
Enabling Self-Management by Using Model-Based
Design Space Exploration

Tripti Saxena, Abhishek Dubey, Daniel Balasubramanian, Gabor Karsai
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN

Abstract—Reconfiguration and self-management are important
properties for systems that operate in hazardous and uncontrolled
environments, such as inter-planetary space. These systems need
a reconfiguration mechanism that provides recovery from individ-
ual component failures as well as the ability to dynamically adapt
to evolving mission goals. One way to provide this functionality
is to define a model of alternative system configurations and
allow the system to choose the current configuration based
on its current state, including environmental parameters and
goals. The primary difficulties with this approach are (1) the
state space of configurations can grow very large, which can
make explicit enumeration infeasible, and (2) the component
failures and evolving system goals must be somehow encoded
in the system configuration model. This paper describes an
online reconfiguration method based on model-based design-
space exploration. We symbolically encode the set of valid system
configurations and assert the current system state and goals as
symbolic constraints. Our initial work indicates that this method
scales and is capable of providing effective online dynamic
reconfiguration.

I. INTRODUCTION

Complex, mission-critical systems, such as space vehi-
cles, are often built up from individual components. The
component-based approach is employed for several reasons.
Ideally, if each component is individually verified with regard
to a safety specification, then after the entire system is as-
sembled, its safety can be inferred from the verification of the
individual components. Systems meeting this requirement are
said to be compositional. While this sort of verification can
provide guarantees about safety properties, it is not enough to
ensure the success of mission critical systems. The hazardous
and uncontrolled environments in which these systems operate
can cause entire component failures, which the system must be
able to handle. Additionally, the system must also cope with
evolving mission requirements in the face of these component
failures.

Fortunately, the component based nature of these systems
provides a way to deal with both of these issues. In the event
of either a component failure or an evolved mission goal, the
system can reconfigure itself by swapping faulty components
for working ones. This reconfiguration approach is similar to
the one used by autonomic computing frameworks. Autonomic
computing employs a subsystem that is able to (1) detect
occurrences of discrepancies that signify component failures,
(2) diagnose and isolate the probable fault sources, and (3)
take actions to contain the faults. In this paper, we focus on the
last point above: taking actions to contain faults and mitigate

their effects. Given a faulty set of components and/or a set of
mission goals, we desire to find a valid system reconfiguration
that meets these constraints and requirements.

In order for a system to reconfigure itself, it needs at
least two things: (1) a list of valid system configurations,
and (2) a set of constraints listing the faulty components and
mission goals. Given these, the list of valid configurations
can be traversed until one is found that satisfies all of the
current constraints. The primary problem with this approach
is that the state space describing all valid system configurations
can be exponentially large in the number of components,
making explicit enumeration infeasible. In addition, the set
of faulty components and mission goals must be taken into
consideration when selecting a configuration. This requires a
language for describing constraints that is both intuitive and
expressive.

This paper presents our initial work on a framework to
provide online reconfiguration that addresses these issues. It is
based on a constraint driven approach. The basic method is the
following. First, the state-space of valid system configurations
is symbolically encoded. When a fault occurs or a mission goal
changes, a set of constraints describing these faults and goals
is constructed. The state space of valid configurations is then
recomputed using these constraints, along with any existing
constraints describing system faults and goals. This is done
using our design space exploration tool called DESERT [1].
Once a final design space is computed, a single configuration
can chosen based on one of several metrics.

Outline: This paper is organized as follows: Section II
provides a brief overview of background material. Section III
discusses the related works. Sections IV , V and VI provide an
overview of our approach. We present a case study in section
VII, and we conclude in section VIII.

II. BACKGROUND

A. Model Integrated Computing

Model Integrated Computing (MIC) [2] has proven itself
as a sound method of applying computer based modeling
approaches to a variety of problem domains. MIC incorpo-
rates the creation of domain-specific, model-based abstractions
which serve to capture relevant aspects of a target system.
These models can then be programmatically traversed and
transformed to produce a variety of domain-specific artifacts.
These models are often transformed into alternate but equiv-
alent representations which can be used by external analysis



and simulation tools to verify certain properties of the system
[3] [4]. Examples of MIC uses are the generation of real-
time schedules from a software model [5], the creation of
configuration files to integrate distributed systems [6], or the
generation of source code that can be integrated into an
existing framework [7].

MIC relies heavily on the use of domain-specific modeling
languages to capture relevant characteristics of an object
or system of objects. A domain-specific modeling language
(DSML) allows a designer to describe objects in terms of the
domain rather than in terms of traditional computer languages.
The Generic Modeling Environment (GME) [8], [9] is a freely
available tool which provides a platform for Model Integrated
Computing design and development. Specifically, GME is a
configurable and domain-independent modeling environment
that supports the creation and instantiation of multiple user
defined (domain-specific) modeling languages.

B. Reflex and Healing Approach for Self-Management

One of the approaches to building a self-managing system is
based on Reflex and Healing (RH) [10], [11], [12], which is a
biologically inspired two stage mechanism for recovering from
faults in large distributed real-time systems. The first stage
consists of primary building blocks of fault management called
reflex engines that are arranged in a hierarchical management
structure. They offer pre-specified reactive responses called
reflexes to faults as they are discovered.

The next stage of RH architectures is associated with system
healing. This refers to a planned reconfiguration of the system
at the global level, which is required if no suitable reflex
exists for a fault-event or when system performance needs
to be optimized after several reflex actions. This step is
typically multi-objective in nature and is dependent on several
factors such as system goals, resilience to future faults and
performance. This architecture has been successfully demon-
strated for the BTeV real-time embedded systems project
(http://www-btev.fnal.gov/public/hep/detector/rtes/) [13].

The online reconfiguration technique presented in this paper
is one possible way of implementing healing in autonomic
systems.

C. Design Space Exploration

Complex systems have a large number of choices in terms
of the selection of software components and hardware archi-
tectures for implementation. A set of all the possible design
alternatives forms a design space. Each choice can have an
impact on the functional and/or para-functional properties of
the final implementation.

Design Space Exploration (DSE) is the exploration of
design alternatives before implementation of the system. The
goal is to search through the large design space to find design
alternatives that satisfy a given set of constraints and that are
optimal with respect to one or more objective functions. The
selection process is further complicated because the objective
functions might conflict with each other (e.g. area vs. latency).

The exploration process can be performed in steps by first re-
ducing the size of the design space by rejecting unsatisfactory
designs, followed by the identification of designs which are
best in terms of certain user-defined metrics of fitness. A wide
variety of automated and semi-automated DSE techniques like
simulation, analytical approaches and combinatorial search
algorithms exist.

DESERT : DESERT [1] is a DSE tool that works on a finite
set problem where a design space is a finite set and constraints
are relations on the elements in that set. Finite set manipulation
requires symbolic representation of both the design space and
well as the constraints. DESERT encodes the elements of
design space set using binary vectors and thus all operations
over the set can be represented as Boolean functions, which
are then represented as Ordered Binary Decision Diagrams
(OBDD)s.

Design spaces are represented hierarchically as an AND-
OR-LEAF tree in DESERT. Each design configuration is
essentially a well-formed path in the tree representation
which originates from the root and consists of a unique trail
branching from an OR-node and multiple simultaneous trails
branching from an AND-node. This tree ensures assignment
of a unique binary code to each configuration. Additionally,
the encoding scheme also encodes the attributes such as
latency, WCET (Worst Case Execution Time) and constraints.
DESERT can efficiently compute two categories of constraints,
namely: compatibility constraints and performance constraints.
Compatibility constraints specify relations between elements
of the design space. These constraints are symbolically repre-
sented as Boolean expressions over the Boolean representation
of the elements of the design-space. Performance constraints
specify bounds on the composite properties of elements in the
composed system.

The design space pruning is a process that involves con-
juncting the OBDD representing the design space with the
OBDD representing the constraints. The primary advantage
of this symbolic design space pruning approach is that it is
exhaustive. The resulting pruned space consists of all designs
which meet the applied design constraints.

DESERT FD: In [14], Neema documents the scalability
issues of the OBDD representation in the presence of contin-
uous finite domain variables. To overcome these limitations,
a design space exploration tool named DESERT-FD was
developed [15]. It contains a hybrid solver which combines the
symbolic constraint satisfaction of DESERT with finite domain
constraint satisfaction. DESERT-FD also supports a property
composition language that allows the modelers to write custom
property composition functions.

III. RELATED WORK

One technique of enabling self-management and reconfigu-
ration is to build the fault-protection behavior as an integrated
part of the control system during the design process. This is
the basis of goal-based control paradigm [16] that supports
a deductive controller which is responsible for observing the
plant’s state (mode estimation) and issuing commands to move



the plant through a sequence of states that achieves the speci-
fied goal. Their technique lies in the use of a Reactive Model-
based programming language (RMPL) [17] for specifying
correct and faulty behavior of the software components.

In principle, this approach is similar to the supervisory
control of Discrete Event Systems (DES)1. In such systems,
one seeks to restrict the behavior of a plant by disabling
the events that leads to undesirable behavior such that the
supervised system (closed loop of the supervisor and plant)
meets the required specifications, which might include “safety”
specifications (e.g. prohibit the behavior that can lead to
a catastrophe) and “liveness” specifications (e.g. guarantee
the eventuality of a specified goal). The seminal work on
supervisory control in DES was pioneered by Ramadge and
Wonham [18].

Garlan et al. [19] and Dashofy et al. [20] proposed the use of
architectural models to represent the system as a composition
of several components. They argued that the models capture
the component interconnection and the properties of interest
and can be used as the formalism upon which system adapta-
tion can be based. Our research is based on similar principles
of model driven architecture.

Garlan used reactive rule based strategies for implementing
decisions in his work. A typical strategy looked like an if-
then-else clause present in several high-level languages. His
strategies are similar to reflexes (see section II). Our approach
in this work does not use a reactive strategy language. On the
contrary, we rely on the constraints specified during design
to evaluate system configuration and replace the sub-systems
with possible alternatives such that all the constraints are met
and the reconfigured system is not faulty.

DESERT has been used earlier for dynamic software re-
configuration in sensor networks [21]. The main difference
in this work and [21] is that we allow new constraints to
be dynamically added and evaluated during runtime. In [22],
Eames et.al. presented an evaluation of the use of DesertFD
as a runtime reconfiguration engine for embedded systems.
In their application, DesertFD executed on a host machine,
connected to the embedded processing platform. Measurement
points across the embedded system gather runtime perfor-
mance metadata and system state, which is fed to the design
space explorer on the host. The design space explorer then
evaluates the design space and returns a configuration which
satisfies the constraints. This configuration is then separately
deployed.

IV. OVERVIEW OF THE APPROACH

This work focuses on self-adaptive component-based sys-
tems in which adaptation is limited to activating/deactivating
the components and changing their interconnections. Self-
adaptive systems typically involve a feedback process with
four activities: collect, analyze, decide and act [23]. The
process starts by collecting relevant information that reflects

1A Discrete event system (DES) is a discrete state, event-driven system, in
which, the state evolution depends entirely on occurrence of discrete events
over time.

the current state of the system. This information is analyzed
to diagnose potential performance problems or detect failures.
The system then decides how to adapt itself in order to reach
a desirable state and the action is taken according to result of
the decision activity.

Our set of system architectures is symbolically encoded
using a model that consists of alternatives and constraints: the
alternatives specify the different ways that a particular piece of
functionality may be implemented, while the constraints place
further restrictions on which architectures are considered valid.
These constraints can be functions over the components and
their attributes, and are described in more detail in Section
V-C.

Our self-adaptation approach is illustrated in Figure 1.
The process starts by monitoring the run-time system for
component failures. When a failure is observed, it is translated
into a constraint (by the constraint generator) that is then added
to the system architecture model; this constraint indicates
that the component that failed is no longer a valid choice
in system architecture. After all of the constraints describing
failed components have been propagated to the architecture
model, a search takes place for a new, valid configuration.
This search takes place over the new architecture space, which
consists of the previously pruned design space (generated
when previous components failed) augmented with the new
constraints describing the most recent component failures. A
set of valid configurations is then obtained as a result of
search through this new architecture space, and a particular
configuration can be chosen using one of several metrics.

Fig. 1. Adaptation framework

V. ARCHITECTURE MODELS

The framework shown in Figure 1 is built on top of a
MIC framework. In particular, we use the Generic Modeling
Environment (GME) as our main modeling tool because of its
support for domain-specific modeling languages (see section
II).

In order to obtain the system architecture model that de-
scribes alternative configurations and constraints, we follow a
three step process as follows.



1) Define a domain-specific modeling language for the sys-
tem architecture models. This language allows concrete
system architecture models to be defined.

2) Compose the language developed in the previous step
with a meta-architecture template that we have devel-
oped. This composition yields a new domain specific
modeling language that enables a designer to model
design alternatives and constraints, yielding a design
space.

3) Specify any initial design constraints on the system
using a combination of graphical and textual constraint
specification languages.

The first step above involves capturing the relevant concepts
and relationships found in a domain (e.g. subsection V-A),
and as such is specific to each individual domain; for more
information, see [2]. The following subsections (V-B and
V-C) describe the other two steps in more detail with a
representative example.

A. ComponentML

ComponentML is a DSML used to capture the basic con-
cepts of component-based systems. Fig. 2 shows the meta-
model for ComponentML. A SoftwareComponent in Compo-
nentML is the primary unit of implementation, reuse, and
composition that exposes a set of ComponentPorts. A soft-
ware component can contain ports that receive (input) or
emit (output) requests. Each port is connected to a port on
another software component. InPorts provide a set of oper-
ations to clients of a component instance. Outports provide
connection points that allow a component instance to interact
with other component instances. The operational parameters
like power consumption, latency and other quality-of-service
(QoS) properties are captured using attributes of the Software-
Component. Each component has an attribute Path which
identifies the path of the executable that is invoked when
the SoftwareComponent is started. The HasFailed attribute
tells whether the component is still working or has failed.
Components are connected (composed) in order to build an
Assembly which represents a part-of or a whole application.
The communication links between the components are clearly
expressed using the InPort, Outport and SignalFlow objects.

The initial goal with ComponentML was to have a visual
interface to Picolo [24], a rapid prototyping framework aimed
at easing the introduction of components and component-
based applications. The component models and properties are
graphically specified and then an interpreter generates the
corresponding representation in Picolo.

B. Meta-architecture

ComponentML needs to also contains elements that allow
the user to model more than one implementation of an
application in a compact and scalable representation, along
with the structural constraints that govern the selection of
the appropriate implementation. This is done by metamodel
composition with Meta-architecture Template (MT) (see figure
3).

Fig. 2. Original ComponentML

MT is an abstract metamodel template that captures the
common patterns in design space exploration. The result-
ing extended-ComponentML (eComponentML) language can
instantiate (concretize and replicate) concepts in MT while
still using elements from the original ComponentML. Figure
3 shows part of the MT metamodel. The design space can
be structured using GDSELPrimitives, and container objects
like Mandatory, Alternative and Option. The Mandatory class
models composition, which means all the objects contained in
a Mandatory object must be included in a valid configuration.
The Alternative class models a choice point where each child
object represents one alternative, and exactly one of these
alternatives is selected in a valid configuration. This allows
mutually exclusive design choices to be modeled. The Option
class describes configurations in which the child object may
or not be selected. A Primitive is a basic element representing
a fundamental unit of composition.

Data of interest in a design space is captured as properties
of the Primitives. The value of a property of a Container
(Alternative, Mandatory, Option) is calculated as a function
of the property values of the contained objects. This function
is called the composition function. DESERT supports a limited
set of composition functions (e.g. Add, Multiply).

C. Constraints

In addition to specifying design alternatives, our language
allows the user to define additional constraints using the
attributes of individual components. These constraints further
restrict the set of valid architectures. The system requirements
are expressed as formal constraints on operational parameters
such as power, latency and other QoS properties. Constraints
are modeled using graphical or textual constraint objects. The
Graphical Constraints are used to model dual context (i.e.,
two objects are involved) constraints that can be instantiated
at the model level. The Textual Constraints are used to model
single context constraints and may or may not be instantiated
at the model level. The ‘expression’ attribute of the constraint
objects contains the actual constraint definition expressed
in the Constraint Specification Language (CSL), a simple



Fig. 3. Meta-Architecture Template

scripting language we developed to facilitate user friendly
syntax for writing constraints on elements of the design space.

While the Object Constraint Language (OCL) [25] is the
constraint language used and supported by GME, we decided
to develop our own language for a number of reasons. Most
constraints in the design space are single context (on a single
component) or dual context (relating two components). OCL
expressions use a single context and become bulky when used
in multiple contexts. For example, a constraint between two
nodes in the design space tree uses their least common ancestor
as the context. OCL requires a number of indirections to access
the required nodes. Moreover, there is a need to filter out the
model specific details while writing constraints on the design
space.

In order to address these limitations, a scripting language

Fig. 4. Extended ComponentML Metamodel

called the Constraint Specification Language (CSL) has been
developed to provide user-friendly syntax for writing con-
straints. Currently, CSL consists of the most essential elements
needed to express constraints, which includes two basic data
types: property variables and constants. Each property variable
refers to an attribute of a model element with the same
name. The property variables and constants can have type
integer, string or Boolean. CSL supports arithmetic, logical and
relational operators. The supported logical operators include
conjunction, implication and negation. Operations are used to
create expressions in CSL. At the highest level an expression
is a logical expression. CSL also supports an “if-then-else”
construct which corresponds to the “implies” operator of OCL.

Fig. 4 shows a part of the extended componentML (eCom-
ponentML metamodel) language generated after the composi-
tion operation. Notice that two new elements - Compound and
Alternative have been added to eComponent to create alterna-
tive design spaces. The SoftwareComponent belonging to the
original language is derived from Primitive. The performance
constraints are modeled using instances of PerformanceCon-
straint, which is derived from TextualConstraint and models
single context constraints.

VI. RUNTIME RECONFIGURATION

Once the architecture model describing the alternative
system configurations has been defined and deployed, the
monitoring activities shown in Figure 1 begin: the run-time
system is monitored, failures are translated into constraints, the
design-space exploration tool recomputes the valid architecture
and a selected configuration is deployed. The model translators
and the DESERT execution engine both run on a host machine
connected to the embedded platform.



During the configuration process, the design space model
in eComponentML is converted to a format acceptable to
DESERT by the eComponent2DESERT Interpreter. The
converted data is fed to DESERT as an XML file. DESERT
applies the constraints present in the model and generates an-
other XML file which contains the valid design configurations
in the pruned space.

The DESERT to Picolo interpreter (Execution Engine) is
the most important component in our software reconfiguration
infrastructure. It is responsible for reading the DESERT output
file that contains the set of valid configurations and choosing
a single configuration. Once a configuration is selected, the
interpreter reads the component model database and creates a
component assembly using the Picolo framework. The current
configuration selection algorithm works by maintaining a list
of components that are currently executing and choosing the
configuration that requires the least number of changes from
the current configuration.

Once the system is initialized, the Execution Engine goes
into an infinite loop in which it listens for reconfiguration
data. Once it receives configuration information, it performs
the reconfiguration and then goes back to listening for re-
configuration data message. Reconfiguration duties include
introducing new components to- and removing old components
from the current component assembly. Next, the reconfigura-
tion dynamically changes the wiring (function calls) of the
components. The Picolo framework provides libraries for the
creation and destruction of the components. The Execution
Engine first stops all components that need to be disabled,
and then selects (as described above) a single configuration
from the configuration set output by DESERT.

The monitor executes on the host machine and receives
messages with the state of each component. As soon as it
detects the failure of one of the components, it signals the
ConstraintGenerator, which then updates the eCom-
ponentML design space model with additional constraints
reflecting the exclusion of the faulty component from all
valid configurations. This updating of the design space model
invokes the reconfiguration process.

VII. ILLUSTRATIVE EXAMPLE

Fig. 5. Motion Controller

Figure 5 shows a simple example of the component-based
design of a motion controller use case of an intelligent

wheelchair. There are two main functions of the motion
controller: sensing and actuating. The motion controller gets
data from the wheel sensors and converts it to speed and
angle. Actuation is performed by reading the values from the
joystick and writing them to the actuator. There are four main
components: the Sensor, MovementController, JoystickDriver
and the Actuator. The Sensor component is triggered periodi-
cally to publish an event with data. The MovementController
component is an asynchronous consumer of this event, and it
is triggered periodically to consume the last event produced by
the sensor. When finished processing, it ends with publishing
its own output event. The Actuator component is triggered
aperiodically to process the MovementController event. Upon
activation, the Actuator component uses an interface provided
by the MovementController to retrieve the position and speed
data via a synchronous call.

Fig. 6. Runtime Reconfiguration of Motion Controller

Design Spaces: The application has four implementations
which are hierarchically organized using alternatives and
primitives. The Sensor object in the model is an Alternative
that models a choice point between two sensors of differ-
ent precisions. The choices modeled using HighSensor and
LowSensor have the same interface but different precisions.
Similarly, the MovementController object models two different
implementations: MC1 and MC2. The first implementation,
MC1, takes input data from the JoystickDriver and sends it to
the Actuator, and the second implementation, MC2, is similar
to MC1 but also converts the values from the joystick to the
standard form and sends them to the Display as well. The meta
data (e.g., WCET ) is captured as attributes. The model also
captures constraints that are evaluated over the design space,
at both design-time and run-time. The performance constraints
in this example are:
C1.wcet() < Lbound

C2.cost() < Cbound

where Cbound is the upper bound on the cost of the imple-
mentation and Lbound is the upper bound on the wcet of the
implementation (e.g. Lbound = 10 shown in Fig. 6 ).



While the HighSensor can be used with both
implementations of the motion controller, the LowSensor
can be used only with MC1 implementation restricting the
number of valid configurations to three. This restriction can
be modeled using the following compatibility constraint:
C3.LowSensor → MC1

Runtime: We prune the design space using DESERT, which
provides configurations that satisfy the constraints (e.g. overall
cost and WCET). WCET is an additive property, meaning
that the WCET of the implementation is the sum of WCET
of the selected components. Once the initial configuration is
selected, the following sequence of events illustrates the online
reconfiguration in this example.

1) Let the initial selected configuration consist of HighSen-
sor and MC1.

2) We simulate injection of a fault that indicates failure of
the HighSensor. This failure is detected by the monitor.

3) The monitor signals the ConstraintGenerator,
which then generates a constraint and updates the system
model. Figure 6 shows the new constraints that are added
to the system model. Valid configurations are restricted
from including the failed sensor.

4) Updating of the system model triggers reevaluation of
the design space. DESERT returns a set of valid config-
urations in the presence of this additional constraint.

5) The ExecutionEngine selects a configuration from the set
of valid configurations and performs the steps necessary
for reconfiguration of the system.

VIII. CONCLUSION AND FUTURE WORK

Reconfiguration is an important technology for mission-
critical systems. This paper presented an approach for
constraint-guided software reconfiguration of component-
based systems using our design-time design space exploration
tool, DESERT. Our approach requires monitoring the running
system for component failures, at which time the reconfigura-
tion process is invoked. We demonstrated the applicability of
this approach with a simple illustrative example.

Although the proposed reconfiguration framework is fairly
straightforward, it highlights some of the challenges that need
to be addressed for self-adaptation. The most important chal-
lenge is to reduce the latency of the reconfiguration process.
Every invocation of the reconfiguration framework invokes
DESERT, which performs the design space pruning with
additional constraints. This can be very expensive, especially
for dynamic applications that must be reconfigured quickly
and have a high frequency of reconfigurations. DESERT uses
symbolic constraint satisfaction which does not scale well
in the presence of mathematical constraints and continuous
finite domain variables. At present, the reconfiguration frame-
work chooses a system configuration that is closest to the
current configuration. More complex strategies of choosing
the configuration can be implemented in future versions of
the framework. Possibilities include implementing optimiza-

tion based reconfiguration where the system configuration is
chosen based on a certain cost function.

REFERENCES

[1] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts, “Constraint-based
design-space exploration and model synthesis,” in EMSOFT, 2003, pp.
290–305.

[2] J. Sztipanovits and G. Karsai, “Model-integrated computing,” Computer,
vol. 30, no. 4, pp. 110–111, 1997.

[3] S. Abdelwahed and W. Wonham, “Interacting des: modelling and
analysis,” in Systems, Man and Cybernetics, 2003. IEEE International
Conference on, vol. 5, 5-8 Oct. 2003, pp. 4222–4229vol.5.

[4] A. Ledeczi, J. Davis, S. Neema, and A. Agrawal, “Modeling methodol-
ogy for integrated simulation of embedded systems,” ACM Trans. Model.
Comput. Simul., vol. 13, no. 1, pp. 82–103, 2003.

[5] J. Porter, G. Karsai, and J. Sztipanovits, “Towards a time-triggered
schedule calculation tool to support model-based embedded software
design,” in EMSOFT, 2009, pp. 167–176.

[6] A. Gokhale, K. Balasubramanian, and T. Lu, “Cosmic: addressing
crosscutting deployment and configuration concerns of distributed real-
time and embedded systems,” in OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications. New York, NY, USA: ACM,
2004, pp. 218–219.

[7] J. Gray, J. Sztipanovits, D. Schmidt, T. Bapty, S. Neema, and
A. Gokhale, “Two-level aspect weaving to support evolution of model-
driven synthesis,” Aspect-Oriented Software Development, no. Chapter
30, pp. 681–710, 2004, addison-Wesley.

[8] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The Generic Modeling
Environment,” in Workshop on Intelligent Signal Processing, Budapest,
Hungary, vol. 17, May 2001.

[9] The Generic Modeling Environment,
http://www.escherinstitute.org/Tools/GME.asp.

[10] S. Neema, T. Bapty, S.Shetty, and S.Nordstrom, “Developing autonomic
fault mitigation systems,” Journal of Engineering Applications of Arti-
ficial Intelligence Special Issue on Autonomic Computing and Grids,
2004.

[11] R. Sterritt and D. Bantz, “Personal autonomic computing reflex reactions
and self-healing,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 36, no. 3, pp. 304–314, May
2006.

[12] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty, and
G. Karsai, “Towards a verifiable real-time, autonomic, fault mitigation
framework for large scale real-time systems,” Innovations in Systems
and Software Engineering, vol. 3, pp. 33–52, March 2007.

[13] S. A. et al., “RTES demo system 2004,” SIGBED Rev., vol. 2, no. 3,
pp. 1–6, 2005.

[14] S. Neema, “System-level synthesis of adaptive computing systems,”
Ph.D. dissertation, Vanderbilt University, May 2001.

[15] B. K. Eames, S. K. Neema, and R. Saraswat, “Desertfd: a finite-domain
constraint based tool for design space exploration,” Design Automation
for Embedded Systems, 2009.

[16] B. C. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and
G. T. Sullivan, “Model-based programming of fault-aware systems,” AI
Magazine, vol. 24, no. 4, pp. 61–75, 2004.

[17] B. Williams, M. Ingham, S. Chung, and P. Elliott, “Model-based pro-
gramming of intelligent embedded systems and robotic space explorers,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 212–237, 2003.

[18] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete
event processes,” Siam J. Control and Optimization, vol. 25, no. 1, 1987.

[19] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[20] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “Towards
architecture-based self-healing systems,” in WOSS ’02: Proceedings of
the first workshop on Self-healing systems. New York, NY, USA: ACM
Press, 2002, pp. 21–26.

[21] S. Kogekar, S. Neema, and X. Koutsoukos, “Dynamic software recon-
figuration in sensor networks,” in Proc. Systems Communications, Aug.
14–17, 2005, pp. 413–420.



[22] B. Eames, “On the use of desertfd as a reconfiguration engine for
embedded systems,” in Proc. IEEE Mountain Workshop on Adaptive
and Learning Systems, Jul. 24–26, 2006, pp. 127–132.

[23] J. Kephart and D. Chess, “The vision of autonomic computing,” IEEE
Computer, 2003.

[24] R. Marvie, “Picolo: A simple python framework for introducing com-
ponent principles,” in In Euro Python Conference 2005, 2005.

[25] R. S. C. et al., Object Constraint Language Specification ver 1.1, Sept
1997.


