
Generic Modeling and Analysis Framework for
Shipboard System Design

Jian Shi∗, Ranjit Amgai∗, Sherif Abdelwahed∗, Abhishek Dubey†, Josh Humphreys∗, Mohamed Alattar∗, and Rui Jia∗

∗Department of Electrical and Computer Engineering
Mississippi State University, Starkville, MS, USA
†Institute for Software Integrated Systems

Vanderbuilt University, Nashville, TN, USA

Abstract—This paper proposes a novel modeling and simula-
tion environment for ship design based on the principles of Model
Integrated Computing (MIC). The proposed approach facilitates
the design and analysis of shipboard power systems and similar
systems that integrate components from different fields of exper-
tise. The conventional simulation platforms such as Matlab R©,
Simulink R©, PSCAD R©and VTB R©require the designers to have
explicit knowledge of the syntactic and semantic information of
the desired domain within the tools. This constraint, however,
severely slows down the design and analysis process, and causes
cross-domain or cross-platform operations remain error prone
and expensive. Our approach focuses on the development of a
modeling environment that provides generic support for a variety
of application across different domains by capturing modeling
concepts, composition principles and operation constraints. For
the preliminary demonstration of the modeling concept, in this
paper we limit the scope of design to cross-platform implementa-
tions of the proposed environment by developing an application
model of a simplified shipboard power system and using Matlab
engine and VTB solver separately to evaluate the performance
with different respects. In the case studies a fault scenario is pre-
specified and tested on the system model. The corresponding time
domain bus voltage magnitude and angle profiles are generated
via invoking external solver, displayed to users and then saved
for future analysis.

Index Terms—Model Integrated Computing; Generic Mod-
eling Environment; Shipboard Power System Design; Cross
Platform Simulation

I. INTRODUCTION

Over the last decade, the complexity of ship design has been
greatly increased as more and more individual systems and
subsystems like weapon system, propulsion machinery, sensors
and data acquisition system, power generation and distribution
system, are integrated and need to be considered collabo-
ratively during the design phase. Among them, the design
of Shipboard Power System (SPS) is of special importance
and plays a more and more critical role due to advances in
high power-density devices and compact electrical drives. The
traditional segregate power system architecture can not satisfy
the efficiency and flexibility requirement of the latest All
Electrical Ship, and using Integrated power system architecture
as the solution is becoming the more preferred choice for
modern ship design where a common electrical bus is used to
supply power to the loads on demand. The main concern of the

power system design is to supply constant power to essential
components including propulsion, weaponry, navigation and
communication systems. The stability and reliability of the
system under different scenarios, especially in the events of
battle or damage, is very critical to the mission of SPS design.
Careful modeling and simulation to analyze such contingent
scenarios is critical for evaluating the survivability of the
SPS[1].

Common simulation platforms including Matlab, Matlab
Simulink, PSSE, PSCAD, and VTB have been widely used
for the simulation and analysis of SPS . These tools provide
the utility to model the system on the component level
and evaluate performance from different perspectives based
on simulation outputs. However, limitations exist for such
approach:

• The designers participating in the system modeling and
analyzing need to have very explicit knowledge of spe-
cific tools in order to develop the application fitting into
the desired specifications, and avoid syntactic mistakes,
hierarchical component dependencies error or other con-
straint violations

• Although similar design concepts can still be used across
different simulation platforms, it is still relatively time-
consuming and expensive to transplant the application
model due to the incompatibilities among different tools

• Limited to the variety of tool-specific syntactic rules and
constraints, it is hard to be expanded for development of
future technologies system updates

Model-integrated concepts has been recently addressed [2]
in power systems domain to integrate modeling tools from
diverse domains. In this work, a modeling approach based
on Model Integrated Computing (MIC) [3],[4],[5] is proposed
to support the conventional simulation environment. Objective
of this approach is to design a flexible and extensible model-
integrated graphical framework that facilitates rapid evalua-
tion of SPS under various testing scenarios across different
domains and platforms.

The contribution of this effort are:

1) Seamless vertical integration environment for widely
used power systems simulator with focus to particular

978-1-4673-5245-1/13/$31.00 ©2013 IEEE 420

SPS environment.
2) Entire design space is represented through characteriza-

tion and manifestation of shipboard power. systems with
domain specific graphical modeling environments.

3) Enables the validation of the SPS design through simu-
lations with realistic application scenarios.

4) Extensible simulator integration framework which sup-
ports user specified simulation levels.

The paper is organized as follows: Section II provides a brief
review of the software infrastructure of the proposed design.
In Section III, two case studies of the proposed approach are
elaborated with the analysis of the simulation results. Finally,
in Section IV, future work is discussed and the conclusions
are drawn.

II. MODEL INTEGRATED COMPUTING AND GENERIC
MODELING ENVIRONMENT

A. Model Integrated Computing (MIC)
The application development and schematic design for

power systems has always been a challenge. Stringent time
limit, high development and evaluation cost, complex interre-
lated components and availability are the factors that power
engineers cannot solely rely on the physical test bed for
system development[6]. Well stated models explicitly cap-
ture the structure, characteristics of the target system and
the operation environment. On the other hand, models also
provide a flexible and efficient approach to perform system
design, performance analysis, verification and validation, and
artifact synthesis capabilities. MIC approach adopts the model-
based paradigm and provides a high-level, abstracted syntax
and semantics representation for specifying and reasoning
about different design aspects and system properties[3][4]. A
modeling language written using the grammar of this high
level language can be tailored and be made domain specific[7]
and can be made applicable to various control algorithms[8].
Alternatively, it also provides a mechanism for specifying an
abstract integration language that can allow the consolidation
of common semantics of various commercial analysis tools
available for the domain. Then, the challenge remains: how
to accelerate the modeling and analysis process? How to
precisely capture the critical system specifications? How to
extend the design to a variety of applications within different
domains?

The concept of MIC is to facilitate the environment design-
ers, by enabling the definition of the syntax and semantic spec-
ifications in a way that yields a better overall experience during
building and simulating practice of complex applications[7].
For the implementation of MIC, a two level development
process is employed[4][6][9]. Software or system engineers
operate on the meta-level for specifying and configuring a
specific domain; while domain engineers work on the appli-
cation level to create the application model and analyze the
performance. Figure 1 demonstrates the structure of a typical
MIC design work-flow.

Meta-level is a domain-independent abstraction that defines
a domain specific environment in terms of modeling con-

Figure 1. MIC Structure

cepts, component relations, model-composition principles and
constraints. In other words, meta-level is the specification of
modeling paradigms of system configurations. It contains the
base knowledge of rules and constraints of a specific domain
and the corresponding representations.

Application level provides an environment for application
model customizations. The objective is to let the environment
designers build the model, synthesize executable applications,
and analyze the simulation results on the application level.
Principles of application operations are based on the semantic
representations and paradigms defined in the meta-level. With
changes and updates applied to the system, designers can
easily modify the model and re-synthesize application files.

A model interpreter is used to convert the knowledge
captured in the application models to other useful artifacts[10].
For example, it can be used to generate executable code
and configurations files. Upon user’s request, attributes and
relationships of system components will be acknowledged
and synchronized to an executor, which is normally provided
by the specific domain. The interpreter will then invoke the
executor and generate output in the form of data files, graphs,
etc[5].

B. Generic Modeling Environment (GME)

Developed by the Institute of Software Integrated System at
Vanderbilt University, Generic Modeling Environment (GME)
is a configurable tool that provides a generic solution for model
design and application development for different domain-
specific modeling environments[11](figure 2).

A set of generic concepts have been embedded in GME to
facilitate the creation of sophisticated systems. Typical mod-
eling concepts of GME include: aspects, attributes, hierarchy,
set, reference, and constraints[12][5]. Within a GME project,
model, atom, reference, connection and set are classified as
first-class objects (FCOs).

421

Figure 2. Generic Modeling Environment (GME)

• Atoms: the basic, elementary object, which cannot con-
tain any objects inside

• Models: the comprehensive object that can contain other
objects and inner structures

• Hierarchy: the containment relationships between ob-
jects. Every object must have one parent and the parent
must be a model

• Aspects: the control unit of visibility that determines
which part of the model is visible or hidden

• Connection: expresses the relationship between objects
within the same model. In order to make a connection,
the connected objects must be visible to each other, i.e.
in the same aspect

• Reference: expresses relationships between objects in
different system levels or different systems

• Set: relationships among a group of objects under the
same folder with the same aspect

• Attributes: in order to capture information that has no
graphical representations, FCOs are affiliated with at-
tributes. The common available attributes are test, integer,
double, boolean and enumerated

• Constraints: rules made specifically for model-
composition and attribute specification.

For a given domain, the paradigm is created as a composi-
tion of the modeling concepts as they determine the capacity
of a specific application.

Apart from the effectiveness and expandability introduced
with MIC, GME also offers a user-friendly graphical design
interface. Developing a system model, especially a system with
sophisticated components and hierarchical composition like
ship-board power system, is an error-prone process. However,
instead of the typical, textual representation, GME has offered
designers a better option of a more expressive and readable
system representation that is visible in the GUI. In this
way, the tedious code-based design becomes an easier, more
straightforward and more visualized process.[13]

In summary, GME is a comprehensive toolkit that integrates
the meta-model editor, meta-model interpreter, application
model editor, domain specific codes generator and simulation

execution environment.

III. CASE STUDY

This research work focuses on evaluating and analyzing the
static and dynamic performances of a simplified SPS. In order
to achieve this goal, toolboxes that are specifically designed
for power system analysis and control are carefully studied and
chosen. Typical toolboxes like Matpower, Power System Tool-
box (PST), Power Analysis Toolbox (PAT), Voltage Stability
and Analysis Toolbox (VSAT) and Power System Analysis
Toolbox (PSAT) have been widely utilized to perform different
power system analysis on a variety of simulation platforms.
Common functions supported include the calculation of power
flow, continuation power flow, optimal power flow, and small
signal stability analysis and time domain simulation.

Matlab engine can be called from the proposed environment
to compile the application model parameters into executable
Matlab functions and scripts, thereby employing Matlab as the
simulation and calculation solver. Through the Microsoft Com-
ponent Object Model (COM) interface, a library of functions
and routines can be called to start Matlab session, transfer
data arrays to Matlab solver, send commands, and receive
the simulation outputs from the solver. In the framework,
Matlab is mainly integrated with other power system analysis
and simulation toolboxes to determine the application model
performance on a variety of different levels.

One of another targeted simulation platform is VTB devel-
oped by South Carolina University[14]. VTB contains an open
simulation framework that supports the development of multi-
scale and multi-disciplined systems, which makes it ideal for
power system analysis. VTB also supports external reuse or
repackage utilizing the framework, solvers and components
through user-defined interfaces.

In the following case studies, GME will be integrated with
Matpower and PSAT which are both toolboxes based on
Matlab, and VTB software suite individually to define and
create the design environment.

A. Case study I: Integration with MatPower

For the first case study, Matpower[15], which is primarily
used to solve power flow and optimal power flow problems, is
integrated with the design environment. The basic procedure
for running a simulation in Matpower follows: i),Preparing
of the input data matrices that defines all the relevant system
parameters; ii), Invoking the main function to perform power
flow or optimal power flow calculation, and iii), Displaying
the results and saving simulation data in predefined structures
and directories.

Modeling of Matpower is based on the standard steady-
state power flow analysis models[16]. Equations describing
system components and connections are represented in the
form of matrices in the Matlab structure. The common fields
of the Matlab structure consist of bus, branch, generator and
generator costs for optimal power flow analysis. Among them,
branches include all the transmission lines, transformers and
phase shifters information, and modeled as a standard pi

422

Figure 3. Meta Model Design

transmission line model with series impedance and charging
capacitance. Generators are modeled as complex power injec-
tion at a specific bus with an active part and a reactive part, and
loads are modeled constant consumption of active and reactive
power at a bus. After the specifications of the Matpower struct
or case file, commands like runpf and runopf are invoked to
execute the analysis. The solver of Matpower is relying on the
Matlab extension (MEX) files.

1) Step.1 Create the meta-model: Based on the Matpower
format requirement, the main components in the system can
be summarized into Generators, Buses and Loads (see figure
3). Generator blocks contain most of the attributes for the gen
matrices in the MatPower data file, the Bus blocks contain
most of the attributes for the bus matrices, and the Load
blocks contain the active and reactive power data for the
bus matrices. There are also three types of connections in
the system, branch connections, generator connections, and
load connections. The Branch Connection contains data for
the branch matrices including the destination and source bus
of the connection. The Generator Connection includes data for
which bus a generator is connected to, along with the generator
status for the gen matrices. The Load Connection includes the
information about the bus number a certain load is connected
to and a status attribute indicating the connection status. Once
all the components and attributes are settled in the meta model,
the next step is to create the application model and code the
interpreter.

2) Step.2 Create the application model: The application
model is created to mimic the medium voltage AC baseline
models of shipboard power system developed by the Electric
Ship Research and Development (ESRDC)[17]. The funda-
mental topology includes four turbo-generators connected to
a ring-bus which supplies two propulsion motors and four
zonal loads. Other components like energy storage system or
high-level pulsed load are not included for the simplicity. The
main focus on the application model design is to evaluate the
static state optimal power flow within the system, thus the
control units and dynamic components within the system are
also removed. The demonstration of application model is as
shown in figure 4.

Figure 4. Application Model Design

3) Step.3 Interpreter design: To develop the interpreter, the
very first procedure is to collect data from the design interface,
and save them in the correct locations. The next step is to
ensure that all the constraints are satisfied. The final process
in the interpreter is to create the needed m-file and running
the Matlab engine to use the files to get the results back. The
interpreter is programmed in Visual C++ environment. It uses a
dynamically allocated two-dimensional array to save the data.
Sample code below shows a section of codes that collects Bus
data entities from the application model.getAttribute() is one
of the main functions used to collect attributes of particular
names from the system.

// Bus Data Collection
...
if ((∗ it)−>getObjectMeta().name() == ”Bus”){
bus array [0][buses]=
(∗ it)−>getAttribute(”Bus Num”)−>getIntegerValue();
bus array [1][buses]=
(∗ it)−>getAttribute(”Bus Type”)−>getIntegerValue();
bus array [4][buses]=
(∗ it)−>getAttribute(”Shunt Conductance”)−>getRealValue();
...
}

4) Step.4 Define constraints within the interpreter: The
constraints as shown in the sample script below are described
and implemented from a list of constraints decided by the
users. Many of constraints are checked using a set of flags and
counters during the actual gathering of data. Other constraints,
such as the unique bus number, are checked using multiple
for loops and checking the values from the data collected
earlier. If any of the constraints is true, indicating a constraints
violation; an error flag is set true and the flag will prevent the
file generation as well as the Matlab engine from running. In
addition, when there is an error on building the model, an error
message will be shown on the console of GME describing the
error for the user. If no error has occurred, the interpreter will
continue with the file generation.

// Generator Connection Check
...
if (gen conn check < total gens){
error = true ;
Console ::Out::WriteLine(”Error : Generator(s) not Connected.”) ;
}
else if (gen conn check > total gens){
error = true ;
Console ::Out::
WriteLine(”Error : Multiple connections from a single Generator .”) ;
}

423

Figure 5. Demonstration of Error Messages in the Console

The following constraints are implemented in the interpreter
to ensure the model is created correctly:

• The total available generation power should be greater or
equal to the total power demand

• Every Load can only be supplied from port bus or
starboard bus

• Each Bus in the system must have a unique Bus Num
attribute

• Each Generator should be connected to the bus at one
and only one spot

• To ensure the continuity of the power flow only one
branch can be switched off at one time

• Bus voltage magnitude should be within V Max and
V Min

• Generator active power and reactive power supply should
be within their own limits

If any of these constraints is broken, one of the error
messages from Figure 5 will show up in the GME console.

5) Step.5 Synthesis of configuration information: Sample
script below shows the generated m-file. Once the constraints
are all satisfied, loops need to be created to traverse through
the arrays to print out the data in the correct locations. The
Interpreter also creates the command file to run the case file.
The bus data figures and the branch data figures are saved in
a file for futher examination. Once the data file is ready, the
interpreter will invoke the Matlab engine.

// Configuration File Synthesis
...
fprintf (matlab file , ” function mpc = case 1”);
fprintf (matlab file , ”mpc.version = ’2’”) ;
fprintf (matlab file , ”mpc.baseMVA = 10”);
fprintf (matlab file , ”mpc.bus = [\n”);
// Print Bus Array
for (counter1 = 0;counter1 < total buses ; counter1++){
for (counter2 = 0;counter2 < 11;counter2++){

if (counter2 == 6)
fprintf (matlab file ,”\t1”) ;

if (counter2 == 9)
fprintf (matlab file ,”\t1”) ;
fprintf (matlab file ,”\t%.2f”,bus array [counter2][counter1]) ;
}

fprintf (matlab file ,”;\n”) ;
}

...

6) Step.6 Invoke Matpower solver to execute the generated
models: Matlab engine contains a series of API functions
which supports C/C++, Fortran among many[18]. These func-
tions are used to invoke Matlab engine and execute Mat-
lab scripts directly within the other programming environ-
ments. Data (variables, arrays, matrices, etc.) can be trans-
ferred between the C++ workspace and Matlab workspace bi-
directionally. Designers can directly call Matlab functions in
C++ instead of coding the complicated functions by hand.

Figure 6. Optimal Power Flow Results

// Invode Matlab Engine and Solve
...

Engine ∗ep; // define Matlab engine pointer .
char MatlabPath[100]; // current Matlab Path
char p[6000]; // Matlab return buffer
int n=6000;//Matlab return buffer size
ep=engOpen(NULL);
engOutputBuffer(ep, p, n) ; // push the Matlab output into the buffer
TCHAR NPath[MAX PATH];//current C++ project path
GetCurrentDirectory (MAX PATH, NPath);
strcpy (MatlabPath,”cd ”) ;
strcat (MatlabPath, NPath);
engEvalString (ep,MatlabPath); // change the Matlab project path to the C++ path
engEvalString (ep,”Matpower”);// execute the m−file
Console ::Out::WriteLine(p) ;
...

7) Step.7 Display of the simulation results: The simulation
results are presented in figure 6.

The purpose of integration with MatPower case study is
to provide a tangible approach demonstrating the utility of
the proposed environment. However, Matpower has its own
limitations. In the second case study, we integrate PSAT with
more functionality including dynamics and larger component
libraries.

B. Case study II: Integration with PSAT

This case study exploits the potential of the proposed
generic modeling concept through well tested open source
tool PSAT[19]. Static and dynamic analysis algorithms defined
within PSAT supports the corresponding models including
power flow data, switches, loads, measurements, loads, ma-
chines, controls, FACTS, and user defined models[20]. PSAT
provides graphical user interface (GUI) with a customizable
Simulink-based library to assist the system design, in addition
to command line interface. In this case, PSAT is explored
through the command line interface rather than existing GUI
to access the global structure, modify component parameters,
set desired options, and directly invoke PSAT engine to
execute configuration files. For the second case study, our main
purpose is to expand the design environment to another domain
specific toolkit with similar data structures and specification
formats. It suggests that the interpreter design, data collection
procedure, constraints settings, and configuration synthesis
process will be of very close patterns from the previous design
in case study two. Thus, the meta-model creation and the
application design are the emphasis with the demonstration
of more functionality, more designer interface flexibility, and
more detailed results analysis capabilities.

424

Figure 7. Entities Library Generated From Meta-Model

1) Create the Meta-Model: The set of rules for meta-model
development follows the similar concept as defined for the first
case study. However, the inclusion of the system dynamics
in PSAT requires more information to reflect the system
characteristics. Thus the meta-model needs to be extended
with more entities and more detailed parameter specifications.
Every power system analysis tool can have their unique data
requirements based on the unique design philosophy. While the
basic information requirement from power system modeling
remains same, upgrading the system utilizing particular tool
operations or adding different functionalities is a common
scenario for meta-model update.

Interactions between generators, transmission line, load and
associated controls, as well as those components themselves,
are supplemented through meta-model . Generators are ab-
stracted by fourth order model and IEEE type 1 automatic
voltage regulator (AVR). Load models are described in rich
details including constant power, ZIP, and exponential recov-
ery in the meta-model. As testing the vulnerability of SPS with
various fault scenarios could greatly strengthen the stability
and survivability, this concept is captured in meta-model as
fault atoms with various parameters including fault interval, re-
sistance and reactance magnitude. Breakers are made available
with switching intervals to trip the faulted buses. Transformer,
cable, bus, and other components remain same as defined in
first case study. Thus generated library from the meta-model
for this case is shown in figure III-B2. The Running modes
setting in the library, as shown in figure 8, allows application
model designer to specify one of the operations among power
flow, continuous power flow, time domain and small signal
stability analysis (eigenvalue analysis). Main settings of the
system simulation such as frequency, power base ratings,
starting and finishing times, can also be modified by designers
at any time through the Simulation parameter setting.

2) Create the Application Model: Application model re-
mains almost same across different tools; however, inclusion
of different features can encourage application developer to
add corresponding functionalities based on the needs. The
application model as shown in figure 10 is similar to the
SPS model presented in Case Study I but, dynamics associated
analysis and evaluations can be accessed by the environment
designers in this case.

3) Verification of Simulation Results: Time-Domain simu-
lation results of bus voltages changing before and after a three

Figure 8. Running Mode Settings

Figure 9. Simulation Parameter Settings

phase fault are presented in Figure 11. The system was in
stable steady state operation before the fault is applied at t=16
seconds. However, after the fault, system voltage oscillates
and becomes unstable. Reconfiguration action is not taken
into account. This is a simple demonstration of a variety of
utilities provided in the design interface. Designers can choose
different types of analysis to evaluate the comprehensive
performance of the application model.

C. Case study III: Integration with VTB Suite

In the proposed framework, VTB is used as an alternative
approach to create power system schematics and simulate
the real-time performance of the shipboard systems. As an
overview, VTB is a suite of simulation tools to virtually
prototype of sophisticated and dynamic systems. It provides
strong support for systems which contain complex hierarchical
structures and a number of cross-disciplinary and non-linear
components. VTB facilitates the design and analysis procedure
of the by offering flexible interface to external environments or
platforms, thus new components, new solvers and new models
can be added for further updates through COM and .NET
interfaces.

Figure 10. Application Model for Case 2

425

Figure 11. Bus Voltage response to fault

Figure 12. Ring Bus System Topology of the Application

The VTB suite includes three main components such as
schematic designer, entity designer, module designer, and four
types of solvers including Natural solver, Phasor solver, Signal
solver and Quantity solver. In the proposed framework, a
generic electric ship system model with integrated power
system that is built within the schematic designer is used for
the case study. VTB libraries of simulation components are
used as well as the natural solver to perform the corresponding
real-time analysis. The simulation results generated via Matlab
as discussed before and VTB suite are compared to verify the
compatibility of the proposed framework.

1) Description Of the Study System: The system model for
the VTB case study is shown in Figure 12.

As shown in the figure, the system has the basic ring-bus
topology, where two 36 MW main generators and two 4 MW
auxiliary generators are attached on each corner. Generators
are interconnected via cables and RL branches as filters.

Figure 13 demonstrates the detailed internal system of the
two main synchronized generators in VTB.

As observed in Figure 14, each of the main generators
contains one synchronous machine, one gear box, one gas
turbine, the excitation system and an automatic synchronizer
that controls the operation status of the generator. Auxiliary
generators within the system have the same composition with
different parameters, thus this structure is chosen as the default
representation of generators in the proposed framework.

2) Creation of Meta-Model and Application Model: In
accordance of the topology of the application model, we can
create the meta model as shown in Figure 15. The paradigm

Figure 13. Structure of The Two 36 MW Main Synchronized Generators

Figure 14. Detailed Components View Within the Main Generator

includes five types of components, Generators, Loads, Induc-
tion motors, Cables and Breakers. Among them, Breakers
are used to control the triggering time of each generator. In
addition to that, the Plotting option let users choose from
a drop-down menu the desired simulation output to view,
and Simulation Parameters defines the necessary simulation
parameters including end time and simulation step time.

Based on the VTB application system and the created meta-
model, the system model can be represented as shows in Figure

Figure 15. Meta-Model of The Generic Ship Power System In VTB

426

Figure 16. Application Model of The Generic Ship Power System In VTB

Figure 17. The Breaker Options and Simulation Parameter
Definitions

16. Generator sets are connected to the network via cables.
Zonal loads and induction motors are attached in accordance
to the actual application model.

Figure 17 demonstrate the detailed options and attributes of
objects including Breaker and Simulation Parameters.

3) Design of the Interpreter: The interpreter works in a
similar way as in the case study with Matlab integration.
Information including the device types, number of each com-
ponents, interconnections and parameters are gathered from
GME interface first, and then classified and reorganized in the
format required by the VTB engine to perform the simulation.
Assembling a VTB based system includes the following steps:

• Created the a blank system and add components into the
system via using their unique TypeID

IVTB oVTB = new VTB.COMInterop.VTB();
IVTBSystem oSystem = oVTB.CreateVTBSystem(”TestSystem”);
IVTBSubsystem oSubsystem =

oSystem.CreateVTBSubsystem(”Electrical Subsystem”);
IVTBComponent oResistor1 =

oSubsystem.AddVTBComponent(g gResistorTypeId.ToString(),
g sDefaultComplexity,”R1”);

• Add the ports of each components with connections and
build the connection topology

IVTBPort oESPort1 = oES1.GetVTBPort(”VA”);
IVTBPort oESPort2 = oES1.GetVTBPort(”VB”);
IVTBPort oESPort3 = oES1.GetVTBPort(”VC”);
oSubsystem.Connect(oESlport1, oESPort2);

• Define parameters of each component

IVTBParameter oInitialSpeed1 =
oSynchMachine1.GetVTBParameter(”InitialSpeed”);

Figure 18. Phase A of The Stator Voltage in Main Generator 1

Figure 19. Phase A of The Stator Voltage in Main Generator 2

IVTBParameter oL01 = oSynchMachine1.GetVTBParameter(”L0”);
IVTBParameter oL11d1 = oSynchMachine1.GetVTBParameter(”L11d”);

• Define the simulation configurations and start the simu-
lation

oVTB.SetStopTime(10.0);
oVTB.SetTimeStep(.001);
oVTB.Start() ;

• Record the outputs in the destination text file

oVTB.SetOutputFile(g sInstallationLocation + ” // MyResults. txt”) ;
oVTB.RecordVTBViewable(”Electrical Subsystem.SM1.StatorVoltageA”);

• Import and plot the outputs in the schematic designer
The plot of simulation results is shown in Figure 18 and

Figure 19.

IV. EXTENSIBILITY

Extensibility adheres with the main design principles behind
GeMSES. Third party users are able to add the features on the
existing simulators or integrate new simulators with ease. To
implement the integration, general approach is to first integrate
the updates with the current paradigms on the meta-model
level. Users are then required to add corresponding sections
within the interpreter to work with new simulator. Standard
integration requires all the necessary information to describe
certain application with the particular simulator for current
paradigms. Application model will not be compatible with the
design environment with any insufficient piece of information.

427

Model migration has some challenges in model computing
framework due to the necessity to confirm to the new mod-
eling paradigm for translation. Interpreter porting is another
challenge apart from model translation. Interpreter needs to
be updated upon the corresponding change in the paradigm.
However, Interpreter remains intact with new modeling con-
cepts.

V. CONCLUSION AND FUTURE WORK

In this paper, the concept of Model Integrated Computing is
presented to integrate with different power system solutions,
in order to support the development and analysis of shipboard
power system and other similar systems. GME toolkit is
utilized to develop the meta-model and application model.
Currently, Matpower, PSAT toolbox and VTB are supported
by the proposed environment for synthesizing applications
and performing various kinds of system analysis. In future,
the current design will be updated and expanded to other
computational platforms to exploit the full potential of the
model-based approach.

Even, simulation scenarios and control algorithm needs to
be tested in real time before it gets deployed for application.
Dedicated power system simulation platform such as RTDS,
with the ability to integrate with hardware is another potential
extention to this work. RTDS is one of such platform that
allows real time applications testing and faster simulations
along with other benefits. The integration of RTDS to the
present environment would further prove the extendibility and
practicability of the proposed integrated modeling approach.
[10]

REFERENCES

[1] R. Amgai, J. Shi, R. Santos, and S. Abdelwahed, “Machine learning
based diagnosis support for shipboard power systems controls,” in IEEE
ESTS 2013, 2013.

[2] J. Sztipanovits, G. Hemingway, A. Bose, and A. Srivastava, “Model-
based Integration Technology for Next Generation Electric Grid Simu-
lations,” Computational Needs for Next Generation Electric Grid, pp.
4.11–4.44, 2011.

[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 145–164, Jan. 2003.

[4] J. Sztipanovits and G. Karsai, “Model-integrated computing,” IEEE
Computer, pp. 110–111, 1997.

[5] A. Ledeczi, M. Maroti, and P. Volgyesi, “The generic modeling envi-
ronment,” Vanderbilt University, Tech. Rep., 2004.

[6] A. Dubey, X. Wu, H. Su, and T. Koo, “Computation platform for
automatic analysis of embedded software systems using model based
approach,” Third International Symposium on Automated Technology for
Verification and Analysis(ATVA), pp. 114–128, 2005.

[7] G. Karsai, J. Sztipanovits, and H. Franke, “Towards specification of
program synthesis in model-integrated computing,” Proceedings IEEE
ECBS, pp. 226–233, 1998.

[8] R. Amgai, J. Shi, and S. Abdelwahed, “Lookahead Control Based
Framework for Power System Applications,” North American Power
Symposium(NAPS), pp. 1–6, 2012.

[9] W. Gao and S. Musunuri, “Hybrid Electric Vehicle Modeling and
Analysis in Generic Modeling Environment,” 2006 IEEE Vehicle Power
and Propulsion Conference, pp. 1–6, Sep. 2006.

[10] A. Bakshi, V. Prasanna, and A. Ledeczi, “MILAN: A model based
integrated simulation framework for design of embedded systems,” ACM
Sigplan Notices, 2001.

[11] GME Toolkit, “http://www.isis.vanderbilt.edu/projects/gme.”

[12] A. Ledeczi, M. Maroti, and A. Bakay, “The generic modeling environ-
ment,” Proceedings of the IEEE International Workshop on Intelligent
Signal Processing, 2001.

[13] P. Volgyesi and A. Ledeczi, “Component-based development of net-
worked embedded applications,” Proceedings. 28th Euromicro Confer-
ence, pp. 68–73, 2002.

[14] Virtual Test Bed, “http://vtb.engr.sc.edu/vtbwebsite/.”
[15] Matpower, “http://www.pserc.cornell.edu/matpower/.”
[16] R. D. Zimmerman, C. E. Murillo-sánchez, R. J. Thomas, L. Fellow,

and A. M. Atpower, “MATPOWER : Steady-State Operations , Systems
Research and Education,” IEEE Transaction on Power Systems, vol. 26,
no. 1, pp. 12–19, 2011.

[17] Syntek, “DD(X) Notional Baseline Modeling and Simulation Develop-
ment Report,” Internal Report, Aug. 2001.

[18] “Matlab Documentation: Call Matlab Engine.” [Online]. Available:
http://www.mathworks.com/help/matlab/calling-matlab-engine-f

[19] PSAT, “Http://www.uclm.edu/area/gsee/Web/Federico/psat.htm.”
[20] F. Milano, “An Open Source Power System Analysis Toolbox,” IEEE

Transactions on Power Systems, vol. 20, no. 3, pp. 1199–1206, Aug.
2005.

428

