greatly from other preceding buses, we consider this
point an outlier and exclude it from the model computation.

To identify the outliers from the data, we employK-means
algorithm to cluster the preceding bus data according to travel
time and time in the day. The Silhouette analysis that was
introduced in Eq. (2) is also used here to find the optimal
number of clusters. We choose the cluster whose time of
day is closest to the current time. The data points from that
cluster are smoothened through the filter described in the next
section and used as an estimate for the current travel time on
that segment.

Smoothing the preceding bus dataBycomparing the travel
time of preceding buses and the scheduled travel time within
the route segment, we compute the travel delay of the pre-

123



Cluster Computing

ceding buses in the segment. The travel delay data is then
through a filter to eliminate noise and predict the segment’s
current travel delay. The state transition equation is:

xk = xk−1 + ωk−1 (4)

where the state variable xk denotes the time step for which
the travel delay needs to be predicted, ωk denotes the zero
mean normal distribution noise with covariance Qk .

The observation equation used is:

zk = xk + νk (5)

where variable zk represents the observation of delay at time
step k. νk represents the zero mean Gaussian distribution
observation noise with covariance Rk .ωk and νk are assumed
to be independent.

5.2.4 Example

In this section we use an example to explain the workflow
of Transit-Hub multi-timescale analysis services. Figure 6
illustrate a common scenario where a bus b1 is running along
a bus route r1 and the system needs to predict on request, the
expected delay for a bus at stop si :

1. Creating shared route segment network From the figure
we can see that routes r1 and r2 are divided into 5 seg-
ments: seg1, seg2, seg3, seg4, seg5. The segment seg2 is
shared by the routes.

2. Getting preceding buses using static bus schedules From
the static bus schedules we find that there are many buses
(b2, b3, etc.) from route r1 and r2 that have passed through
segment seg3

3. Estimating travel time of the buses in segments Preceding
buses’ travel time can be estimated using the collected
real-time bus location data.

4. Predict travel delay in segments The data from recent
buses are clustered by travel time and time in the day.
The group of data whose mean value (time in the day)
is closed to the current time will be smoothed with a
Kalman filter.

5. Getting arrival delay at bus stop The sum of the delays
for each segment between the current bus position and
the target stop sn is the model’s prediction for arrival.

6 Deployed architecture

In this section, we describe the implementation architecture
for the short term online delay prediction service, which

Fig. 6 Use case: example of using shared route segment data to predict
a bus’s delay at a bus stop

Fig. 7 Microservice architecture of Transit Hub back-end analytics
services

addresses problem 4 described in Sect. 3.4 concerning scal-
ability and availability.

Section 3.4 compared two deployment patterns: tradi-
tional monolithic style and microservice style. Microservice
deployment is an application architectural pattern where
independently deployable and self-contained services can
work together, which may be more suitable for complicated
web applications [34–36]. Microservices communicate with
each other via lightweight network mechanisms, such as
using REpresentational State Transfer (REST) API, message
broker, etc. Fig. 7 illustrates the overall architecture of the
Transit-Hub analytics.

Microservice 1: Smoothing the real-time GTFS data
Microservice 1 first cleans the raw real-time GTFS data by
removing the duplicate and missing data, and then re-sample
it to estimate the bus arrival time onbus routes. Thismicroser-
vice tracks real-time bus location and when a new bus travels
through a route segment, it will informMicroservice 2 which
updates the travel timedelay for this route segment.Microser-
vice 1 is activated by a scheduler every 5 min.

Microservice 2: Predicting arrival delay at segments
Microservice 2 collects the data processed by Microservice
1 and employs short-term delay prediction (Sect. 5.2) to
update the estimated delay for the route segments. When
Microservice 2 receives a prediction update request for a
route segment, it wakes up and runs the prediction process
to update the travel delay prediction for that route segment.

123



Cluster Computing

Fig. 8 Studied road segment shared by route 3 and 5

Microservice 3: Predicting arrival time at bus stops
Microservice 3 combines the current delay of all buses and
the predicted travel delay for all route segments to produce
the arrival delay prediction at all bus stops for all routes. This
microservice is activated every minute and stores the predic-
tion results in the database. Note thatMicroservice 2 runs per
route segment whereas service 3 runs to update the arrival
time for all routes.

Representational state transfer (REST) API and message
broker are twoof the popular approaches for providing a com-
munication mechanism between microservices. The REST
approach is synchronous by default and uses DNS or a reg-
istry for service discovery, and supports load balancing by
using software like Ribbon [44]. The message broker is
an asynchronous mechanism, which uses queues to man-
age message queues and can achieve load balancing very
easily. Asynchronous message passing is a better choice
for microservices because: (1) the individual microservice
that sends a message will not be blocked before the other
microservice responds; (2) using asynchronous communica-
tion can help to reduce unnecessary duplicate computation.
For example, in our architecture, microservice 1 is continu-
ously sending the IDs of route segments that need to update
prediction to microservice 2. If we find that there are two
identical segment IDs in the message queue, then the dupli-
cate can be removed to avoid duplication of work. Based
on these considerations, we use RabbitMQ [45], which is a
message broker that provides asynchronous messaging.

Fig. 9 RMSD of travel time delay prediction for each day when com-
paring the Transit-Hub model with the SVM Kalman model proposed
in 2015. Transit-Hub model outperforms the SVM-Kalman model: (1)
RMSD values are smaller (2) it shows less variation on different days

The microservices are deployed on an OpenStack [46]
cloud operating system. We created an m1.large nova com-
puting instance for the microservices which has 4 virtual
CPUs, 8GB RAM and runs Ubuntu 14.04 (LTS). The
microservices all together use 10.9% CPU resources and
28% RAM on average. The performance and resource con-
sumption of the microservices will not be affected by user
interactions. They run separately and repeatedly in the back
end and store analysis results for later use. When an end user
sends a prediction request for a route, an independent ser-

123



Cluster Computing

Fig. 10 Arrival time delay prediction for a bus stop of a trip: (1) actual arrival delay, (2) predicted mean value − standard deviation, (3) predicted
mean, (4) predicted mean value + standard deviation

vice in the system will fetch the prediction results from the
database and provide the information to the end user.

7 Prediction performance evaluation

This section presents experimental results from Transit-
Hub’s real-timedelaypredictionmodel. These results empiri-
cally evaluate Transit-Hub’s bus travel time delay prediction
ability against an SVM-Kalman model [9] using real-time
data collected in Nashville. Compared to the SVM-Kalman
model, ourmodel takes the scheduled timeof precedingbuses
into consideration, and sincewe are clustering the data of pre-

ceding buses according to time of day and delay, only clusters
with an average time of day close to the current time of day
will be used. We also evaluate how well our model predicts
arrival delay comparing it against real-world data.

7.1 Experiment 1: evaluating the travel time delay
prediction

The first experiment is designed to evaluate Transit-Hub’s
ability to predict travel time delay, using its prediction model
and comparing against other prediction models using the
same real-world data.

123



Cluster Computing

7.1.1 Experiment setup

Routes 3 and 5 are two of the major bus routes in
Nashville. As shown in Fig. 8, they share the same route
segment between time point WES23AWN and time point
WES31AWN along West End Avenue. We select this route
segment of route 3 and 5 towards WHITE BRIDGE to test
our proposed model.

The data used in this experiment is the real-time and static
GTFSdata for routes 3 and 5 thatwe collected fromNashville
MTA in June 2016. We divide the data into two parts: a
training dataset and a validation dataset. The training dataset
contains bus data from June 6th to June 12nd and the vali-
dation dataset contains data from Jun 13rd to Jun 15th. Our
model and the SVM-Kalman are evaluated using the same
validation dataset. From our previous paper [17] we learned
that only data 120 min old or newer is important for real-
time delay prediction. Therefore, in this experiment we use
the data for buses in the past 2 h.

7.1.2 Comparing with a SVM-Kalmanmodel

In order to evaluate the performance of the proposed short-
term delay prediction model, we chose and implemented a
dynamic SVM-Kalman model that was proposed by Bai, et
al. in 2015 [9]. The dynamic model consists of a support
vector machines (SVM) model that uses historical data to
estimate the current travel time as a baseline prediction, and
a Kalman filter model that uses real-time preceding bus data
to adjust the base time. The features that they use in the SVM
model include: (1) time of the day, (2) road segment ID, (3)
weighted average bus travel time of preceding buses, and (4)
the travel time of the preceding buses on the same route.

7.1.3 Results

Figure 9 shows the root-mean-square deviation (RMSD) of
the travel time delay prediction results for three days in June.
The RMSD of travel time delay is calculated using the fol-
lowing equation:

tact_trai j = tact_arrj − tact_depi (6)

RMSD =

√√√√
∑n

i

(
tact_trai j − t pred_trai j

)2

n
(7)

where i and j are indexes of the timepoints along the route,
and i < j . Variable tact_arri and tact_depi represent the actual

arrival and departure time at timepoint i , tact_trai j and t pred_trai j
represent the actual and predicted travel time at the segment
between timepoint i and j , respectively. n is the number of
bus trips in the dataset.

Fig. 11 Studied segment of route 3 that starts from first bus stop
(MCC5_5) to the 15th bus stop (WES23AWN)

Since the SVMmodel ignores the differences that exist in
the scheduled travel of preceding buses and the model does
not exclude outliers, we expect our model to outperform the
SVM model from [9]. The experimental results validate our
hypothesis. When predicting the travel time delay 15 min
ahead using collected data from Jun 12 to Jun 15, the RSMD
of the our model is about 30–65% lower compared to the
SVM-Kalman model.

7.2 Experiment 2: evaluating the arrival time delay
prediction

The second experiment is designed to evaluate the short-term
prediction model’s performance when the prediction horizon
changes. For this experiment, we choose a trip from route 3
on June 14th 2016. The studied segment is shown in Fig. 10.

ResultsFigure 11 shows the actual delay and the predicted
arrival delay with confidence interval as the prediction hori-
zon decreases from 19 to 0 min (the time just before the bus
arrived).

Since our model integrates the predicted the travel delay
in route segments and estimated arrival delay at the most
recent bus stop that the bus passed, we expect the predicted
confidence interval will become smaller and the error will
decrease as the prediction interval reduces, i.e., as we make
the prediction closer to the scheduled time of arrival.

This example shows that when predicting 19 min before
the actual arrival time, the confidence interval is 226.5 s and
the interval decreases to 2.1 s. We notice a 27.8 s differ-
ence between predicted delay and actual delay when the bus
arrives, we attribute this to normal system variance.

8 Conclusion and future work

In this paper, we presented research on a DDDAS-enabled
smart public transportation decision support system that sig-

123



Cluster Computing

Table 3 Summary of architectural decisions in Transit-Hub

Challenge Design principle Approach Section

Learning the historical delay
patterns

Long-term analytics model Clustering analysis, normality test
and outlier analysis

Sec 5.1

Accurate bus delay prediction Better usage of the real-time bus
data

Prediction model that combines
clustering and Kalman filter

Sec 5.2

Lack of quality real-time data Integrating shared route segment
data

Shared route segment network Sec 5.2.1

Improve scalability and fault
isolation

Separation into independent
modules

Microservice architecture Sec 6

Optimize the bus service Data feedback loop Provide the analytics results via
feedback loop to MTA

Sec 4.3

nificantly extends our prior work on Transit-Hub [17] by
illustrating and validating the methods developed for long-
term and short-term predictive analytics services. Table 3
summarizes the work by presenting the challenges we
resolved, the corresponding design principle used, and
approaches when developing the system. Our long-term
delay analysis service excludes the noise of outliers in the his-
torical dataset and identifies the delay patterns of time points
and route segments that are associated with different times
of day, day of the week and seasons. The city planners can
utilize the feedback data to optimize the bus schedules and
improve rider satisfaction. Residents and travelers in cities
like Nashville can also benefit from our short-term delay pre-
diction services.

In the future, the work presented in the paper can be
extended in the following ways: (1) We want to integrate
more data sources into the analysis and prediction models.
New data sources, such as traffic flow, weather conditions,
special events, can impact public transportation and can be
used as new feature vectors to improve the current services.
The crowd-sourced data is being collected and the integration
of user datawill be explored in the future. (2) The services can
be deployed further in edge devices using tools like Apache
Edgent [47] to reduce the data transmission between edge
nodes and a central analytics engine. (3) The system can fit
into a smart city platform called Cyber-pHysical Application
aRchItecture with Objective-based reconfiguraTion (CHAR-
IOT) [48], which will improve the system’s resilience and
communication heterogeneity. (4) Storm is a scalable, fast
and distributed computation system. In order to scale the
Transit-Hub system to serve multiple cities in the future,
Storm can be integrated into the system to consume the
distributed streaming real-time data feeds, run the multi-
timescale analytics and then make the results available to
all users.

Acknowledgements This work is supported by The National Science
Foundation under the award numbers CNS-1528799 andCNS-1647015
and a TIPS grant from Vanderbilt University. We acknowledge the sup-

port provided by our partners from Nashville Metropolitan Transport
Authority.

References

1. APTA: Americans took 10.6 billion trips on public transportation
in 2015. (2016)

2. APTA:Record 10.7 billion trips taken onU.S. public transportation
in 2013. (2014)

3. Federal Highway Administration: Travel monitoring and traffic
volume (2014)

4. Bates, J., Polak, J., Jones, P., Cook, A.: The valuation of reliability
for personal travel. Transp. Res. Part E 37(2), 191–229 (2001)

5. Gooze, A., Watkins, K., Borning, A.: Benefits of real-time tran-
sit information and impacts of data accuracy on rider experience.
Transp. Res. Record 2351, 95–103 (2013)

6. Dziekan, K., Kottenhoff, K.: Dynamic at-stop real-time informa-
tion displays for public transport: effects on customers. Transp.
Res. Part A 41(6), 489–501 (2007)

7. Bin, Y., Zhongzhen, Y., Baozhen, Y.: Bus arrival time prediction
using support vector machines. J. Intell. Transp. Syst. 10(4), 151–
158 (2006)

8. Zhang, C., Teng, J.: Bus dwell time estimation and prediction: a
study case in shanghai-china. Procedia-Soc. Behav. Sci. 96, 1329–
1340 (2013)

9. Bai, C., Peng, Z.R., Lu, Q.C., Sun, J.: Dynamic bus travel time
prediction models on road with multiple bus routes. Comput. Intell
Neurosci. 2015, 63 (2015)

10. Mazloumi, E., Mesbah, M., Ceder, A., Moridpour, S., Currie, G.:
Efficient transit schedule design of timing points: a comparison
of ant colony and genetic algorithms. Transp. Res. Part B 46(1),
217–234 (2012)

11. Dessouky,M., Hall, R., Nowroozi, A., Mourikas, K.: Bus dispatch-
ing at timed transfer transit stations using bus tracking technology.
Transp. Res. Part C 7(4), 187–208 (1999)

12. Fu, L., Liu, Q., Calamai, P.: Real-time optimization model for
dynamic scheduling of transit operations. Transp. Res. Record
1857, 48–55 (2003)

13. Sun, A., Hickman, M.: The real-time stop-skipping problem. J.
Intell. Transp. Syst. 9(2), 91–109 (2005)

14. Real-time port authority bus tracking system not always real.
http://www.post-gazette.com/news/transportation/2014/10/16/
Real-time-Port-Authority-tracking-not-always-real/stories/
201410160155 (2014) Accessed 30 Sept 2016

15. Cota says its real-time bus-tracking system doesn’t work. http://
www.dispatch.com/content/stories/local/2014/07/23/COTA-

123

http://www.post-gazette.com/news/transportation/2014/10/16/Real-time-Port-Authority-tracking-not-always-real/stories/201410160155
http://www.post-gazette.com/news/transportation/2014/10/16/Real-time-Port-Authority-tracking-not-always-real/stories/201410160155
http://www.post-gazette.com/news/transportation/2014/10/16/Real-time-Port-Authority-tracking-not-always-real/stories/201410160155
http://www.dispatch.com/content/stories/local/2014/07/23/COTA-says-its-GPS-system-doesnt-work.html
http://www.dispatch.com/content/stories/local/2014/07/23/COTA-says-its-GPS-system-doesnt-work.html


Cluster Computing

says-its-GPS-system-doesnt-work.html (2014). Accessed 30 Sept
2016

16. Darema, F.: Dynamic data driven applications systems: a new
paradigm for application simulations and measurements. Compu-
tat. Sci.-ICCS 2004, 662–669 (2004)

17. Sun, F., Pan, Y., White, J., Dubey, A.: Real-time and predictive
analytics for smart public transportation decision support sys-
tem. In: 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), pp 1–8, https://doi.org/10.1109/SMARTCOMP.
2016.7501714 (2016)

18. Shekhar, S., Sun, F., Dubey, A., Gokhale, A., Neema, H., Lehofer,
M., Freudberg, D.: Transit hub. In: Geng, H. (ed.) Internet of
Things and Data Analytics Handbook, pp. 597–612. Wiley, Hobo-
ken (2016)

19. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support
vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281
(2004)

20. Yu, B., Lam, W.H., Tam, M.L.: Bus arrival time prediction at bus
stop with multiple routes. Transp. Res. Part C 19(6), 1157–1170
(2011)

21. Chien, S.I.J., Kuchipudi, C.M.: Dynamic travel time prediction
with real-time and historic data. J. Transp. Eng. 129(6), 608–616
(2003)

22. Jeong, R.H.: The prediction of bus arrival time using automatic
vehicle location systems data. PhD thesis, Texas A&M University
(2005)

23. Weigang, L., Koendjbiharie, W., de M Juca, R., Yamashita, Y.,
MacIver, A.: Algorithms for estimating bus arrival times using
gps data. In: Intelligent Transportation Systems, 2002. Proceedings
of the IEEE 5th International Conference on, IEEE, pp 868–873
(2002)

24. Sun, D., Luo, H., Fu, L., Liu,W., Liao, X., Zhao,M.: Predicting bus
arrival time on the basis of global positioning system data. Transp.
Res. Record 2034, 62–72 (2007)

25. Chien, S.I.J., Ding,Y.,Wei, C.: Dynamic bus arrival time prediction
with artificial neural networks. J. Transp. Eng. 128(5), 429–438
(2002)

26. Patnaik, J., Chien, S., Bladikas, A.: Estimation of bus arrival times
using apc data. J. Public Transp. 7(1), 1 (2004)

27. Shalaby, A., Farhan, A.: Bus travel time prediction model for
dynamic operations control and passenger information systems.
Transp. Res. Board 2 (2003)

28. Yang, J.S.: Travel time prediction using the gps test vehicle and
kalman filtering techniques. In: Proceedings of the 2005, American
Control Conference, 2005., IEEE, pp 2128–2133 (2005)

29. Chen, M., Liu, X., Xia, J., Chien, S.I.: A dynamic bus-arrival time
prediction model based on apc data. Comput.-Aided Civil Infras-
truct. Eng. 19(5), 364–376 (2004)

30. Jeong, R., Rilett, R.: Bus arrival time prediction using artificial neu-
ral network model. In: Intelligent Transportation Systems, 2004.
Proceedings of the 7th International IEEE Conference on, IEEE,
pp 988–993 (2004)

31. Mazloumi, E., Moridpour, S., Currie, G., Rose, G.: Exploring the
value of traffic flow data in bus travel time prediction. J. Transp.
Eng. 138(4), 436–446 (2011)

32. Nashville mta maps and schedules. http://www.nashvillemta.org/
Nashville-MTA-Maps-and-Schedules.asp (2016). Accessed 26
Sept 2016

33. M15 service between east harlem and south ferry. http://web.mta.
info/nyct/bus/schedule/manh/m015scur.pdf (2016). Accessed 26
Sept 2016

34. Rama,G.M., Patel,N.: Softwaremodularizationoperators. In: Soft-
ware Maintenance (ICSM), 2010 IEEE International Conference
on, IEEE, pp 1–10 (2010)

35. Sarkar, S., Ramachandran, S., Kumar, G.S., Iyengar, M.K., Ran-
garajan, K., Sivagnanam, S.: Modularization of a large-scale
business application: a case study. IEEESoftw. 26(2), 28–35 (2009)

36. Newman, S.: Building Microservices. O’Reilly Media, Inc., New-
ton (2015)

37. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)
38. General transit feed specification (gtfs) static overview. https://

developers.google.com/transit/gtfs/ (2016). Accessed 18 Sept
2016

39. General transit feed specification (gtfs) real-time overview. https://
developers.google.com/transit/gtfs-realtime/ (2016) Accessed 18
Sept 2016

40. The mongodb 3.2 manual. https://docs.mongodb.com/manual/
(2016). Accessed 25 Sept 2016

41. Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans. Inf.
Theor. 28(2), 129–137 (1982)

42. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl.Math 20, 53–65
(1987)

43. Sun, F.: Transit hub—shared route segment network gener-
ation algorithm. https://github.com/visor-vu/thub-shared-route-
segment-network (2016)

44. Ribbon, a inter process communication (remote procedure calls)
library. https://github.com/Netflix/ribbon (2016). Accessed 29
Sept 2016

45. Rabbitmq. https://www.rabbitmq.com/ (2016). Accessed 24 Sept
2016

46. Openstack documentation. http://docs.openstack.org/ (2016).
Accessed 30 Sept 2016

47. Apache edgent documentation. http://edgent.apache.org/docs/
home (2016) Accessed 30 Sept 2016

48. Pradhan, S.M., Dubey, A., Gokhale, A., Lehofer, M.: Chariot: A
domain specific language for extensible cyber-physical systems.
In: Proceedings of the Workshop on Domain-Specific Modeling,
ACM, pp 9–16 (2015)

Fangzhou Sun is currently a
Ph.D. student in computer sci-
ence at Vanderbilt University. He
received his M.S. degree in com-
puter science from Vanderbilt Uni-
versity in 2015 and completed his
undergraduate studies in computer
science from Nanjing University,
China in 2013. His main research
topics include (1) developing data
mining and Machine Learning tech-
niques to solve Smart City and
cybersecurity problems; (2) devel-
oping and managing applications,
analytics tool boxes and platforms

for Smart City. He is also an active iOS app developer and web devel-
oper.

123

http://www.dispatch.com/content/stories/local/2014/07/23/COTA-says-its-GPS-system-doesnt-work.html
https://doi.org/10.1109/SMARTCOMP.2016.7501714
https://doi.org/10.1109/SMARTCOMP.2016.7501714
http://www.nashvillemta.org/Nashville-MTA-Maps-and-Schedules.asp
http://www.nashvillemta.org/Nashville-MTA-Maps-and-Schedules.asp
http://web.mta.info/nyct/bus/schedule/manh/m015scur.pdf
http://web.mta.info/nyct/bus/schedule/manh/m015scur.pdf
https://developers.google.com/transit/gtfs/
https://developers.google.com/transit/gtfs/
https://developers.google.com/transit/gtfs-realtime/
https://developers.google.com/transit/gtfs-realtime/
https://docs.mongodb.com/manual/
https://github.com/visor-vu/thub-shared-route-segment-network
https://github.com/visor-vu/thub-shared-route-segment-network
https://github.com/Netflix/ribbon
https://www.rabbitmq.com/
http://docs.openstack.org/
http://edgent.apache.org/docs/home
http://edgent.apache.org/docs/home


Cluster Computing

Abhishek Dubey is an Assis-
tant Professor in the Department
of Computer Science and Com-
puter Engineering at Vanderbilt
University. He is also a senior
research scientist at the Institute
for Software Integrated Systems
at Vanderbilt University. His
research area is resilient cyber-
physical systems, including fault
diagnostics and prognostics and
performance management
algorithms. He is particularly inter-
ested in applying his work to smart
and connected communities. His

current projects are related to transportation, smart grid and emer-
gency response domains. Abhishek completed his Ph.D. in Electrical
Engineering from Vanderbilt University in 2009. He received his M.S.
in Electrical Engineering from Vanderbilt University in August 2005
and completed his undergraduate studies in electrical engineering from
the Indian Institute of Technology, Banaras Hindu University, India in
May 2001. He is a senior member of IEEE.

Jules White is an Assistant Pro-
fessor of Computer Science in the
Department of Electrical Engineer-
ing and Computer Science at Van-
derbilt University. He was previ-
ously a faculty member in Elec-
trical and Computer Engineering
at Virginia Tech and won the Out-
standing New Assistant Profes-
sor Award at Virginia Tech. His
research has won 5 Best Paper and
Best Student Paper Awards. He
has also published over 85 papers.
Dr. White’s research focuses on
securing, optimizing, and leverag-

ing data from mobile cyber-physical systems. His mobile cyber-
physical systems research spans four key focus areas: (1) mobile secu-
rity and data collection, (2) high-precision mobile augmented reality,
(3) mobile device and supporting cloud infrastructure power and con-
figuration optimization, and (4) applications of mobile cyber-physical
systems in multi-disciplinary domains, including energy-optimized
cloud computing, smart grid systems, healthcare/manufacturing secu-
rity, next-generation construction technologies, and citizen science.

Aniruddha Gokhale is an Asso-
ciate Professor in the Department
of Electrical Engineering and Com-
puter Science, and Senior Research
Scientist at the Institute for Soft-
ware Integrated Systems (ISIS)
both at Vanderbilt University,
Nashville, TN, USA. His current
research focuses on developing
novel solutions to emerging chal-
lenges in edge-to-cloud comput-
ing, real-time stream processing,
and publish/subscribe systems as
applied to cyber physical systems
including smart transportation and

smart cities. He is also working on using cloud computing technolo-
gies for STEM education. Dr. Gokhale obtained his B.E. (Computer
Engineering) from University of Pune, India, 1989; M.S. (Computer
Science) from Arizona State University, 1992; and D.Sc (Computer
Science) from Washington University in St. Louis, 1998. Prior to join-
ing Vanderbilt, Dr. Gokhale was a member of technical staff at Lucent
Bell Laboratories, NJ. Dr. Gokhale is a Senior member of both IEEE
and ACM, and a member of ASEE. His research has been funded
over the years by DARPA, DoD, industry and NSF including a NSF
CAREER award in 2009.

123


	Transit-hub: a smart public transportation decision support system with multi-timescale analytical services
	Abstract
	1 Introduction
	1.1 Emerging trends and challenges
	1.2 Solution approach and contributions
	1.3 Paper organization

	2 Related work
	2.1 Statistical models
	2.2 Kalman filter models
	2.3 Machine learning models
	2.4 Comparison with our work

	3 Building multi-timescale analytical services for public transit
	3.1 Problem 1: integrating and managing heterogeneous data from multiple sources
	3.2 Problem 2: utilizing real-time bus data for multiple routes that sharing similar segments
	3.3 Problem 3: providing schedule adjustment feedback to metro transit authority
	3.4 Problem 4: building and deploying the system with high availability and scalability

	4 Data management and feedback
	4.1 Data sources
	4.2 Data management
	4.2.1 Data collection
	4.2.2 Data cleaning
	4.2.3 Data storage

	4.3 Opportunities for closing the DDDAS loop

	5 Model construction
	5.1 Building model for analyzing long-term delay patterns 
	5.1.1 Clustering analysis
	5.1.2 Normality test and analysis.
	5.1.3 Outlier analysis
	5.1.4 Bottleneck identification

	5.2 Real-time data integration
	5.2.1 Utilizing shared route segment data
	5.2.2 Estimating the arrival time at bus stops
	5.2.3 Updating the travel delay prediction using K-means algorithm and smoothing filter
	5.2.4 Example


	6 Deployed architecture
	7 Prediction performance evaluation
	7.1 Experiment 1: evaluating the travel time delay prediction
	7.1.1 Experiment setup
	7.1.2 Comparing with a SVM-Kalman model
	7.1.3 Results

	7.2 Experiment 2: evaluating the arrival time delay prediction

	8 Conclusion and future work
	Acknowledgements
	References




