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The increasing rate of urbanization has added pressure on the already constrained transportation
networks in our communities. Ride-sharing platforms such as Uber and Lyft are becoming a
more commonplace, particularly in urban environments. While such services may be deemed
more convenient than riding public transit due to their on-demand nature, reports show that
they do not necessarily decrease the congestion in major cities. One of the key problems is
that typically mobility decision support systems focus on individual utility and react only
after congestion appears. In this paper, we propose socially considerate multi-modal routing
algorithms that are proactive and consider, via predictions, the shared effect of riders on the
overall efficacy of mobility services. We adapt the MATSim simulator framework to incorporate
the proposed algorithms present a simulation analysis of a case study in Nashville, Tennessee
that assess the effects of our routing models on the traffic congestion for different levels of
penetration and adoption of socially considerate routes. Our results indicate that even at a low
penetration (social ratio), we are able to achieve an improvement in system-level performance.
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1 INTRODUCTION
The increasing rate of urbanization has added pressure on the already constrained
transportation networks in our communities. For example, a recent estimate indicates
that approximately 100 people move to the Nashville metropolitan area per day
[Bureau 2016]. Commuters predominantly prefer using their personal vehicle rather
than transit options; e.g., according to US Census Bureau’s 2013 survey [Bureau 2014;
McKenzie 2015], 86% of all workers commuted to work by private vehicle, either
driving alone or carpooling. This leads to increased congestion, especially during peak
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(a) Morning (7am-9am) peak hour traffic (b) Evening (4pm-6pm) peak hour traffic

Fig. 1. The average speed loss (difference between the free flow speed and real-time speed of
a road segment) on all segments in Nashville on September 1, 2017; (a) peak hour traffic at
7am-9am; (b) peak hour traffic at 4pm-6pm.

morning and evening travel times. Figure 1 shows the average loss of traffic speed,
defined as the relative ratio of decreased speed compared with free flow speed and
the free flow speed, on the road during a particular time interval. The fact that the
majority of personal vehicles used by commuters are single occupancy only serves to
exacerbate the issue [Hu and Reuscher 2004].

Technological innovations have enabled shared mobility options which are increas-
ingly being used by commuters often in lieu of a personal vehicle. To support the
demand for such options, companies are increasingly investing in making shared
mobility services readily available to the user on-demand. For example, ride-sharing
apps such as Uber and Lyft are becoming more common place, particularly in urban
environments. While such services may be deemed more convenient than riding pub-
lic transit due to their on-demand nature, reports show that they do not necessarily
decrease the congestion in major cities [NACTO 2016].
To fix these problems many cities in the United States have started implementing

Transportation Demand Management programs (TDM). For instance, the city of
Nashville has the Nashville Complete Trips Transportation Demand Management
program [Tennessee Department of Transportation 2017] whose goal is to increase
the efficiency of the transportation system and improve the air quality of the region by
reducing single occupancy vehicle travel. While these programs are focusing primarily
on ad-hoc incentives and introducing new modes of travel (e.g., bike- and car-share
options), there is an intrinsic problem that we believe is not being handled. This
problem relates to how individuals make a decision of when to travel, which mode
of travel to use, and what routes to use and the fact that decisions are collectively
executed on the same constrained, public resource—i.e. the transportation network.
Our hypothesis, which is explored in this paper, is that the current transportation
decision support systems that are commercially available largely focus on short-term
planning for individuals (e.g., each user receives information or routing suggestions
determined based on their stated preferences) rather than analyzing the short-term
societal or system-level impacts of routing decisions across users and then using that
analysis in distributing the mobility demand across the dimensions of space, time, and
modes of transport.
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1.1 Commercial Mobility Decision Support Solutions
To help us illustrate our point, consider that a large number of U.S. adults use smart-
phone apps as decision support systems for planning their mobility choices; e.g.,
Google Maps, Waze, Apple Maps are some of the major trip planners employed by
users. In fact, the number of commuters utilizing these services has gone up from 74%
in 2013 to 90% in 2015 according to one study [Anderson 2016].
Users can specify their preferences for certain routes, departure time, and desired

means of transport; the mobility apps give a set of itineraries from which the user can
select an option that is most closely aligned with their preferences. They also provide
users with a traffic heat map showing estimated real-time congestion levels, either
predicted via historical data or obtained via real-time samples from other users using
the service.

A prevalent solution with current trip planners is that, at peak hours when routes
become more congested, new routes are offered to users based on estimated real-time
traffic conditions. While current planners have long-term prediction models that give
individual users routes determined to be optimal for that user given estimated current
conditions, such a solution is reactive in the sense that users change or adjust their
travel plans after congestion occurs.

As an example of this phenomena, we used Google Maps[Alphabet 2016] to analyze
the routes given to users during during peak hours. Specifically, we conducted an
experiment to see what happens when 1000 users make a request to go from the same
general origin to same general destination in an interval of 5 minutes (requests are
distributed uniformly across the 5 minute period). Information on routing algorithms
and the congestionmodel that GoogleMaps employs is not publicly available. However,
by querying their system, we are able to analyze the routes provided via their platform.
As shown in Figure 2, one route was provided to all users and, assuming all users take
this route, it becomes heavily congested. We hypothesize that routes produced by
Google Maps’ are done so in a reactive manner.

Efficientmulti-modal routing has been studied extensively.While routing algorithms
are practical and are used by current trip planners, there is a large gap between what
is socially optimal (i.e. at the system-level) and what users choose to do as selfish
individuals, as has been studied extensively in the routing game literature. Researchers
largely agree that distribution of mobility demand is a potentially viable approach to
addressing this gap. Yet, there are some practical challenges: (1) we do not know how
many people are participating, (2) there are no simulation tools to study and analyze
the policy assumptions (which can be used to design incentives and then improve the
solution applications), (3) the dynamic routing problem across multiple modes is a
difficult problem. We discuss these problems further in the related work section 2.

1.2 Contributions
This paper has following contributions:

• We propose a User Optimal Multi-Modal Router (UO-MMR) in which the best
possible multi-modal paths are given to the user that maximizes their multi-
ple objectives. It improves upon state-of-the-art multi-modal, multi-objective
routing algorithms by using switch conditions to provide a feasible multi-modal
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Fig. 2. Congestion analysis of Google Maps. The congestion level of a route is shown when
1000 users make requests to go from Institute for Software Integrated Systems to Music City
Central, Nashville, TN by car. Specifically, 200 requests were sent from 5 different machines
and the departure time for the requests were between 9AM–9:05AM with requests uniformly
distributed across time.

path in the network and gives results that are user-optimal in the sense that the
user objectives are maximized.
• Building on the UO-MMR extension, we propose a Social Optimal Multi-Modal
Router (SO-MMR) which takes a proactive approach to avoid congestion by
suggesting route choices that are more socially optimal in the sense that they
are considerate of the choices made by other users and work towards improving
system-level performance.
• We present a simulation analysis of the effects of UO-MMR and SO-MMR on
the traffic congestion. To this end, we leverage the MATSim simulation tool—an
open-source framework for implementing large-scale agent-based transport
simulations [Horni et al. 2016]. We assess the effect of the ratio of SO-MMR users
to UO-MMR users in the population on system level performance as measured
by average travel-time across users1.

Our results indicate that as the number of users using SO-MMR generated routes
increases, the average travel time of all agents in the system decreases and so does

1Of course, other metrics can be used and our framework is agnostic to the particular metric.
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the variation in travel times. Our results also indicate that to decrease congestion, SO-
MMR increasingly offers transit routes to the users. This re-confirms that multi-modal
routing is one of the many important strategies that, if appropriately leveraged, can
decrease congestion while also decreasing the travel-time of a significant proportion
of users in the system. Not surprisingly, as there is no free lunch, our results also
show that some users do experience longer travel times under the SO-MMR generated
routes as compared to UO-MMR routes; however, the increase in travel time is not
significant in the case study we explore. This motivates a future line of research into
the fairness of such strategies as well as incentives to encourage participation and
route adoption.

1.3 Paper outline
In Section 2, we provide a brief overview of the current literature on routing algorithms
and routing games as it relates to the work in this paper. Subsequently, in Section 3,
we describe the setup of our multi-modal graph-based approach and, in Section 4, we
describe the proposed algorithms for multi-modal routers. We detail the simulation
framework, execution procedure, and key results findings in Section 5. We provide
a discussion of the results and future directions in Section 6 and make concluding
remarks in Section 7.

2 RELATEDWORK
There are two bodies of work that we draw on to construct our approach to more
socially optimal transportation resource consumption. The first is the literature on
routing algorithms from which we build on the idea of multi-objective routing in
networks with constraints. The second is the literature on routing games. In this latter
body of work, there is a long history of studying inefficiencies arising from selfish
routing.

2.1 Routing Algorithms
Routing is a widely researched topic in large part due to its practical relevance in
real-world applications. Much of the work on route planning focuses on finding the
shortest path on a directed weighted graph. Dijkstra [Dijkstra 1959] and Bellman and
Ford [Bellman 1958; Ford Jr 1956] proposed some of the first algorithms to solve this
problem. Although these algorithms are quite old, they are still fundamental to many
route planning algorithms that exist today.

While these algorithms compute optimal shortest paths, they are too slow to process
real-world data sets such as those deriving from large-scale road networks. To address
this issue, there are many techniques aimed at speeding up these algorithms. Such
techniques often are based on clever heuristics that accelerate the basic shortest
paths algorithms by reducing their search space. Bi-directional search [Dantzig 2016;
Goldberg and Harrelson 2005], e.g., not only computes the shortest path from the
source s to the target t , but simultaneously computes the shortest path from t to s
on the backward graph. Goal-directed search such as A∗ [Hart et al. 1968] uses other
heuristics to guide the search. Goldberg et al. proposed the ALT approach in which
they enhance A∗ by introducing landmarks to compute feasible potential functions
using the triangle inequality [Goldberg and Harrelson 2005; Goldberg and Werneck
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2005]. In other work, contraction techniques are used to speed-up the shortest path
computation; e.g., highway hierarchies [Sanders and Schultes 2005, 2006] exploits the
hierarchical in road networks, while contraction hierarchies [Geisberger et al. 2008] is
based on contracting the graph.
Routing in public transportation is more difficult than in road networks due to

scheduling which has to be done using largely the same network edges as are used
by personal vehicles, thereby introducing uncertainties in the resulting timing plan.
There are two approaches to cope with the inherent time-dependency of a public
transportation schedule: the time-expanded and the time-dependent approach. The
time-expanded model is intuitive and allows more flexibility in constraints while the
time-dependent approach has a smaller graph size and, thus, faster query times [Pajor
2009].
However, in much of this existing work as identified above, only single criteria is

used for finding paths. In public transportation networks, multi-criteria optimization
is important due to the many potentially conflicting objectives that exist including
minimizing travel-time, costs, transfers, etc. This gives rise to a multi-objective search
problem, which is an extension of the shortest path problem where link costs are
expanded to vectors containing several objectives. This problem has been studied ex-
tensively [Disser et al. 2008; Müller-Hannemann and Schnee 2007; Muller-Hannemann
and Weihe 2001].

The multiobjective A∗ search algorithm finds all of the Pareto-optimal paths (non-
dominated paths) in a multi-criteria network [Mandow et al. 2005; Tung and Chew
1992]. It has been shown that at worst, multiobjective A∗ search requires an exponential
size graph in space and time [Mandow and De La Cruz 2010]. Some variants such as
relaxed Pareto dominance (ϵ-dominance) are used in practice [Perny and Spanjaard
2008].

We, on the other hand, are interested in the multi-modal setting in which users can
choose amongst a combination of modes of transport. Our approach of developing
a multi-modal graph (detailed in Section sec:graph-setup) is similar to the work in
[Pajor 2009]. To avoid arbitrary modes of transportation at arbitrary points of the
network in a multi-modal network, the label constrained shortest path problem [Barrett
et al. 2008, 2000], where regular languages model reasonable path restrictions, can
be used. However, this approach does not take into account the real-time properties
of the network and user context. Hence, we propose to use switch conditions [Liu
2010] to construct a feasible multi-modal path in a network. Our approach improves
upon multi-objective A∗ [Tung and Chew 1992] to include congestion information
and route users based on the plans of other users.

2.2 User Choice versus Social Optimum
In a related body of work referred to as static routing games the notion of inefficiency
is well-studied (see, e.g., [Roughgarden 2005; Roughgarden and Tardos 2002, 2004;
Van Huyck et al. 1990]). Static routing games are ones in which there is a graph
representing a network with a number of commodities (i.e. source-destination pairs).
Populations of users must allocate themselves amongst a finite set of routes (paths
connecting sources to destinations) associated with their commodity. Paths are made
of up network edges, each of which has an associated congestion-related cost or
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latency that the users experience if the edge is selected. Applications range from
wireless networks to transportation (see, e.g., [Boyce et al. 2005; Correa et al. 2008;
Sheffi 1985; Vickrey 1969; Youn et al. 2008]). There is a large body of work in this area
that focuses on characterizing the gap between the selfishly selected user equilibrium
(Wardrop equilibrium) [Wardrop 1952] and the social optimal solution. This gap is
commonly referred to as the price of anarchy.
One avenue of research focuses on how mechanisms such as tolling, uncertainty,

and altruism affect equilibrium quality and can serve to reduce the price of anarchy.
Indeed, the approach of tolling places additional costs on edges in order to redistribute
or alleviate congestion leading to a narrowing of the gap between the social opti-
mum and user-selected equilibrium. For instance, there are a number of solutions for
obtaining the optimal edge pricing [Cole et al. 2003a,b; Fleischer et al. 2004; Jelinek
et al. 2014]. Similarly, a number of works have examined how users’ uncertainty level
regarding edge costs or travel information (see, e.g., [Liu et al. 2016; Sekar et al. 2017;
Thai et al. 2016; Wu et al. 2017]) impacts the price of anarchy. The price of anarchy
under stochastic selfish routing game with risk-averse players has also been studied
[Nikolova and Stier-Moses 2011]. It has been shown that, counter-intuitively, under
some conditions on structure of edge-level congestion, equilibrium quality under
uncertainty is better compared to the full information case [Sekar et al. 2017]. The
study of altruism is analogous to uncertainty in that it is a property associated with
the user. In this case, it is assumed users are (at least partially) willing to suffer (take
on additional cost) for the good of society. For example, the impact of the degree of
cooperation on equilibrium quality has been explored in [Azad et al. 2010] and, in
the case when users are partially altruistic, the price of anarchy has been studied in
[Chen and Kempe 2008; Çolak et al. 2016].

In large part, the key idea in each of these avenues of work is that users perceive or
experience different edge costs than they would under normal operating conditions.
Yet, the static approach adopted in much of the routing game literature has some
limitations as far as the realism with which it represents the actual process that gives
rise to congestion and increased travel time [Chiu et al. 2011]. The so-called Dynamic
Traffic Assignment (DTA) problem, as its name suggests, seeks to address the routing
problem in a dynamic setting by determining routes for users over a period of time.
There are largely two directions of research into the DTA problem: non-iterative
or iterative. The latter has the benefit of repeatedly solving the problem in order to
achieve a more efficient routing solution, however, it cannot be solved in a real-time
setting where users are arriving to a system and routes need to be recommended. It is
our aim to address the routing problem in this context.
While there are some approaches aimed at closing the gap between the social (or

system-level) optimum and the user select behavior [Qian et al. 2012; Samaranayake
et al. 2015]. In line with this body of work, our approach leverages an agent-based
simulation environment to assign routing choices that are more socially optimal in the
sense that they are considerate of the choices made by other users and work towards
improving system level performance which can be metrized, e.g., by average travel
time across all users. In addition, we consider multiple modes of travel (e.g., bike,
personal or shared vehicle, transit, etc.). Specifically, users are offered route choices
aligned with their specified preferences dynamically. Moreover, we assess the level
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of adoption of socially considerate routes on performance. Such analysis will be the
foundation for understanding the level of incentives needed to have an appreciable
effect on system level performance.

3 PROBLEM SETUP
3.1 Preliminaries
LetG = (V ,E) be a directed graph, whereV is the set of vertices, E ⊆ V ×V the set of
edges. We say there is an edge from u ∈ V to v ∈ V if and only if (u,v) ∈ E. Note that
we use the terms graph and network interchangeably. Each edge e ∈ E has a set of
edge labelsMe that denotes the different modes of transportation allowed on e , where
Me ∈ {walk,bike, car , transit}.
A graph is said to be weighted when a numerical label (i.e. weight) is assigned to

each of its edges. For instance, there might be a cost involved in traveling from a
vertex to one of its neighbors, in which case the weight assigned to the corresponding
edge can represent such a cost. All edges in our graphs are weighted by periodic
time-dependent travel time functions [Pajor 2009] fe : Π → N0 where Π depicts a set
of time points or time-period (seconds, minutes or hours of a day). If fe is constant
over Π, we call fe as time-independent [Pajor 2009]. In time-dependent graphs, the
shortest path depends on the departure time τs of the source node. This might result
in shortest paths of different length for different departure times or even a completely
different route. A time-query has as input s ∈ V and a departure time τ . It computes a
shortest path tree to every node u ∈ V when departing at s at time τ .

3.2 Uni-Modal Graph
Our multi-modal graph is composed of different uni-modal graphs for each mode of
transportation. We briefly discuss different uni-modal graphs relevant in our work.
In road networks, nodes model intersections or point of interests (POI) and edges
depict street segments. A street segment is often shared by different modes such as
{walk,bike, car }. In this case, the travel-time for each mode is dependent on other
modes with shared street segments.
In some street segments, the paths for each mode are clearly divided and hence,

travel-time for one mode is independent of other modes. In the case of segments that
represent roads for vehicles, the segments are shared amongst a variety of vehicle
types including cars, trucks, and other heavy duty vehicles. Travel time on a road
segment depends on the congestion. The effect of congestion in road transport, is
primarily that the travel time of a congested road segment increases as the traffic load
approaches the traffic capacity of the road segment. The travel time increase can be
modeled with the BPR (Bureau of Public Roads) [Manual 1964] formula:

Te (τ iu ) = tf ,e

(
1 + αe

µe (τ iu )
ce

)βe
where
• τ iu : time at which the user i departs node u along edge e connecting u to v
• µe : function that provides expected volume of vehicles on edge at time τ iu
• ce : capacity of edge e (max number of vehicles that could fit on that edge)
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• tf ,e : free-flow travel time of edge e (time it would take to traverse edge e if
vehicles were moving at the free-flow velocity—i.e. the speed limit—on that
edge)
• αe : a constant in the BPR function (usually taken to be 0.15)
• Te (µe ): travel time on edge e as a function of the volume µe
• βe : a constant in the BPR function (usually taken to be 4)

As can be seen from the formula the travel time will stay at the free flow travel time
until the flow is very close to the capacity. The travel time then increases rapidly as
the expected volume of vehicles approach the capacity of the edge.

3.3 Multi-Modal Graph
For building a multi-modal graphG = (V ,E), we merge the node and edge sets of each
individual uni-modal graph. Combining the graph requires us to identify neighbors of
each node which has different modes, where the user can switch from one mode to
another. Such a node is called switch node. These switch nodes are candidate nodes
where wemerge and link the uni-modal graphs. The act of merging unites two different
uni-modal graphs and the act of linking inserts link edges to connect the nodes having
different modes.We only link nodes that are nomore than distance δ apart, a parameter
determined by each switch node. Associated with each switch edge are list of pre-
conditions, that needs to be satisfied to traverse that edge. Such conditions are called
the switch condition module. The switch condition module depends on the properties
of the switch nodes, switch edge connecting the switch nodes, user profile and time.
Specifically, define SCM(e,Ui ,τ

i
u ), where e = (u,v) is the switch edge with u and v

as the switch nodes, Ui is the profile of user i and τ iu is the departure time at node
u. Some of the conditions that are used in the switch condition module include the
following:

• Does the user have a mode with it (e.g., car or bike)?
• If yes, does the user need to park its mode?
• If not, can the new mode store the current mode (e.g., bike rack on bus)?
• Does the user have mode rental options (e.g., car- or bike-sharing)?
• What is the associated cost for switching modes?
• Is the cost less than a fixed amount (e.g., bound on the user’s available capital)?
• How much time does it take to switch modes?
• Are their physical restrictions such as turn movements?
• Are their additional cost such as toll payments or parking?

To determine the nearest neighbors, we use k-dimensional trees (k-d trees) [Bentley
1975], a data structure specifically designed for geometric search algorithms. The idea
is to generalize a binary search tree to k dimensions. Queries of k-dimensional points
can be answered in average logarithmic time.

4 MULTI-MODAL ROUTING
In this section, we describe our approach to UO-MMR, an improvement of existing
multi-modal routing algorithms, that determines which paths should be given to users
provided multiple objectives. In addition, we describe our SO-MMR which builds
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on UO-MMR to offer more socially considerate route suggestions to users aimed at
reducing congestion in the overall network, thereby improving system performance.

4.1 User Optimal Multi-Modal Router (UO-MMR)
In UO-MMR, the best possible multi-modal paths that maximizes multiple objectives
are given to the user. UO-MMR is based on the Multi-Objective A∗ algorithm. We
use UO-MMR for routing on our multi-modal graph described in Section 3.3. To find
feasible and meaningful multi-modal paths in a network, we are using Algorithm 1 to
get out-going edges which satisfy the set of conditions in the switch condition module.

Algorithm 1: Get Outgoing Edges UO-MMR
Data: A multi-modal graph G = (V ,E),u ∈ V , τ iu = departure time of user i at

node u , (Ui ) = profile of user i .
Result: Set of Links
begin

Initialize OutgoingEdgeList
foreach v ∈ u .neiдhbors do

e←− Edge from u to v ;
if SCM(e,Ui ,τ

i
u ) is True then

OutgoingEdgeList.append(e) ;
end

end
end
return OutgoingEdgeList

Algorithm 2: Add User Plan
Data: A multi-modal graph G = (V ,E), e = (u,v) ∈ E, Pi = Path of user i
Result: Congestion Model of links present in Pi is updated
begin

foreach e = (u,v) ∈ Pi do
τ iu ←− u .departuretime;
τ iv ←− v .departuretime;
CongestionModel←− e .intervaltree;
if e .mode == car then

CongestionModel.addInterval(τ iu , τ iv , 1);
end
else if e .mode == bus then

e.mode.capacity++;
end

end
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Algorithm 3: Get Predicted Congestion Level
Data: A multi-modal graph G = (V ,E), e = (u,v) ∈ E, τ iu = departure time of user

i at node u
Result: congestion level ∈ [0, 1])
begin

congestion = 0;
CongestionModel←− e .intervaltree;
OverlappingIntervals = CongestionModel(τ iu );
foreach interval ∈ OverlappingIntervals do

if interval.min > τ iu then
congestion = congestion + interval.value;

end
end
ratio = conдest ion

e .capacity

end
return ratio

Algorithm 4: Get Outgoing Edges SO-MMR
Data: A multi-modal graph G = (V ,E), e = (u,v) ∈ E, τ iu = departure time of user

i at node u , (Ui ) = profile of user i and the social ratio α ∈ [0, 1]
Result: Set of Links
begin

Initialize OutgoingEdgeList
foreach v ∈ u .neiдhbors do

δ = Get Predicted Congestion Level(e, τ iu );
e ←− Edge from u to v ;
if SCM(e,Ui ,τ

i
u ) is True and δ < α × e .capacity then

if e.mode == bus and e.mode.capacity is full then
continue;

end
OutgoingEdgeList.append(e) ;

end
end

end
return OutgoingEdgeList

4.2 Social Optimal Multi-Modal Router (SO-MMR)
Much like UO-MMR, SO-MMR returns the set of best possible multi-modal paths that
maximize multiple objectives to the user. Extending beyond UO-MMR, SO-MMR takes
a proactive approach to avoiding congestion by suggesting route choices that are more
socially optimal in the sense that they are considerate of the choices made by other
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users and work towards improving system level performance. Unlike UO-MMR, SO-
MMR takes into account the route plan given to the user and updates the congestion
model of all links present in the route plan.

To add a user’s plan, we take all the links given in the route plan and the departure
time present in nodes connecting each link and add congestion to each link as shown
in Algorithm 2. The amount of congestion we add depends on the mode the user is
using to traverse a link. For a link, if a user is in a car, we increment the congestion
level in the time interval the car traverses the link, if it does at all. We note that buses
have a physical capacity limiting the number of users that can be on a bus at a given
time. In addition, for a link, we update the congestion according the the bus schedule
and delays incurred in the simulation—that is, in the time interval that a bus traverses
a link we update the congestion on that link accordingly. The difference between
cars and a bus in terms of the congestion model is that cars can be associated with a
user’s plan whereas buses have a schedule independent of any particular user. In our
graph, we have assumed that the schedule of the bus is fixed. Forwalk , we assume
that adding a user will have negligible effect on congestion on road and hence, we do
not update the congestion.

As shown in the Algorithm 3, to get the predicted time dependent congestion level
of a link e = (u,v) at the departure time τ iu of user i , we use interval trees [Cormen
et al. 1990] to get overlapping intervals and look for intervals [a,b] whose minimum
value a is greater than the given time τ iu . The predicted congestion level varies from
zero to one, where zero means that there is no congestion and one implies that the
link is fully congested.
Finally, we update the Algorithm 1 to also take into account congestion of links

and the capacity of buses (or any transit vehicle). The updated algorithm is shown
in Algorithm 4 in which we introduce the social ratio α ∈ [0, 1] defined to be the
ratio of the total population using SO-MMR generated routes—that is, if P is the total
population size, then the population of SO-MMR users is Y with cardinality |Y | = αP
and the population of UO-MMR users isX with cardinality |X | = (1−α)P . As indicated
in the Algorithm 1, congestion should be less than α × e .capacity.

Hence, to develop SO-MMR router, we have updated the UO-MMR router (i) to add
a user’s plan to the graph as per Algorithm 2, (ii) obtain outgoing edges via Algorithm
4, and (iii) update link costs using predicted congestion obtained via Algorithm 3.

5 SIMULATION
5.1 MATSim Implementation
WeuseMATSim [Horni et al. 2016] for our simulation.MATSim supports implementing
large-scale agent-based transport simulations and is based on iterative dynamic traffic
assignment. That is, every agent repeatedly optimizes its daily activity schedule
while in competition for space-time slots with all other agents on the transportation
infrastructure. Every agent possesses a memory containing a fixed number of day
plans, where each plan is composed of a daily activity chain and an associated score.
The score can be interpreted as an econometric utility.

While MATSim is capable of iteratively finding best routes for users, we are inter-
ested in creating a simulation that mirrors the real-world in the sense that given a set
of routes (generated via UO-MMR or SO-MMR), the users execute their routes and the
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effect is observed. In this sense, we use MATSim as a one-shot simulator to test the
viability and performance of the different UO-MMR and SO-MMR generated routes.

5.2 Simulation setup
Let user i be defined by a tuple (ti ,oi ,di ), where (oi ,di ) is its origin-destination pair
and ti is the departure time of the user from its origin oi . There are two types of
population in our simulation: (i) population X which contains users that have the
UO-MMR generated paths and (ii) populationY which contains users that have the SO-
MMR generated paths. As previously mentioned, the social ratio α along with the total
population size P determines the size of the two populations (i.e. |X | = (1 − α)P and
|Y | = αP . In our simulations, we vary the social between zero and one (i.e. α ∈ [0, 1])
with increments of 0.1. This allows us to assess the penetration level of our platform
and the routes it suggests (assuming participants accept the suggested routes) required
to have an appreciable impact on performance.
Prior to the start of the simulation, users do not have routes assigned to them.

Instead, as each user is slotted to enter the network, say at time ti , they are given
UO-MRR or SO-MMR routes, depending on their population assignment (i.e. X for
UO-MMR and Y for SO-MMR), generated using the current state of the simulator. In
the case of the SO-MMR, generated routes are a function of historical route assignment
(from the beginning of the simulation) and current network conditions.

We define the state to be the volume of users µe for each edge e ∈ E. For a given
time k , if δ users enter the network, then edge-specific costs are determined by the
following BPR [Manual 1964] model:

T (µe + δe ) = tf ,e

(
1 + ae

µe + δe
ce

)4
where

∑
e δe = δ and δe is the number of additional users assigned to edge e .

5.3 Simulation Results
We have used Vanderbilt employees trip distribution data for modeling agents used in
our simulation. and Traffic analysis zone (TAZ) dataset from US Census [Bureau
2016] to model demand distribution of Vanderbilt employees in each TAZ. TAZ is
a special area delineated by state and/or local transportation officials for tabulating
traffic-related data, especially journey-to-work and place-of-work statistics. Based on
the demand distribution in each TAZ, we have sampled random points in each TAZ
based on likelihood. So, if one TAZ ha 100 people and another TAZ has 1000 people,
then the likelihood of picking people from 1000 people TAZ will be 10 times compared
to TAZ of 100 people. Figure 3 shows the demand rate of Vanderbilt employees in
each TAZ.
In our Vanderbilt dataset, we have job type for each employees. Time for each

employee (agent in simulation) is randomly assigned based on their job types as
shown in Table 1. So, simulation is done for peak hour traffic at 7.30-10am for onward
journey and 4pm-7pm for return journey.
We have collected historical traffic data for Nashville from January 1 to January

31 and have used Random Forest regression [Natingga 2017] to build a traffic speed
prediction model for a typical weekday (Ignoring weekend data). This model takes
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Algorithm 5: Simulation execution
Data: Total Demand, List of Agent Itineraries
Result: Travel time, Congestion statistics of all simulations
begin

α ←− 0.0;
P ←− Total Demand;
repeat

Start the simulation;
Initialize network with αP agents from X and (1 − α)P agents from Y ;
Get state of network xe ;
foreach i ∈ X + Y do

if agent i ∈ X then
Pui ←− Compute UO-MMR path for agent i using xe ;
Drop agent i in Pui ;

else if agent i ∈ Y then
Psi ←− SO-MMR path for agent i using xe ;
Drop agent i in Psi ;

end
foreach i ∈ X + Z do

if agent i is at di (destination) then
Stop Simulation;

end
end
Save Travel time, Congestion statistics of simulation;
k ←− α + 0.1;

until α > 1.0;
end
return Travel-time, congestion statistics of all simulations

Job type Onward Journey Return Journey
Faculty 7.30am-9am 5pm-7pm
Students 8am-10am 4pm-6pm
Staff 7am-8am 5pm-6pm
Table 1. Temporal distribution of Vanderbilt employees.

total capacity, free flow speed, number of lanes of the link and hour of the day to
predict the traffic speed.

The simulation is executed as described in Section 5.2. We use average travel time
(from their origins to destinations) across all users in bothX andY , considered together,
as a performance metric for the system (of course other performance metrics can
and should be considered as appropriate). Since the best travel-times across roads are
different, we normalize the results:

normalized travel-time =
(actual travel-time) - (best travel-time)

best travel-time

14



Fig. 3. Vanderbilt Employees Demand distribution

Figure 4 shows the change in congestion heatmaps of the links used by agents
between the simulation having no agents following SO-MMR suggestions (i.e. α = 0.0)
and the simulation where all the agents follow SO-MMR suggestions (i.e. α = 1.0).
This heatmap contains congestion both from MATSim agents and background traffic.
As the heatmap shows, agents in social ratio 1.0 prefer alternative routes and modes
than agents for social ratio 0.0. Since the heatmap contain background traffic too,
there are links which are heavily congested in both the heatmaps and our SO-MMR
router plays no role in decreasing congestion in those links.
Figure 5 shows the normalized travel times of all the agents in simulation. The

figure shows that as the number of users using SO-MMR increases, the average travel
time of all agents in the system decreases as does the variation in travel-times. This
implies that as more agents follow SO-MMR suggestions, congestion in the system
decreases as measured by the average travel-time in the network. This decrease in
travel times is because agents are provided alternate routes with car, bus and walk.
After social ratio of 0.7, the mean remains almost same, while the variance continues
to decrease.

Figure 6 shows the mode distribution for different ratios of agents using SO-MMR.
The results imply that as ratio of users using SO-MMR increases, the number of agents
using transit increases, while at the same time number of agents using their personal
car decreases. That is, as α increases, SO-MMR is routing more agents through transit
and walk to decrease congestion. It should be noted that in this plot, agents are using
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(a) Congestion heatmap for α = 0.0 simula-
tion

(b) Congestion heatmap for α = 1.0 simula-
tion

Fig. 4. This figure shows the congestion heatmaps of the links used by agents during simula-
tion;(a) Congestion heatmap for α = 0.0 simulation when all agents are following UO-MMR;
(b) Congestion heatmap for α = 1.0 simulation when all agents are following SO-MMR.

multiple modes to reach their destination. Large increase in transit ridership is due to
the fact that agents increasingly use bus only in some legs of their entire trip. Having
rental data and parking location data for cars might give a better result.
Figure 7 shows the change in travel-time each agent experiences between the

simulation having no agents following SO-MMR suggestions (i.e. α = 0.0) and the
simulation where all the agents follow SO-MMR suggestions (i.e. α = 1.0). Total
decrease in travel time for some agents outweighs the total increase in travel time of
rest of the agents in population. There is a huge variation in this figure, with many
agents observe drastic increase in travel time (200min). Such variations are due to
increased congestion on roads and limited bus availability (frequency) for many trips.
It also depends on the transit network. In Nashville transit network has hub-spoke
pattern, where most of the agents have to go to downtown, wait for bus and then go
to Vanderbilt on another bus. Having more frequency of buses in some routes and
more point-to-point connections can give better results.

6 DISCUSSION
Our proposed routing algorithm improves on multi-objective A∗ [Tung and Chew
1992] by including congestion information and by suggesting routes to users that are
constructed given the plans of other users and are near-optimal routes that can decrease
congestion in system. Specifically, even at a low penetration (i.e. small values of the
social ratio α ), we are able to achieve an improvement in system-level performance.
To see a significant improvement, we are developing techniques that actively increase
the social ratio by incentivizing users to participate in our SO-MMR-based platform
as well as to adopt the routes it suggests.

Our simulation results are based on the assumption that users are taking the route
proposed to them by SO-MMR. This assumption will however, not hold true in real life
situations where users may not be inclined to take a socially optimal route. Moreover,
as our results indicate, there are some users who are worse off when using SO-MMR as
compared to UO-MMR. Hence we need our routing model to consider the uncertainty
of a user actually taking the route, consider fairness in terms of route assignment
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Fig. 5. Mean and variance of the normalized travel-times. As the number of agents using
SO-MMR increases, the average travel-time of all agents in the system decreases as does the
variation in travel-times.

(as some users may be more likely to get slower routes as a function of other socio-
economic characteristics such as income level that are not accounted for in our model),
and also propose mechanisms to incentivize users to take a socially optimal route.
We are developing a probabilistic model in which we update a prior for the routes
different user types adopt. This probabilistic model will serve as a starting point for
designing incentives to increase SO-MMR route adoption.
While we were able obtain simulation results that support our arguments, we are

also aware of that this is a closed simulation and we did not have any input from the
real world. Furthermore, the simulation was conducted with only a few fixed itineraries
and we have only considered travel time as a metric for providing user-optimal routes
to the agents in simulation. To show more realistic simulation, however, we need to
consider common travel demands of users and include fare model for transit, shared
vehicles, parking, and other costly services in our simulation.

7 CONCLUSIONS
We have demonstrated that by taking a proactive approach and leveraging multiple
modes in routing decisions, congestion can be decreased. As part of our future work,
we will extend our current approach to include (a) incentives for users to take a
socially optimal route, (b) modeling uncertainty of users actually following the route
proposed by router and (c) realistic simulation that can help us better understand
urban vehicular dynamics in a city which potentially can be a tool for city planners
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Fig. 6. Mode distribution for different ratios of users using SO-MMR. This figure shows that as
ratio of users using SO-MMR increases, the number of agents using transit increases, while at
the same time the number of agents using their personal vehicle decreases. It indicates that, as
α increases, SO-MMR is routing more agents through transit in order to decrease congestion.

to understand the interventions they need to make for encouraging the transition
towards a socially optimal multi-modal routing platform.
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