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Abstract—The Web has empowered emergency services to
enhance operations by collecting real-time information about in-
cidents from diverse data sources such as social media. However,
the high volume of unstructured data from the heterogeneous
sources with varying degrees of veracity challenges the timely
extraction and integration of relevant information to summarize
the current situation. Existing work on event detection and
summarization on social media relates to this challenge of timely
extraction of information during an evolving event. However, it is
limited in both integrating incomplete information from diverse
sources and using the integrated information to dynamically infer
knowledge representation of the situation that captures optimal
actions (e.g., allocate available finite ambulances to incident
regions). In this paper, we present a novel concept of an Uncertain
Concept Graph (UCG) that is capable of representing dynamic
knowledge of a disaster event from heterogeneous data sources,
particularly for the regions of interest, and resources/services
required. The information sources, incident regions, and re-
sources (e.g., ambulances) are represented as nodes in UCG,
while the edges represent the weighted relationships between
these nodes. We then propose a solution for probabilistic edge
inference between nodes in UCG. We model a novel optimization
problem for the edge assignment between a service resource to a
region node over time trajectory. The output of such structured
summarization over time can be valuable for modeling event
dynamics in the real world beyond emergency management,
across different smart city operations such as transportation.

Index Terms—Social Media, Event Summarization, Disaster,
Resource Allocation, Uncertain Concept Graph

I. BACKGROUND AND MOTIVATION

The growth of the Web and social media platforms have

opened new opportunities for understanding the world events

[1], [2]. Especially during disasters, the recent years have

observed a large-scale, unprecedented sharing of data for

situational updates via social media beyond the conventional

official reporting channels and news media [3], [4]. We con-

sider large-scale disaster events (natural or man-made) such as

hurricanes, cyclones, and terrorist activities in this research.

During such events, the number of people calling for help

via traditional help lines such as 911 in U.S. often becomes

unmanageable by the human resources of response agencies

(e.g., as reported during the hurricane Harvey disaster in

2017 1). The limitation of traditional communication lines has

resulted in people resorting to alternative channels for seeking

help, providing situational updates, and also responding to

needs for help [5], [6], [7].

Response agencies, therefore, have started exploring ways

to leverage social media for enhanced situational awareness

and decision support during a disaster [8]. For instance, given

the available resources (e.g., ambulances) are limited during

a disaster response, the agencies expect to improve their

resource dispatch mechanisms while considering all available

information via both traditional helplines like 911 and novel

social media.

A key challenge for social media mining to enhance op-

erational decision support of the response agencies is to

efficiently infer relevant knowledge of the dynamic situation.

Solutions for extraction and integration of information from

heterogeneous data streams, particularly event detection and

summarization methods [9], [10], [11] are useful to address

this challenge. However, existing research on event summa-

rization is limited to create timely and novel unstructured text

summaries primarily for human readers and lacks a focus on

structured textual summaries with uncertainties in mining the

structured information.

Dynamic Disaster Context: It is important to understand

a disaster situation before describing a representation

to summarize its evolving knowledge. Consider three

information sources I1, I2 and I3, who post messages

on Twitter for some incidents E1 and E2 with location

(latitude-longitude) metadata in a region R1 (assume affected

area is partitioned into 4 regions R1, R2, R3 and R4). The

goal of response agencies is to allocate relevant resources

(e.g., ambulances for medical type incidents) to the region

Rq where an incident has occurred. While we can specifically

map a message of Ik to a region Rq by determining which

region’s bounding box contains the location of the Ik’s

message, there is uncertainty in extracting information for the

incident and the required resource from the natural language

text of the message. Using text mining models[12], [4],

we can predict the message received from a source Ik for:

(a.) likelihood of an incident occurrence of type Eb, and

(b.) likelihood of a required resource type Sa. Also, the

veracity of the information source (e.g., Red Cross versus a

common citizen account on Twitter) can be estimated using
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Fig. 1. An illustration of a disaster situation over time trajectory with unsteady nodes and edges. At a time instant Tx, information source node Ik shares a
Twitter message about an occurrence of an incident Eb at a region Rq , extracted by text mining models with uncertainty, and leads to probabilistic (Informing)
edges. The relation of a required resource Si

a (medical or non-medical) to Rq at Tx is inferred by aggregating all observed incidents of a resource type need
in Rq (depicted by Inferred edge) and is updated after the dispatch decision (depicted by Allocated edge).

credibility models (ibid) to provide weights to the extracted

information as well. By aggregating the likelihood of incident

occurrences and the required resource demands over all

weighted information sources in a time interval, for instance

T1, the sources I1, I2 and I3 are mapped to a region R1;

the response agencies then can get an expected likelihood

for making a decision to dispatch a relevant resource (e.g.,

Medical1) after T1.

Given the various uncertainty types in extracting information

from streaming data (both the predicted likelihood of the

required resource demands and the veracity degree of the

information sources), there is a need to capture the spatio-

temporally varying relationships among regions, the required

resource types, and the information sources. Furthermore,

there is a need to efficiently represent and summarize

the updates in the relationships after resource allocations

over time trajectory. Figure 1 illustrates this dynamic scenario.

Contributions: The overall contribution of this paper is the

position of a novel framework for structured summarization of

dynamic event contexts (with a focus on emergency services).

The framework allows the fusion of information from hetero-

geneous sources while representing uncertainty in the extracted

information from the high volume of sparse, redundant data

of heterogeneous sources with varying veracity.

Specifically, the proposed approach for temporal structured

summarization of heterogeneous data streams − Uncertain
Concept Graph (UCG) captures knowledge representation of

spatio-temporal relationships between information sources,

resource requests (contingent on reports of incident types),

spatial regions, and the available resources during disasters.

UCG enables modeling of the uncertainty in information

extraction from multimodal content, by mining natural

language text and multimedia. We formulate a solution

framework to sequentially update the resource requests

and optimally dispatch resources to locations, reflected by

updating the edge relationships in the UCG.

Paper Organization: The remainder of the paper is orga-

nized as follows. Section II discusses the methods and tech-

nical solutions for the problem of structured summarization

of resource needs using the UCG. Section III formulates

an optimization problem for resource allocation using the

uncertain concept graph UCG. Conclusions and Future work

follows in Section IV.

II. METHODS AND TECHNICAL SOLUTIONS

In this section, we first discuss the problem, limitations

of existing methods, and then, describe the novel method of

UCG representation.

A. Problem of Structured Summarization

Dynamic disaster contexts require the representation and

integration of streaming information from content of het-

erogeneous sources such that it helps summarization of the

evolving events in a structured form, which can feed into

decision support systems over time. Such structured form of

information needs to be extracted from semi-structured data

streams of heterogeneous information sources, while taking

into account the uncertainties in the information sources and

extraction models.

B. Limitations of Existing Work

Prior research on event detection and summarization tech-

niques [1], [9], [2], [13], [14], [15], [10], [16], [17], [18], [19]

has focused primarily on efficient characterization of events

for identification and textual summarization of events using

clustering approaches for an online reader. We provide a brief

overview of the diverse approaches. [2] presented an approach

to identify evolutionary events from social streams by using

topical content of messages and the graphical structure of

the dynamic network of interactions among message authors.

[16] presented an event identification as well as ranking

method of burst events and localized events for a region and

a time-frame. [19] recently proposed a model for including

lack of activity or absenteeism instances for event detection

in social media. [9] focused on detecting events on Twitter

and extracting a few tweets that best summarize the chain

of relevant occurrences. [13] proposed an unsupervised joint

topic modeling method to summarize trending subject matter

by jointly discovering the representative and complementary
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information from news and tweets. [14] proposed a framework

to extract relevant representative tweets from an unfiltered

tweet stream to generate a coherent and concise summary

of an event. [15] proposed a summarization model for news

content to provide answers to readers for ‘what, when, why,

where, how’ questions of events. A recent survey by [10]

summarizes the challenges of analyzing evolutionary network

representation with online information streams, under the one-

pass constraint of data streams.

Dynamic Bayesian Network (DBN) [20] presents an alter-

native approach to model temporal dynamics of a system for

dynamic disaster context, however due to the unsteady nodes

and edges for representing the system state as well as the

lack of apriori knowledge for the incidents and information

sources for a region, it is not feasible to adapt a DBN. For

instance, the volunteers providing information for incidents in

a region can appear and disappear with time and the proba-

bility distributions associated with the links are not stationary.

Therefore, the DBN assumptions are violated. Complementing

prior research on evolutionary event context, we present a

model for structured summarization in disasters.

C. Proposed Solution: Uncertain Concept Graph (UCG)

We describe below the representation of various uncertain-

ties corresponding to a disaster context by constructing a novel

graphical model known as uncertain concept graph UCG and

present the characteristics of several nodes and edges in it.

Definition 1: An Uncertain Concept Graph (UCG) is a

time variant probabilistic graphical model defined over a set

of nodes V. The UCG model at a given time instant Tm is

written as UCGTm
=(Vm, Lm, Pm), where Vm ⊆ V is the set

of nodes and the edge or link set Lm ⊆ Vm × Vm describes

the directional conditional relationship between the nodes. The

probability distribution P e
m ∈ Pm, e ∈ Lm describes the

relative probabilistic weight of a target node connected to the

edge e with respect to a source node connected to the edge e.

An external observation process and an internal update process

control the evolution of the UCG across time. During this

update the nodes and the edges of the UCG can change.

For simplicity we assume that UCG evolves sequentially

with either the observation step or the update step at a time

instant Tm. The node set V is flexible to represent different

categories of concepts from domain knowledge. The node set

V represents concept nodes of Resources, Regions, Incidents,

and Information Sources as illustrated in Figure 1. The edge set

represents the relationships between information sources and

incident nodes as well as incident nodes and region nodes as

Informing edges. The relationship between the region nodes

and the resource nodes is represented as Inferring edges as

well as Allocation edges if resource allocation is confirmed.

In the following, we first formally define variables for

representing information in UCG, characteristics of nodes and

edges of UCG, and then, propose an optimization problem for

inferring relationships between the Region and Resource nodes

at a time instant Tm in order to help summarize resource needs

at Tm.

• Incident Node (Eb): A node that represents an undesirable

event that occurred in a region.

• Region Node (Rq): We assume that the entire community

is divided into several non-intersecting areas. Each non-

intersecting area is referred to as a Region.

• Service Resource Node (Sa): A resource for response

services (such as medical or fire-rescue) that is desired

in responding to an incident in a region. We consider

medical and non-medical resource types for simple ex-

planation.

• Information Source Node (Ik): Any entity that provides

information regarding an incident. For instance, sources

can provide tweets from Twitter, images from Instagram,

posts from Facebook, and 911 reports.

• Source Confidence: The degree of confidence that is

assigned to a source. For example, 911 operators and

emergency services’ accounts on Twitter can be associ-

ated with higher confidence than a random information

source.

• Service Time: The time spent by the emergency service

personnel to mitigate the damage due to an incident in a

region.

• Travel Time: The time that the emergency services take

to reach the destination from the current location.

• Incident Region: The region where an event occurred.

Note that there could be several incident locations in the

affected community.

• Auxiliary Region: The regions that contain the central

locations of the emergency services such as fire stations

and hospitals.

D. UCGTm
Nodes

From any information source in a time interval Tm (denoted

by the last time instant of the interval), we extract four types

of details from its message (e.g., tweet) to construct nodes and

edges of UCGTm
: (1) the location of informing source, (2)

the time when the information was received, (3) the incident

type, and (4) the type of service resource need (e.g., medical).

Due to high volume of social media sources during disasters,

we require machine learning models to automatically extract

the incident details for dynamic situation awareness. However,

when such techniques are used, there exists uncertainty in the

model predictions. Furthermore, it is possible to have varying

degrees of veracity with information sources on a social

media (e.g., based on user affiliations and influence.) On the

other hand, the traditional helplines such as 911 calls enable

relatively accurate sourcing of information for the situation

details of a region due to the direct communication with the

911 operators. Given the flexible representation in UCG, such

heterogeneous information sources can be easily modeled as

information source nodes with different veracity.

Let Ik, k = 1, 2..N represent N distinct information

sources, such as N Twitter users who share any tweet for

an incident in a region. For the service resource nodes, let

Sa, a = 1, 2, ..A represent A types of resources available.

For simplicity, we assume A = 2 and the resource types are

medical (e.g., ambulances) as S1 and non-medical (e.g., fire
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trucks) as S2. In this work, we divide the entire community

into Q regions, denoted as Rq, q = 1, 2, ..Q, given that the

usual operations of response agencies are driven by predefined

jurisdictions. Also, as the exact time when the incident oc-

curred in a region Rq is not known without on-site observation,

we assume it as the time when the first information source for

requesting a specific service type in Rq is available (such as

the time of first tweet for the incident).

E. UCGTm Edges

An edge in UCG is the most significant contributor for

summarizing a situation at a region Rq at a given time Tm.

To model the edge relationships between UCG nodes, we

rely on the automated text mining models to get prediction

probabilities of information extraction, in order to create and

weigh the edges from a source node to incident nodes. We

propose a measure for edge relationship between a region

node Rq and a resource type Sa based on the incident reports

sourced from information sources Ik as:

P (Rq, Eb, Sa) = ΣkP (Rq, Eb, Sa|Ik)× P (Ik) (1)

where P (Rq, Eb, Sa|Ik) represents the joint probability that

an information source Ik is requesting a resource Sa in a

region Rq for an incident type Eb, b = 1, 2, .., B. Note that the

uncertainty in the resource and location details is due to the

model prediction and not from the information source itself.

Therefore, the overall probability of a resource requirement in

a given region can be obtained by aggregating all available

information from diverse source nodes, with the prior for an

information source as a measure of veracity of the source.

In this way, the probability of resource requirements at

every region Rq can be computed. Here, P (Ik) refers to the

probability mass function of a weight Ik, which is equal to the

degree of confidence in that information source. Let T = T init
m

represents the time of the first incident at several regions.

Note that it is possible an incident may not have happened at

some regions (hence, the spatial-temporal variation in a state

of UCGTm .) It is assumed that there exists new information

sources associated with any new incidents at the same as

well as different regions over future time intervals. In such

cases, the probability P (Rq, Eb, Sa) would increase due to

the increased requirement for resources in the future if no

resource allocation is done based on UCGTm state. We also

make a Markov assumption to carry over this likelihood of

resource demand to the future time intervals (Tm+x, x > 0).

F. Matrix Data Structure for UCGTm

To capture the dynamic relationships in UCG via edges

and probabilistic edge weights, we propose matrix represen-

tation of UCG. For computational tractability, the matrix

form assists in representing UCG nodes and edges over time

trajectory.

1) [M1] Region - Resource Matrix: It represents the assign-

ment state of a resource node to a region node in UCG,

and can have an entry as 0 or 1. It is the most important

matrix for resource need summarization at Tm. At the

initial time over trajectory, all the resources are assumed

to be present in auxiliary regions, and when incidents

occur, they are sent to the incident regions.

2) [M2] Region - Incident Matrix: It represents the proba-

bility that an incident type is occurring at a location in a

region. Each entry is a value between 0 and 1.

3) [M3] Region - Resource Time Matrix: It represents the

time it would take for a resource to provide services at a

region. Therefore, the time is equal to the summation

of: (1) remaining service time at the current region,

and (2) travel time to the new region. Service times

may vary depending on the resources. Some resources

can be equipped with advanced facilities compared to

others. The rows represent service resources whereas the

columns represent incident locations.

When a resource is deployed, it becomes unavailable for

a period of time until it finishes the current assignment task

(allocation state captured by matrix M1), which in turn, affects

the availability of resources at any given time interval Tm.

Therefore, real-time region to resource allocation analysis,

i.e. inference of values in matrix M1, is required in the

presence of uncertainty in information represented in UCGTm

and the time-varying resource availability, which leads to

an optimization problem. We address this challenge via an

inference problem formulation in the following.

III. UCGTm
NODE-EDGE UPDATES: OPTIMIZATION

PROBLEM

Our goal is to infer the matrix M1 at any given time, which

affects the potential service allocation and delays leading to

possible damages from an incident. When disasters occur, they

result in several types of damage such as loss of human lives

and property losses. We formally divide the damage into two

types after a disaster occurrence - avoidable damage (DA)
and unavoidable damage (DU ). Avoidable damage refers to

the losses that occur due to the unavailability of emergency

resources whereas unavoidable damage refers to the losses due

to the disaster that cannot be controlled. The total damage D
can be computed as the summation of avoidable and unavoid-

able damage. When all the required emergency services are

available at the time of disaster, then the total damage is equal

to the unavoidable damage.

In this work, we assume that the avoidable damage DAq

at a region Rq increases with the time lag between first

incident reporting and corresponding service allocation at an

exponential rate, and define it as:

DAq
(ΔTq) = α exp(−λΔTq) (2)

where α and λ represent the model parameters that are

assumed available from historical records or previous disaster

reports, and the number of information sources. If T represents

the current time and T init
q the first incident reporting time, then

ΔTq = T − T init
q .

As new information sources are available with time, these

parameters will be updated based on any new information. It

can be assumed that the severity of the disaster in a region

is proportional to the number of distinct information sources.
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The exponential function used here is similar to that used in

survival analysis [21].
We consider the two service resource types (Sa, a=1,2) in

this work as ambulances (S1) for medical-related incidents and

fire trucks (S2) for non-medical related incident needs. Let

f and g represent the number of fire trucks and ambulances

available for service. The individual fire trucks and ambulances

are represented as Si
1, i = 1, 2...f and Sj

2, j = 1, 2...g
respectively.

The resources are required for dispatching to the regions

wherever their services are the most needed at time Tm. This

is achieved by solving the following optimization problem for

the minimum utility as:

Minimize

E
[(∑

a

∑
i

∑
b

∑
q

wSi
a
× P (Rq, Eb, S

i
a)×DAq

(ΔTq)
)
+

(∑
a

∑
i

(1− wSi
a
)× C(Si

a, t
i
1)
)]

(3)

In the above optimization formulation, wSi
a

is a penalty

weight factor (0 or 1) for a resource type’s allocation decision.

Penalty factor is 1 for not allocating a resource Si
a to a region

Rq in which case, the expected demand likelihood (first part

of the utility objective) is a critical part contributing to the

overall cost. ΔTq refers to the time lag from the disaster

incident reporting to the service resource arrival in the region

Rq . The goal is to mobilize all available resources such that the

overall avoidable damage and the overall costs are minimized.

C(.) represents the cost associated with a resource movement.

It takes two inputs - the resource with its current location

and the estimated time a resource might take to reach and

provide services at a particular region. This time is equal to the

summation of remaining service time at the current location,

travel time to the new region, and the estimated service time at

a new region. Also, the incident severity level in the emergency

domain (such as Level 1 or Level 2 or Level 3, b=1,2,3) at a

region is often not known precisely and thus, each level can be

associated with a probability. To estimate the overall avoidable

damage, we sum over all incident levels.
Due to the presence of uncertainty in the travel and service

times, the overall cost function is also uncertain. Therefore,

we minimize the expectation value of the overall cost in the

proposed optimization objective (equation 3).

Optimization solution: We perform the optimization anal-

ysis at specific time instants (or the end of time intervals)

for inferring values of matrix M1. At the end of time interval

Tm, we update the matrices M2 and M3 for service and travel

times based on distance measures as well as incident likelihood

with resource types needed based on real-time information

sources. The control variables in the optimization formulation

are the discrete values which represent if a resource is dis-

patched to a particular region. The dispatch of a resource to a

particular region depends on the cost associated with the time

it requires to reach and serve at a particular region from the

current time T . We assume that real-time location tracking of

the emergency service resources is available to the response

agencies. Therefore, after providing the necessary assistance

at a particular location, the emergency service resources can

be routed to a different location from the previous location

without having to come back to the central station in the

auxiliary region. However, in some cases such as ambulances,

they cannot go directly from one incident region to another

region, but may have to return to the hospitals to assist people

that require medical attention. Thus, the travel time from the

auxiliary region of a resource to an incident region includes

the travel time from a previous region to the hospital and from

the hospital to the new region.

As mentioned above, the optimization analysis will be

carried out sequentially at subsequent time intervals (which

can be equally spaced). Let Tm,m = 1, 2...U represent the

U time instants when the optimization analysis is carried out.

Therefore, Tm − Tm−1 = Tm+1 − Tm and we also refer a

time interval by its last time instant, e.g., Tm and Tm+1 in the

previous example. As the probability of resource requirement

in a region (P (Rq, Eb, Sa)) changes with time, we represent

that probability at any given time as P (Rq, Eb, Sa)T , where

the subscript represents real time. At any last time instant

of a time interval Tm, when the optimization is carried out,

we calculate the P (Rq, Eb, Sa)Tm
using the probability at the

previous time step when the optimization was carried out, i.e.,

Tm−1 as well as all the new information that was obtained in

the time interval, {Tm−1, Tm}. Thus, the optimization anal-

ysis results into UCGTm state that represents the structured

summarization of the dynamic disaster context over time.

IV. CONCLUSIONS AND FUTURE WORK

This paper is a position statement paper where we reviewed

the existing literature regarding summarization analysis of

social web and identified the potential issues with respect to

using the existing methods in emergency response context.

We presented a novel approach of Uncertain Concept Graph

(UCG) to summarize heterogeneous data streams during a

disaster event, by efficiently representing the knowledge of

dynamic situation and inferring probabilistic relationships be-

tween the key concepts of regions, resources, and sources.

We modeled a UCG via a probabilistic graph framework

and formulated a service/resource need and allocation at a

region on a given time trajectory using a novel optimization

problem formulation. An immediate future work of interest is

the demonstration of the proposed framework for real-world

disaster events. To this end, we will experiment with the social

media and Web data collected during the events of recent

hurricane season of 2017.
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