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Abstract—Unpredictability is one of the top reasons that
prevent people from using public transportation. To improve the
on-time performance of transit systems, prior work focuses on
updating schedule periodically in the long-term and providing
arrival delay prediction in real-time. But when no real-time
transit and traffic feed is available (e.g., one day ahead), there is
a lack of effective contextual prediction mechanism that can give
alerts of possible delay to commuters. In this paper, we propose
a generic tool-chain that takes standard General Transit Feed
Specification (GTFS) transit feeds and contextual information
(recurring delay patterns before and after big events in the city
and the contextual information such as scheduled events and
forecasted weather conditions) as inputs and provides service
alerts as output. Particularly, we utilize shared route segment
networks and multi-task deep neural networks to solve the data
sparsity and generalization issues. Experimental evaluation shows
that the proposed toolchain is effective at predicting severe delay
with a relatively high recall of 76% and F1 score of 55%.

Keywords—public transportation; delay prediction; neural net-
work; deep learning; multi-task learning;

I. INTRODUCTION

Emerging Trends. Traffic congestion is one of the major
quality of life concerns in urban areas, and it disproportionately
affects the less affluent who live far from city cores and
employment opportunities. City planners in major metropolitan
areas are considering a potpourri of approaches to manage con-
gestion, which include economic incentives such as dynamic
toll pricing, high-occupancy vehicle lane (HOV) lanes, and
better infrastructure for alternative modes of transportation,
such as biking, among others. However, the pillar of the
congestion mitigation mechanisms remains the public transit
system as it provides a high capacity low-impact mode of
transportation. Yet, as seen by several studies around the
country, public transit is not the preferred mode of travel in
many cities [1].

Besides lack of cross-town routes and low service relia-
bility, unpredictability is one of the top reasons that prevent
people from using public transportation [2], [3] 1. The variance
of travel time on a bus route can very high due to a number
of reasons, including passenger load and unload times, traffic
congestions, weather conditions, events such as football and
hockey games. For example, Figure 1(a) shows a bus route

1In 2015, a mass transit survey from Nashville, USA revealed that people
who regularly use the transit system focus mostly on creating a system in
which buses arrive on time [4].

Fig. 1. (a) A route segment on bus route 3 leaving downtown; (b) The
variance of actual travel time on a bus route segment is very high in time
period between Sept. 1, 2016 and Feb. 28, 2017.

segment on route 3 departing from downtown; Figure 1(b)
illustrates the travel times of a bus trip (departs at the same
time of day) on the same bus route segment for six months.
Since commuters want to arrive on time, they have to com-
promise with the unreliable transit service and accommodate
some extra time in their schedule, which causes inconvenience
and dissatisfaction to bus passengers.

A number of strategies have been used to improve transit
vehicle performance. For example, controlled time points [5]
have been used to distribute the available slack time across
the route. Periodic schedule update [6], [7], [8] and dedicated
bus travel lanes [9] have also gained attention. The availability
of real-time data collected from Automated Vehicle Locator’s
(AVL) has helped significantly with such long-term planning
and schedule updates [10], [11], [12], [13]. As timetable
scheduling problem is recognized to be an NP-hard problem
[14], [15], researchers have implemented heuristic search algo-
rithms to solve the problem. While heuristics-driven schedule
update focuses on the long-term planning, the availability of
AVL data has also enabled real-time delay prediction These
AVL based methods can be roughly classified into statistical
[16], [17], [18], [19], Kalman filter models [20], [21], [22],
[23], and machine learning models [22], [24], [18], [25], [26].

Research Gap and Challenges. Commuters typically
rely on timetables that are scheduled according to long-term
patterns, and delay status updated in real time to plan transit
trips. However, for short-term transit scheduling (e.g., one day
before the travel day) when there is no real-time data available
yet, commuters have no clue how to choose a proper route and
departure time, and it’s even more challenging for those who
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do not take public transportation on regular basis. It has been
observed that there are recurrent traffic congestion [27] and
transit delay (see Section II-A) patterns associated with events
happening in the city. For example, for a given day with a big
football game, the bus routes that bypass the area around the
stadium are more likely to have a more significant delay than
usual. Such contextual information (e.g., scheduled events and
weather forecast conditions) could be utilized to get a better
estimation of the expected delay.

However, as illustrated in Figure 2, most of the prior
research work is focused on long-term delay pattern analytics
[10], [11], [12], [13] and real-time delay prediction [26],
[22], [22], [23], [28]. Long-term analytics provide statistical
decision supports such as the mean and confidence interval
of route segment delay, which are useful for city planners
and metro transportation authority (MTA) engineers to gain a
deep insight into the actual transit performance for scheduling
and planning. On the other hand, real-time delay prediction
utilizes real-time data such as trip updates and vehicle locations
to inform engineers and commuters on the expected arrival
time at bus stops. However, there are still gaps in effective
prediction mechanisms that work in the short-term phase (i.e.,
hours or days ahead of the scheduled travel time when real-
time data is unavailable) to help commuters make decisions
by informing of possible severe delay.

Developing an effective short-term prediction for tran-
sit systems is currently an open problem to solve. Firstly,
route segments typically have different delay patterns and
are affected by the contextual factors in varying degrees (see
Section II-A and Figure 3). Technically, multiple historical
models can be built for different contextual features. However,
since there are so many event types and their impacts on transit
delay interact with each other and have varying spatiotem-
poral characteristics, advanced prediction models are needed
to effectively integrate all contextual features. Additionally,
due to the limited budget and computation resources, it may
not be feasible to create and train a single prediction model
for each separate segment in practice because of the high
computation time. Furthermore, the transit frequency in mid-
sized cities like Nashville is relatively low compared to the
large metropolitan areas. Therefore, there is never enough data
to train the prediction models and results in data sparsity
issues. Also, data samples with known contextual information
are rarer compared with other samples2. The biased datasets
will produce challenges if we try to use regression or random
forest based approaches.

Solution Approach and Contributions. In this paper, a
short-term transit decision support system is being proposed
that predicts severe delay days ahead to help users to schedule
transit plans. Compared to providing just static schedules or
historical patterns, the context-aware short-term delay pre-
diction model can identify the severe delay that does not
follow normal patterns days ahead of time and help commuters
choose optimal routes, which gives them more confidence
when choosing the public transportation. This system is being
currently integrated into our transit decision support system
called transit hub [29].

The key contributions are as follows:

2There are a limited number of football and hockey games for example.

Fig. 2. MTA provides transit schedule and status update to commuters in
three terms (i.e., long-term, short-term and real-time) to help them plan transit
trips. An effective short-term prediction mechanism without using real-time
data (e.g., transit, traffic, etc.) is currently missing.

• A generic tool-chain that takes transit feed (in standard
and real-time GTFS format), forecasted weather condi-
tion, and time as input, is developed to provide expected
delays and service alerts as output for short-term.

• The shared route segment networks, which are proposed
in a previous work [29] for real-time delay prediction, are
employed in this work as a data augmentation mechanism
to solve data sparsity issues.

• A multi-task deep neural network architecture is presented
that consumes contextual information in the augmented
datasets and makes delay predictions for nearby segments
in a bounding box all at once. A threshold-based mecha-
nism is utilized to produce service alerts.

• Compared with single networks, the proposed multi-task
learning architecture not only takes a shorter time to train
but also reduces the risk of over-fitting to the limited
training data. Utilizing the contextual event and weather
features improves the performance of recall by 28% and
F1 score by 13%.

Paper Organization. Section II provides a motivating
example that illustrates the delay patterns during sports games,
and discusses the key research challenges; Section IV intro-
duces the datasets used in the study and presents a multi-task
neural network architecture and details; Section V evaluates the
performance of our system; Section III compares our solution
with related work in bus delay prediction; Section VI gives
concluding remarks and future work.

II. MOTIVATING EXAMPLE AND CHALLENGES

This section first provides a motivating example that il-
lustrates the impact of big sports games on bus delay, and
then discusses the key research challenges associated with
predicting transit on-time performance using such scheduled
contextual information without real-time data.

A. Motivating Example

To unveil the delay patterns associated with events, an
analytics study using real transit and sports game data is
conducted. The days between Sept. 1, 2016 and Jan. 1, 2017
are selected as the study period and the start time, end time,
and attendance of eight football games occurred in the period
are collected manually. We divide the time period before
football games into four one-hour time windows ([-4, -3], [-3,
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Fig. 3. The impact of football games on travel delay of bus route segments in
four one-hour time windows before 8 football games: (1) from 4 to 3 hours,
(2) from 3 to 2 hours, (3) from 2 to 1 hour, (4) within 1 hour. The green
colors are the baselines (i.e., average delay of bus route segments on non-
game days). Other colors show the difference of average delay on games days
compared to the baselines.

-2], [-2, -1], [-1, 0]) and compare average bus delay on bus
route segments between game days and non-game days using
the following equation:

DPI = max(avg(
TTGD − TTS

TTS
)−avg(

TTNGD − TTS

TTS
), 0)

(1)
where DPI = delay impact, TTGD = actual travel time on
a game day, TTS = scheduled travel time, TTNGD = Actual
travel time on a non-game day.

The results are visualized using heatmaps (see Figure 3).
Generally, there are two patterns: (1) route segments have more
delay as the time is closer to the game start time, (2) route
segments that are closer to the stadium have more delay.

B. Research Challenges

The number of available historical data samples for each
transit route and segment depends on the service frequency.
However, compared to the large metropolitans, mid-sized
cities like Nashville suffer from data sparsity issue since the
frequency of bus services is relatively low. Furthermore, the
availability of event information is also limited and constrained
by the manual data collection. This limitation of contextual
information (games for example) will result in biased training
data, which makes the data sparsity issue worse.

Machine learning methods have demonstrated superior
performance in the transit domain [22], [24], [18], [25], [26].
However, the machine learning models in those works were
trained separately for a particular metric by training a single

model or ensemble models, which may suffer from insufficient
training data in reality. Training deep learning models will be
more challenging since they have multiple hidden layers and
there are much more parameters to optimize. This often results
in overfitting issues and make the models difficult to generalize
to new data.

To solve the challenges, we utilize a data augmentation
structure called shared route segment network [29], and adopt
the idea of multi-task learning to develop multi-task deep
neural networks. Neural networks, which have been studied in
many related work [18], [24], [26], are effective in prediction
and have the potential to be trained online. Compared with
single models, our proposed multi-task neural networks can
not only produce more data for each task (i.e., predicting travel
time and delay for a route segment) and are faster to train, but
also reduces the overfitting issues for individual tasks. The
details can be found in Section IV.

III. RELATED WORK

This section compares our system with related work on
transit travel time and delay prediction. The work can be
classified into two categories: (1) models utilizing real-time
data feeds, (2) models not relying on real-time data. The
models that do not rely on real-time data use average delay
from historical data as the estimation for future. These types
of models are often constructed for comparison purposes. For
example, Jeong et al. [18] developed a basic average model
and found that the basic average model was outperformed by
regression models and artificial neural network (ANN) models
for bus arrival time prediction. The reason is that the basic
average models does not account for any predictors and only
use historical data and perform simple average analysis, the
model does not reflect real-time conditions and is limited by
the consistency of route delay patterns.

The development of automatic vehicle location (AVL)
technology enables accurate prediction of transit travel time
in real-time, which is critical for transit planning and user
notification. A number of researchers have conducted studies
that utilize real-time transit as well as historical data.

Statistical Models. Weigang et al. [16] presented a model to
estimate bus arrival time at bus stops using the real-time GTFS
data. Their model contains two sub-algorithms to determine the
bus speed using the historical average speed and the real-time
speed information from GPS. Their main algorithm utilizes the
calculated real-time speed to predict the arrival time. Sun et al.
[19] proposed a prediction algorithm that combines real-time
GPS data and average travel speeds of route segments.

Kalman Filter Models. Kalman filters have been used
widely for bus delay prediction because of their ability to filter
noise and continuously estimate and update actual states from
observed real-time data. Chien et al. [20] presented a dynamic
travel time prediction model that used real-time and historical
data collected on the New York State Thruway (NYST). Yang
et al. [30] developed a discrete-time Kalman filter model to
predict travel time using collected real-time Global Positioning
System (GPS) data. Bai et al. [22] proposed a dynamic travel
time prediction model that employed support vector machines
to provide a base time estimate and a Kalman filter to adjust the
prediction using the most recent bus trips on multiple routes.
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Machine Learning Models. Machine learning models such
as artificial neural network (ANN) [24], [18], [26] and support
vector machines (SVM) [31], [25], [26], [22] have been widely
used for transit travel time and delay prediction. Kumar et al.
[32] compared machine learning models with other approaches
for bus arrival time prediction and found that with large
datasets ANN is better than Kalman filtering. Jeong et al. [33]
developed an ANN model for bus arrival time prediction using
Automatic Vehicle Location (AVL) data. Mazloumi et al. [34]
used real-time traffic flow data to develop ANN models to
predict bus travel times. Yu et al [26] proposed a machine
learning model that used bus running times of multiple routes
for predicting arrival times of each bus route and proposed
bus arrival time prediction models that include Support Vector
Machine (SVM), Artificial Neural Network (ANN), k-nearest
neighbors algorithm (k-NN) and linear regression (LR).

Comparison with Our Work. Existing work mainly fo-
cuses on building models that rely heavily on the availability
of real-time data feeds, such as traffic conditions and transit
location status. However, these models only work when real-
time or near real-time data is available. Models not relying on
real-time data learn the travel time and delay patterns from
historical data, but since the operation of transit vehicles are
affected by various factors, these models typically have less
accuracy and low prediction granularity. In contrast, our model
integrates contextual information, especially those that have
large impact on generating severe delays. Also, to the best of
our knowledge, we are the first to apply multi-task learning
(MTL) on transit short-term delay prediction, which greatly
reduces the possibility of overfitting to the limited historical
dataset and improve the generalization ability in reality.

IV. OUR APPROACH

This section presents a short-term arrival delay prediction
model that utilizes multi-task neural network architecture to
make accurate and context-aware delay estimations. The over-
all workflow of the system is shown in Figure 4. We first
introduce the datasets used in the study. As discussed in Sec-
tion II-B, the data sparsity issue on relatively low frequent bus
routes is solved by combining shared route segment network
[29] and multi-task neural networks. The architecture also
improves the training and prediction efficiency and reduces the
risk of overfitting. The system can also notify transit riders of
possible severe delay via service alerts if the predicted delay
is beyond a set of threshold. All symbols used in the paper are
listed in Table I

A. Datasets

Nashville Metro Transportation Authority (MTA) provides
access the static and real-time bus data of Nashville. Along
with bus data, the information of football games, hockey
games, and weather conditions are also integrated into the
system. The datasets are listed in Table II. The details are
described as follows:

• Static Bus: This dataset defines the static bus information:
time schedules, routes, trips, stops, etc. The data is in
General Transit Feed Specification (GTFS) static format
[35], which is a common format for public transportation
schedules and associated geographic information.

TABLE I. SYMBOLS USED IN THE PAPER

DPI the delay impact of events on route segments
compared with normal days

TTGD actual travel time on a segment on a game
day

TTS scheduled travel time on a segment
TTNGD actual travel time on a segment on a non-game

day
tpoint the estimated arrival time at a point on a

segment
ti recorded timestamp at record index i
dpoint a bus’s distance from the current point to the

route starting point along the route path
di a bus’s distance from the location of record

index i to the route starting point along the
route path

Fig. 4. Overall workflow of the short term delay prediction toolchain: (1)
route segmentation, (2) historical data pre-processing, (3) training multi-task
neural networks.

• Real-time Bus: The dataset provides historical transit data
updates, which are collected and stored in one-minute
interval. The data is in GTFS Realtime format [36],
including bus locations, service alerts, and trip updates.

• Weather Conditions: The dataset stores historical weather
conditions with a granularity of five minutes.

• Sports Games: The dataset contains game and sched-
ule statistics that are manually collected from online
resources. The features include start time, end time, and
attendance.

The following assumptions are made when using the
datasets: (1) the weather condition data that we collected in
real-time is used as forecasted data; (2) we assume the game
information is available days before the games start.

B. Data Augmentation: Shared Route Segments

Route Segmentation. Studies have shown that when predict-
ing the travel time for a specific bus route, the travel time data
from multiple routes that share the same road segments can
be integrated to make more accurate predictions [26], [22],
[37], [38]. In our previous work [29], an efficient algorithm
is discussed that generates shared bus route segments from
standard GTFS datasets. The basic idea is that the algorithm
divides all bus routes in a transit system into shared segments
according to how roads are shared by multiple routes. The
algorithm is implemented as a data augmentation method to

158



TABLE II. REAL-TIME AND STATIC DATASETS COLLECTED IN THE

SYSTEM.

Sports
Game

Bus
Schedules

Real-time
Transit

Weather

Format JSON Static
GTFS

Real-time
GTFS

JSON

Source Web Nashville
MTA

Nashville
MTA

Dark Sky

Updating
Interval

Manually Every
public
release

Every
minute

Every 5
minutes

Size 28 Games 134 MB 723 GB 82.4 MB
Date
Range

10/2016 -
12/2016

09/2015 -
present

02/2016 -
present

03/2016 -
present

Fig. 5. Shared route segment network generated from the GTFS dataset.
Route segmentation is conducted to the transit routes according to how road
segments are shared by bus routes.

conduct route segmentations and get more data samples for
each segment. Each route segment will be used as a minimum
unit for training and prediction. As illustrated in Figure 5, all
57 bus routes (as Oct. 2016) in Nashville are divided into 4638
shared route segments.

Pre-processing Real-time GTFS Locations. Even though
devices like automatic passenger counter (APC) can provide
accurate arrival and departure times at bus stops and the
recorded times can be used to calculate historical travel time
at road segments, such data is not available in many cities. To
make the short-term delay prediction toolchain more generic,
the standard GTFS feeds are considered, which contain real-
time trip updates, vehicle locations, and service alerts. The
vehicle locations are updated from seconds to minutes. We
use the following equation to calculate the bus arrival time at
the start and end points of a segment:

tpoint = ti−1 + (ti − ti−1)
dpoint − di−1

di − di−1
(2)

where tpoint denotes the estimated arrival time at the start or
end point of a segment, di is the bus’s distance from the current
location to route start location along the route path at time ti,
and dpoint is the distance from point’s location to route start
location along the route path.

C. Delay Prediction by Developing Multi-task Neural Network

1) Feature Engineering: The features of different data
sources are represented differently using numeric or one hot
encoding according to their attributes as follows:

• Event Features: The information of scheduled events is
represented by one-hot vectors. The dimensionality of the
vectors is the size of effective time windows before and
after events plus a numerical class for attendance and an

Fig. 6. The one hot encoded feature vector for football games.

Fig. 7. Proposed Multi-task Neural Network. Blue blocks are shared layers
and gray blocks are independent layers for different segments.

additional class for no event. The effective time windows
when events have impact on bus delay varies on different
event types. For example, from the motivation study it was
found that on average the impact of football games on bus
delay starts as early as 4 hours before and as late as 4
hours after games, so the length of the feature vectors for
football games is ten (ie, no football game, attendance,
and eight time windows). An example is illustrate in
Figure 6.

• Weather Features: The forecasted weather conditions con-
tains seven features: temperature, nearest storm distance,
humidity, ozone, pressure, wind speed and visibility. Each
weather condition sample is converted into a seven-
dimensional vector of numerical features.

• Time Features: Time features contains two classes: time
of day and day of week. The 24 hours in a day is divided
into 48 half hours and time of day is represented using
one hot encoding of 48 classes. Similarly, day of week is
represented using a feature vector of 7 classes.

2) Multi-task Neural Network: Deep learning techniques
have gained great success in various fields, such as neutral
language processing (NLP), image processing, information
retrieval (IR), among others. Researchers start to develop
deep learning techniques for transportation [39], [40], [41].
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Compared with existing studies which focus on real-time delay
prediction and rely on real-time data feeds (e.g., transit and
traffic), our model only assumes the availability of forecasted
weather conditions and information of scheduled events that
have proved to have significant impact on transit delay.

Multi-task learning (MTL) share representations between
related tasks. By leveraging the domain-specific information
contained in the training signals of related tasks, MTL im-
proves the generalization ability on original tasks [42]. In
the transit domain, the travel delay on road segments in a
nearby area is usually impacted by the same events at the same
time and show similar patterns. Therefore, we aggregate the
original tasks of predicting delay for nearby segments together
in a multi-task learning architecture. We developed multi-task
deep neural networks to get more data for training since they
leverage supervised data from multiple nearby road segments.
Furthermore, the use of multi-task networks can also reduces
overfitting to specific tasks and better generalizes to new data
[43].

The architecture of the proposed multi-task neural network
is shown in Figure 7. We apply the approach of hard parameter
sharing in the neural networks. Generally, it consists of upper
layers that connect directly to input feature vectors and are
shared across different segments, and lower layers that are
specific to different segments. When training the models,
Adam algorithm [44] is used for optimization and mean square
errors are used as loss functions. The architecture greatly
reduces the risk of overfitting and it is generally faster to train
and can predict for multiple segments at the same time.

3) Service Alert Generation: The predicted delay can be
utilized to decide whether a service alert can be generated for
each route. Our system collects the historical travel times for
each segment and sends out a service alert if the predicted
delay is larger than 90th percentile in the data.

V. EVALUATION

In this section, we evaluate the proposed model using
two experiments by (1) comparing the multi-task neural net-
works with single models, and (2) comparing different feature
vectors. Keras Python deep learning library with TensorFlow
backend is used in the implementation [45].

A. Scenarios

The experiment scenario is illustrated in Figure 8. Between
Oct. 1, 2016 and Jan. 1, 2017, 7 NFL football games held
at the Nissan Stadium and 19 NHL hockey games at the
Bridgestone Arena in Nashville. We selected the bounding box
between coordinates of 36.175106, -86.760105 and 36.161903,
-86.773335. Real-world bus, event and weather data within the
time period and the bounding box is used in the experiments.
The data between Oct. 1, 2016 and Dec. 11, 2016 is used
for training. The data between Dec. 12, 2016 and Jan. 1,
2017 when there is at least an event happened is used for
validation. Particularly, the following decisions are used to
mark if a generated service alert is positive or not: (1) an output
is considered to be positive if the delay is more than 90th
percentile in the historical (training) dataset; (2) otherwise the
output is negative. Recall performance, which indicates how
many relevant items are selected in a classification task, is

Fig. 8. Experiment scenario. The selected bounding box is close to the Nissan
Stadium where football games play and the Bridgestone Arena that hockey
games play.

Fig. 9. The F1 score between single models and multi-task models

the key metric for evaluating our models since the metric was
selected for this study to output notifies users to avoid severe
delays as much as possible. The models are also evaluated
using F1 score [46], which can be interpreted as a weighted
average of the precision and recall, where an F1 score reaches
its best value at 1 and worst score at 0.

B. Experiment 1: Comparing single models and multi-task
learning models

We assume the multi-task learning models leverage super-
vised data by getting more training data for each segment
and reduce overfitting for better generalization ability. To
validate the assumption, we build the same neural network
layers architecture for each segment and uses the same training
and validating datasets to evaluate the single models. The
difference is that the upper layers of the single models don’t
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Fig. 10. The mean square error between single models and multi-task models

share parameters anymore and the parameters can only be
optimized using data belong to the individual segments.

The root mean square error of the two models during train-
ing epochs are illustrated in Figure 10. The multi-task models
are trained faster than single models. After 70 epochs, the
single models’ performance on the validating dataset becomes
worse, which means it starts to overfit the training dataset.
On the contrary, our multi-task neural network doesn’t have
a significant overfitting problem. The F1 score of the multi-
task neural network is also higher than the single models (see
Figure 9).

C. Experiment 2: Comparing different feature vectors using
multi-task deep neural networks

In the second experiment, we compare the performance of
the proposed multi-task deep neural networks using different
feature vectors: (1) Time feature vectors: [day of week, time
of day], (2) Contextual feature vectors: [football game time
window, football game attendance, hockey game time window,
weather conditions, day of week, time of day]. The recall and
F1 score are calculated using the validation dataset. As shown
in Figure 11 and Figure 12, compared with the time feature
vectors, the contextual feature vector gets both higher recall
(about 0.76) and F1 score (about 0.54), which means the model
predicts more relevant (severe) delays and is more effective to
warn commuters of real possible delays.

VI. CONCLUSION AND FUTURE WORK

In this paper, a generic tool-chain is proposed that takes
transit feed (in standard and real-time GTFS format), fore-
casted weather condition, and time as input, and provide
service alerts and expected delays as output for short-term.
Compared with providing just static schedules or historical
patterns, contextual-aware short-term delay prediction could
identify the severe delay that does not follow normal patterns
days ahead of time and help commuters to avoid the delays
and choose optimal routes, which gives them more confidence
to choose the public transportation.

Future Work. Even though the proposed model is evalu-
ated using transit data, the multi-task learning architecture is
extensible for other prediction tasks (e.g., traffic congestion
prediction, travel demand prediction), as long as the tasks
have some kind of spatiotemporal relations. In addition, the

Fig. 11. The recall using time feature vectors vs. using contextual feature
vectors

Fig. 12. The F1 score using time feature vectors vs. using contextual feature
vectors

contextual information currently considered in the paper only
includes sports games and weather. Parsing data from online
social networks like Twitter will result in a much richer dataset,
and will probably improve the short-term prediction accuracy
further.
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