
Poster Abstract: Supporting Fog/Edge-based Cognitive
Assistance IoT Services for the Visually Impaired

Shashank Shekhar∗
Siemens Corporate Technology

Princeton, NJ
shashankshekhar@siemens.com

Ajay Chhokra
Vanderbilt University

Nashville, TN
ajay.d.chhokra@vanderbilt.edu

Hongyang Sun
Vanderbilt University

Nashville, TN
hongyang.sun@vanderbilt.edu

Aniruddha Gokhale
Vanderbilt University

Nashville, TN
a.gokhale@vanderbilt.edu

Abhishek Dubey
Vanderbilt University

Nashville, TN
abhishek.dubey@vanderbilt.edu

Xenofon Koutsokos
Vanderbilt University

Nashville, TN
xenofon.koutsokos@vanderbilt.edu

ABSTRACT
The fog/edge computing paradigm is increasingly being adopted to
support a variety of latency-sensitive IoT services, such as cognitive
assistance to the visually impaired, due to its ability to assure the
latency requirements of these services while continuing to bene-
fit from the elastic properties of cloud computing. However, user
mobility in such applications imposes a new set of challenges that
must be addressed before such applications can be deployed and
benefit the society. This paper presents ongoing work on a dynamic
resource management middleware called URMILA that addresses
these concerns. URMILA ensures that the service remains available
despite user mobility and ensuing wireless connectivity issues by
opportunistically leveraging both fog and edge resources in such a
way that the latency requirements of the service are met while en-
suring longevity of the battery life on the edge devices. We present
the design principles of URMILA’s capabilities and a real-world
cognitive assistance application that we have built and are testing
on an emulated but realistic IoT testbed.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Computer systems organization→ Cloud computing;

KEYWORDS
Fog/Edge Resource Management, User Mobility, Latency
ACM Reference Format:
Shashank Shekhar, Ajay Chhokra, Hongyang Sun, Aniruddha Gokhale,
Abhishek Dubey, and Xenofon Koutsokos. 2019. Poster Abstract: Supporting
Fog/Edge-based Cognitive Assistance IoT Services for the Visually Impaired.
In IoTDI ’19: Conference on Internet of Things Design and Implementation,
April 15–18, 2019, Montreal, QC, Canada.ACM, New York, NY, USA, Article 4,
2 pages. https://doi.org/10.1145/3302505.3312592

∗Work performed during doctoral studies at Vanderbilt University

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6283-2/19/04.
https://doi.org/10.1145/3302505.3312592

1 INTRODUCTION
Rapid advances in Internet of Things (IoT) technologies have given
rise to a variety of new services that have significant societal impact.
Consider a real-time object detection application targeted towards
visually impaired for cognitive assistance. The associated wearable
IoT equipment such as an eyewear enhances their knowledge about
the surroundings. Such a service will need to frequently capture
images of the surroundings using the wearable equipment, process
and analyze these frames, and subsequently provide feedback (e.g.,
audio and haptics) to the user.

Designing such a service is a hard problem for a number of rea-
sons. For instance, the design must decide where to process the
frames. If these frames were to be processed always at the edge
(e.g., on a smartphone carried by the user), then the edge resource
must typically be configured with a pre-trained image classification
model which is needed to identify objects in the captured frames.
When compared to powerful server resources in a cloud, edge re-
sources tend to be significantly limited in the amount of memory,
computation speed and battery power. Thus, it is unreasonable
to expect very large pre-trained models to be stored on edge de-
vices nor can we expect highly compute intensive model execution
and image classification tasks on such edge devices and that too
performed repeatedly for every frame that is captured as the user
moves. Ensuring the longevity of the battery life on the edge device
is a key requirement.

An alternative is to always offload the computations onto fog
resources, which are a collection of servers that are more powerful
and richer in resources relative to edge resources. However, relying
only on fog resources is fraught with challenges. First, even if the
service chooses a fog resource in the vicinity of the user, which
itself needs a discovery step to identify a fog resource, there is no
guarantee that that fog resource currently has enough capacity
to handle a new task because it may already be heavily utilized
by other IoT services. Second, since the user is mobile, the user is
very likely to go out of range of the selected fog resource which
means another fog resource must be discovered and the service
state transferred while ensuring that the service remains available
when it is needed. It is possible that during this handoff some frames
may not get processed thereby compromising the safety of the user.
Finally, both due to fluctuating wireless signals and potentially no

1

https://doi.org/10.1145/3302505.3312592
https://doi.org/10.1145/3302505.3312592


IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada S. Shekhar et al.

signal range with any fog resource, several captured frames may not
get processed at all, which exacerbates the problem even further.

In summary, a fog-only or edge-only solution will not yield the
desired service functionality and service-level guarantees. Thus, an
approach that can intelligently and dynamically switch between
fog and edge resources as the user moves while meeting the service-
level guarantees is needed. To that end, we are designing a dynamic
and adaptive resource management middleware solution for IoT
called URMILA (Ubiquitous Resource Management for Interference
and Latency-Aware services). URMILA’s dynamic resource man-
agement algorithms (a) account for the constraints of the edge
resources (e.g., remaining battery charge, available memory and
computing power) so that the appropriate service logic can be ex-
ecuted on the edge resources when the service has no choice but
to execute on the edge resource, (b) enable discovery and use of
those fog resources that are reachable over wireless links and that
also have enough available capacity to host the service such that
the detrimental effects of performance interference caused due to
multiple co-located services [1, 2] is minimized, (c) avoid the need
to migrate any application state between fog and edge resources
or hand-off state between fog resources as the user moves which
otherwise will waste resources and degrade performance.

2 ONGOINGWORK
Our ongoing work comprises two thrusts as decribed below.

2.1 Service Design
We are designing a soft real-time object detection, cognitive assis-
tance application targeted towards the visually impaired. Advances
in wearable devices and computer vision algorithms have enabled
cognitive assistance and augmented reality applications to become
a reality, e.g., PivotHead’s SeeingAI and Gabriel [3] that leverage
Google Glass and the fog devices.

To that end and to showcase some variety in edge devices uses,
our first design uses an Android smartphone that inter-operates
with a Sony SmartEyeGlass, which is used to capture video frames
as the user moves in a region and provides audio feedback after
processing the frame. The second design uses a Python applica-
tion running on Linux-based board devices such as MinnowBoard
with a Web camera. In both the implementations, we maintain two
different real-time object detection algorithms from Tensorflow
for image processing: MobileNet, which is smaller in size but less
accurate is executed on the edge device, while Inception V3, which
is larger in size but more accurate executes on a fog device. Two
models help avoid model and data movement between the edge and
fog devices, and overcomes the limitation of edge devices, which
constrain storage and execution of large models.

2.2 Middleware Design
Figure 1 shows the model-predictive, control-based, dynamic and
adaptive resource management architecture of URMILA. We formu-
late and solve an optimization problem1 in the URMILAmiddleware
that trades-off execution of image classification on edge or fog re-
source for the cognitive assistance service. The decision is based on
1Optimization problem formulation and preliminary results not shown due to space
constraints.

available remaining battery power on an edge device, availability
of a fog resource with minimal interference from co-located appli-
cations within signal strength of a user, predicted path taken by
the mobile user and the estimated duration of its connectedness
to that selected fog device, and communication costs to reach the
fog device. Since this optimization problem is NP Hard, URMILA
implements a heuristic-based server selection algorithm.

Sensors

Actuators

Controller

Local Sensor Data
ProcessingService

Remote Sensor Data
ProcessingService

Sensors

Actuators

Edge Device Fog Device

Figure 1: URMILA Methodology for Adaptive Execution of
Service Logic

URMILA provides a range of individual solutions to obtain the
different inputs needed to solve the optimization problem. These
include predicting the path taken by the user, and based on this
predicted path, determine the likely fog resources that the user
is likely to be reachable over the wireless channel. Accordingly,
URMILA comprises a wireless signal strength estimator to estimate
the signal strength of a user from a given point on its predicted path
to one or more available fog devices on the route. By keeping track
of instantaneous loads on each fog device through its monitoring
infrastructure [4] that is deployed on each fog device, URMILA also
provides a latency estimation algorithm to determine the execution
time to execute an image classification task on the available fog
resources and round trip latency to the user, which is then used in
choosing a fog device with the least performance interference for a
given route segment. If no fog device is available, execution will
be carried out on the edge device until a next fog device is found.
URMILA is available in open source at github.com/doc-vu.

ACKNOWLEDGMENTS
This work is supported in part by NSF US Ignite CNS 1531079 and
AFOSR DDDAS FA9550-18-1-0126. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
NSF or AFOSR.

REFERENCES
[1] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware sched-

uling for heterogeneous datacenters. In ACM SIGPLAN Notices, Vol. 48. ACM,
77–88.

[2] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying and Managing Performance
Interference in Virtualized Environments. In Proceedings of the 2013 USENIX Con-
ference on Annual Technical Conference (USENIX ATC’13). USENIX Association,
Berkeley, CA, USA, 219–230. http://dl.acm.org/citation.cfm?id=2535461.2535489

[3] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter,
and Padmanabhan Pillai. 2014. Cloudlets: at the leading edge of mobile-cloud
convergence. In Mobile Computing, Applications and Services (MobiCASE), 2014 6th
International Conference on. IEEE, 1–9.

[4] Shashank Shekhar, Ajay Chhokra, Anirban Bhattacharjee, Guillaume Aupy, and
Aniruddha Gokhale. 2017. INDICES: Exploiting Edge Resources for Performance-
Aware Cloud-Hosted Services. In IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). Madrid, Spain, 75–80. https://doi.org/10.1109/ICFEC.2017.16

2

github.com/doc-vu
http://dl.acm.org/citation.cfm?id=2535461.2535489
https://doi.org/10.1109/ICFEC.2017.16

	Abstract
	1 Introduction
	2 Ongoing Work
	2.1 Service Design
	2.2 Middleware Design

	References

