
Towards a Generic Computation Model for
Smart City Platforms

Subhav Pradhan, Abhishek Dubey, Sandeep Neema, and Aniruddha Gokhale
Institute for Software Integrated Systems, Department of EECS

Vanderbilt University, Nashville, TN, USA
Email:{subhav.m.pradhan, abhishek.dubey, sandeep.neema, a.gokhale}@vanderbilt.edu

Abstract—Smart emergency response systems, smart trans-
portation systems, smart parking spaces are some examples
of multi-domain smart city systems that require large-scale,
open platforms for integration and execution. These platforms
illustrate high degree of heterogeneity. In this paper, we focus
on software heterogeneity arising from different types of ap-
plications. The source of variability among applications stems
from (a) timing requirements, (b) rate and volume of data they
interact with, and (c) behavior depending on whether they are
stateful or stateless. These variations result in applications with
different computation models. However, a smart city system can
comprise multi-domain applications with different types and
therefore computation models. As such, a key challenge that
arises is that of integration; we require some mechanism to
facilitate integration and interaction between applications that
use different computation models. In this paper, we first identify
computation models based on different application types. Second,
we present a generic computation model and explain how it
can map to previously identified computation models. Finally,
we briefly describe how the generic computation model fits in
our overall smart city platform architecture.

Index Terms—Generic computation model, Dataflow graph,
Smart city platform

I. INTRODUCTION

Smart cities promise to enrich the lives of residents by
providing better services while also empowering them to
make efficient and informed decisions. Implementing smart
cities requires large-scale platforms that facilitate collaboration
between multi-domain systems, such as Electric Grid, Water
Supply, Transportation Networks, Emergency Services, etc.
We call these platforms smart city platforms and define them
as loosely connected, multi-domain platforms that “virtualize"
their heterogeneous resources to provide open platforms capa-
ble of simultaneously hosting multiple smart city systems.

In general, smart city systems are designed to collect data,
process collected data, transmit data, and analyze data. In
the context of smart city systems, data collection usually
happens at the edge because that is where edge devices with
sensors are deployed to monitor surrounding environments.
Edge devices are getting more sophisticated as they have
more computational resources, better battery life, and they are
equipped with actuators allowing them to not only sense but
interact with their surrounding environment. This aspect of
smart city systems is cyber-physical in nature. Therefore, we
need to view smart city platforms as Cyber-Physical Systems

(CPS). Concepts similar to smart city platforms have been
previously referred to as next generation CPS [1], large-scale
CPS [2], and extensible CPS [3].

Unlike data collection, processing and analyzing data are
resource intensive tasks that usually cannot be executed on
resource-constrained edge nodes. In traditional large-scale
CPS, this problem was solved using backend resources owned
and maintained in-house [2]. This results in isolated islands
of domain-specific platforms that incur significant construc-
tion and maintenance costs. Furthermore, integration across
platforms becomes a very challenging task. Another approach
to solving this issue is to take advantage of cloud comput-
ing technology resulting in a complex computing paradigm
that involves deploying different kinds of applications on
different kinds of resources. Resources can be provided by
edge nodes, cloudlets and mobile clouds, private clouds, or
public clouds. Applications deployed on edge nodes incur
minimal, if any, network latency since they are close to the
source of data. Whereas, applications deployed on public cloud
resources incur significant network latency as they use remote
computational resources that can be located far from their
corresponding sources (e.g.,edge nodes with related sensors)
and they require sensor data to be transmitted from different
sources.

The possibility of different application types is a source
of software heterogeneity in smart city platforms. Applica-
tions can be of different types due to varying (a) timing
requirements, as they might need real-time, near real-time,
or non real-time responsiveness, (b) rate and volume of data
they interact with, and (c) behavior, as they can be stateful
or stateless (i.e., functional). Different application types can
result in different computation and communication patterns.
For example, a cyber-physical application that interacts with
a physical environment via sensors and actuators requires
as close to real-time responsiveness as possible since they
need to react to real-time streams of sensor stimuli and
control appropriate actuators [4]. This kind of application
is usually implemented as a closed loop control application
and deployed as close as possible to the target environment.
In comparison, a long running, computation heavy, big-data
application is usually implemented using some notion of a
computation graph supported by existing dataflow engines
such as Storm [5], Spark [6], or TensorFlow [7].
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tation patterns, realizing smart city platforms requires us to
devise solutions that facilitate integration of and interaction
between applications with varying computation models. In this
paper, we present a generic computation model to address this
problem. We first identify common computation patterns, and
then we describe our generic computation model in detail, and
finally show how this computation model fits within our smart
city platform called Cyber-pHysical Application aRchItecture
with Objective-based re-configuraTion (CHARIOT).

The rest of this paper is organized as follows: Section II
briefly describes a smart city platform architecture; Section III
presents different challenges; Section IV describes our contri-
butions in detail; Section V compares our work with related
literature; Finally, Section VI provides concluding remarks
alluding to future work.

II. SMART CITY PLATFORM ARCHITECTURE

Realizing smart city platforms requires distributed archi-
tectures that allow us to view CPS from a collaborative
perspective, where it is important to utilize advancement in
other computing paradigms such as cloud computing to realize
a complex and heterogeneous architecture. Below, we describe
one such architecture by first presenting a resource model.
Second, we present different types of applications that can
be deployed on smart city platforms and we identify existing
computation patterns that are used for these applications.

A. Resource Model

The physical computing infrastructure available to smart
parking systems comprises computation and communication
resources. Computation resources include hardware facilities
required to execute computation tasks, wheres, communication
resources represent facilitates required for interaction between
tasks executing on different computation nodes. This includes
communication bandwidth, latency, network topology, and
available security measures.

In order to represent collection of above described re-
sources, we introduce the concepts of computing groups (CG)
and computing group collections (CGC). A CG is a collection
of physical computing nodes that share a common communi-
cation network that can be thought of as a subnet. Similarly,
a CGC is a collection of one or more computing groups.
Any two CGs of a CGC can have a virtual link between
them. Presence of a virtual link indicates that entities of the
associated CGs can communicate with each other via their
corresponding gateway nodes. Different CGs of a CGC can
be classified into categories, such that each CG belongs to a
category and multiple CGs can belong to the same category.

Given these abstract notions of resource collection, we can
easily represent resources provided by a smart city platform
as CGCs. To better describe these concepts, in Figure 1 we
present a smart city platform that consists of a single CGC
comprising four different CGs (a) smart home, (b) smart grid,
(c) micro data center and cloudlets, and (d) public cloud. These
CGs are divided into three categories described below:

Fig. 1: A smart city platform comprising a single computing group collection
composed of four different computing groups of three different categories (a)
edge category, (b) cloudlet category, and (c) cloud category.

• Edge category: In this category nodes are resource-
constraint and they are usually deployed in or close to
the target physical environment. Further, edge nodes are
generally equipped with sensors and actuators to monitor
and control their physical environment. As such, edge
nodes are ideal for deploying cyber-physical applications
that need to interact with the physical environment in
real-time using available sensors and/or actuators. Smart
home and smart grid are examples of this category.

• Cloudlets category: This category comprises nodes with
more computing and storage resources than edge nodes.
Unlike public clouds with data centers located in differ-
ent geographic regions, cloudlets comprise of resources
located in specific regions of interest resulting in less
communication latency between these resources and edge
nodes [8]. Connectivity between edge nodes and cloudlets
can span from best-effort, internet-type connectivity over
low-latency Local Area Networks (LANs) to real-time in-
dustrial Ethernet or field busses. As such, these resources
can be used to host (soft) real-time applications.

• Cloud category: In this category nodes are highly re-
sourceful and resources can be scaled up or down as
modern cloud infrastructures support on-demand elastic-
ity. Data centers that provide these resources are usually
located far from edge nodes, as such, the communication
latency between these resources and edge nodes are
comparatively higher than that between cloudlets and
edge nodes. Therefore, this category is well-suited to
host long-running computation intensive tasks that do
not require real-time responsiveness. Example of this
category are various public cloud service providers.



B. Application Types and Existing Computation Patterns

Smart city platforms can hosts different applications. In
some cases, these applications are deployed on resources of
same computing group, while in other cases, applications
are deployed on resources of different computing groups.
For the former, consider a smart home application that uses
temperature monitors to check indoor temperature and control
available thermostats accordingly. For the latter, consider a
smart grid application, where different sensor applications are
deployed on resources of edge category and short-term anal-
ysis and planning applications are deployed on resources of
cloudlet category. Finally, a long running evaluation and design
application can also be part of the smart grid application; this
application will be resource intensive, and therefore, is well-
suited to run on resources of cloud category.

Fig. 2: Different types of applications based on resource requirement, timing
requirement, criticality, and scale.

Applications can be of different kinds. One way of differen-
tiating applications is by determining their properties using key
characteristics such as resource requirement, timing require-
ment, criticality, and scale. As shown in Figure 2, we use these
characteristics to introduce three different application types
(a) control applications, (b) near real-time applications, and
(c) non real-time applications. Control applications are those
applications that are cyber-physical in nature and by default
are critical and require real-time responsiveness. These are
low latency applications. Fire detection application in smart
homes, and traffic control application in smart transportation
are some examples of control applications.

Near real-time applications are those applications that rely
on best-effort responsiveness. These applications are medium
latency applications that aren’t very critical, therefore, these
applications do not have strong real-time requirement. Short-
term traffic analysis and prediction application, and smart
home energy consumption analysis and prediction application
are some examples of near real-time applications. Finally,
non real-time applications are those applications that are not
critical and do not require real-time responsiveness. However,
these applications are usually large-scale, long running, com-
putation intensive tasks.

Depending on the above-described application types, corre-
sponding applications can have varying computation patterns
resulting in challenges described in Section III. Below we
identify relevant exiting computation patterns/models for smart
city platforms:

• Time-driven component assembly: This pattern in-
volves designing applications as composition of interact-
ing components [9] based on an underlying component
model that focuses on assuring domain requirements,
which includes non-functional properties such as timeli-
ness. Examples of such component models have been pre-
sented in [10]. In this pattern, the computation logic itself
is executed either periodically, depending on available
timers, or reactively depending on external events, such
as message arrival at a component’s port. This pattern can
be used by control applications.

• Batch processing: In this pattern, computations are per-
formed in batches, i.e., a collection of non-interactive jobs
are executed all at once. This pattern becomes useful in
scenarios where high volume data acquisition happens
over a period of time. Once data is acquired and stored, it
can be processed in batches to obtain computation results.
MapReduce [11] is a popular batch processing paradigm.
Spark [6] framework, at its core, also supports batch
processing, but it also has support for stream processing.
TensorFlow [7] is a machine learning related data flow
engine that uses batch processing concepts. This pattern
can be used by non real-time applications as it cannot
support real-time data processing.

• Stream processing: This pattern involves processing
data in real-time or near/soft real-time. Unlike batch
processing, real-time data acquired is not stored for future
processing in this pattern. Rather, real-time stream of data
is continually fed as input, which is then processed to
generate output. What this means is that computations
always happen on real-time data as it flows through a
system. Storm [5] is an example of a popular stream
processing framework. The Spark framework can also be
used for stream processing. S4 [12] is another solution
that can be used for stream processing. This pattern can
be used by near real-time applications.

III. CHALLENGES

Smart city platforms can host different smart city systems
simultaneously. These systems are multi-domain; as such, they
can be composed of different types of applications. Therefore,
a smart city platform requires some mechanism that facilitates
collaboration between applications of different types. In order
to devise any such mechanism, we need to be able to address
the following challenges:

• We need to be able to design and develop applications
without having to worry about differences in their type.
To resolve this challenge we need an abstraction that
allows us to view all applications as the same so that
we can model their compositions and interactions. This
also allows us to better reason about a system as a whole.



This is the challenge we are addressing in this paper by
designing an abstract and generic computation model that
can be used to construct systems with varying application
types and computation patterns.

• We need to be able to manage heterogeneous applications.
Regardless of what an application’s type is, we require
some mechanism that is capable of initial deployment and
any runtime reconfiguration required for it to be resilient.
Resilience implies the ability to either tolerate failures or
recover from them quickly without impacting top-level
functionalities. Our initial work towards resolving this
challenge is presented in [13], [14].

• Since smart city platforms are cyber-physical in nature,
we need to be able to reason about Quality-of-Service
(QoS) of different applications. Also, we need to make
sure that the desired QoS of different applications are met
throughout their lifetime. An important QoS parameter is
deadline; it is of utmost importance to make sure appli-
cations with real-time requirements meet their deadline.

IV. CONTRIBUTIONS

In this section, we present our current effort towards achiev-
ing a generic computation model that fits into CHARIOT, our
existing platform for smart city systems. First, we describe our
computation model in detail. Second, we show how our com-
putation model fits into the existing CHARIOT architecture.

A. CHARIOT Computation Model

A multi-domain smart city system can comprise applications
with varying types resulting in a need for some mechanism to
facilitate composition and interaction between the computation
patterns identified in Section II-B. To generalize the different
computation patterns, the CHARIOT component model repre-
sents distributed computations to be a computation graph that
results in a data flow network. This approach aligns well with
existing data processing engines – such as Storm, Spark, S4,
and TensorFlow – as these technologies also rely on some form
of a computation graph. For example, in the case of Storm,
topologies are used to define computation graphs that comprise
spouts, which represent streams of data sources, and bolts,
which represents data processing. Edges between nodes of a
topology represent data flow. Similarly, in the case of Spark,
an application is first divided into jobs, which are then broken
down to computation graphs composed of task stages. Edges
between task stages represents a data flow. S4’s computation
graphs are composed of nodes called Processing Elements
and edges called Streams. Finally, TensorFlow’s computation
graphs are composed of nodes, which can be ops (operational)
or source ops, and edges between these nodes are represented
by the concept of tensors, which are typed multi-dimensional
arrays.

In order for a generic computation pattern based on data
flow graphs to work, we need to make sure that it is something
that we can use for edge applications as well. Traditionally,
these real-time, edge applications have been designed using

Fig. 3: Overview of the CHARIOT computation model.

Fig. 4: Computation graph for applications in Figure 3.

time-driven component assembly II-B, but they can be de-
signed using a data flow graph approach as well; nodes can
represent computations, whereas, edges can represent events
or dataflow. An added advantage of this approach is that the
computation model can easily support a generic reactive model
whereby events can be separated from related computations.
This is not necessarily the case with existing component
models that have tight coupling between events (specially ex-
ternal message related event) and corresponding computation
logic. This is mainly because existing computation models are
designed to work with a specific communication middleware.

Figure 3 presents an overview of the CHARIOT com-
putation model. Each application is composed of one or
more components, where each component can contain one
or more tasklets. In Figure 3, we assume a scenario where
applications always contain a single component, as such, an
application becomes synonymous to a software component.
Tasklets represent computation nodes and edges between
tasklets represent dataflow. Tasklets can be both stateful or
stateless (functional). Depending on how a computation graph
is deployed, a dataflow between tasklets deployed on different
physical nodes require some mechanism that facilitates remote
communication. For this very purpose, there exists different
communication middleware. In order to support various mid-
dleware, CHARIOT implements transport objects. A transport
object is specific to a particular middleware but all transport
objects expose standard interfaces that can be used by tasklets
to send and/or receive messages. This approach yields a
middleware agnostic solution, which at its very core relies
on generic data types [3].

A tasklet can also have edges that connect it to an event
source and/or data source. An example of an event source is a



Fig. 5: CHARIOT architecture overview.

timer, which periodically fires a timer event, or an application
lifecycle manager, which fires lifecycle events (application
start, pause, etc.). Sensors are an example of data source. Data
files stored in a filesystem can be another data source. Figure 4
presents a computation graph corresponding to Figure 3.

The above-described computation model is generic and
can be easily mapped to existing computation patterns. In
the case of the time-driven component assembly pattern,
existing component business logic can be written in terms of
tasklets, event sources can be used to capture timer events,
data sources can be used to capture various sensors, and
any actuation related logic can also be written in terms of
tasklets. Furthermore, CHARIOT transport object provides an
excellent mechanism to enforce clean separation-of-concerns
between computation and communication logic, which results
in middleware agnostic applications.

Similarly, in the case of batch processing and stream pro-
cessing patterns, the CHARIOT computation model readily
maps to existing dataflow engines such as Spark, Storm, S4,
and TensorFlow. Tasklets can be mapped to computation nodes
of each engine, data source can be mapped to different imple-
mentation of source nodes, and edges will always represent
dataflow. Event sources, however, do not easily map to these
dataflow engines. But we can argue that event sources are
mainly relevant only for time-driven component assembly
pattern where periodic timers are used. Any middleware used
by these dataflow engines can be supported in CHARIOT
via transport objects. For example, a transport object can be
implemented for Kafka [15] so that it can be used with Storm.

B. Overall CHARIOT Architecture

The CHARIOT computation model is part of the CHARIOT
platform. Figure 5 shows how this computation model fits into
the overall CHARIOT architecture. As shown in the Figure,
there are two kinds of nodes (a) edge node, and (b) compute
node. Edge nodes are same as that of the smart city platform
presented in Section II-A. Compute nodes are resourceful

nodes that, unlike edge nodes, are not equipped with sensors
and/or actuator devices.

Both kinds of nodes can host platform services; they are
long running system services, such as application management
service, failure monitoring service, runtime reconfiguration
management service, etc. Also, as shown in Figure 5, both
edge and compute nodes can host multiple middleware and ap-
plications (CHARIOT App). Applications, as described before,
are composed of one or more tasklets and use transport object
to interact with available middleware solutions (see Figure 3).

V. RELATED WORK

Our work presented in this paper can be compared to
existing dataflow engines [5], [6], [12]. All of these existing
dataflow engines use some form of a computation graph com-
prising computation nodes and dataflow edges. These engines
are designed for batch-processing and/or stream-processing
high volumes of data in resource intensive nodes. As such
they might not be well-suited for resource-constrained edge
nodes. Furthermore, these engines, unlike our solution, do not
have flexible architectures to use different middleware solution
for communication. Again, this might not be crucial if these
engines are used in isolation but interaction with edge devices
requires possible support for other middleware as well. Finally,
another advantage of our approach is that our computation
model can be easily mapped to any of the aforementioned
dataflow engines.

TensorFlow [7] is another dataflow engine, but it is mainly
directed towards machine learning. Real-time data processing
is not supported, as it is mainly a batch processing engine.
As with other dataflow engines, our computation model can
be mapped to TensorFlow. This capability will be useful as
machine learning can play a critical role in large-scale data
processing and quality modeling.

FIWARE [16] is a an open platform that integrates the cloud
computing paradigm with the concept of Generic Enablers
(GE), allowing GEs to interact with the cloud. GEs are het-
erogeneous architectural components that comprise a FIWARE



platform. The main idea here is to support a variety of GEs
that can be reused for different purposes by different applica-
tions. FIWARE has been previously used to build smart city
systems. For example, in [17] the authors present a FIWARE
infrastructure for smart home application. There is no specific
computation model per say in FIRWARE but by implementing
appropriate GEs and adapters, FIWARE could possibly be used
to integrate applications with varying computation patterns.

VI. CONCLUSIONS AND FUTURE WORK

Smart city platforms are open and extensible cyber-physical
platforms that are required for execution and integration of
different smart city applications. These are city-scale dis-
tributed platforms that will more than likely consist of physical
resources with distributed ownership. This will result in highly
heterogeneous platforms. This paper specifically focuses on
heterogeneity arising from varying application types and as-
sociated computation models. Realizing smart city systems
requires interaction and collaboration between different types
of applications, which necessitates interaction between associ-
ated component models. To solve this issue, in this paper, we
present the CHARIOT computation model, which is a generic
computation model based on dataflow graphs.

We claim that the CHARIOT computation model is generic
because (a) it can be used to model time-driven component
assemblies for real-time applications, and (b) it can be mapped
to the computation model of existing dataflow engines related
to both batch and stream processing patterns. Therefore, our
computation model covers all three different application types
that we think are relevant for smart city systems. In this paper,
we also show how the CHARIOT computation model fits into
the overall middleware-agnostic CHARIOT platform.

This paper mainly describes our ongoing research. We are
striving to achieve the following research goals in near future:

• Modifying existing CHARIOT Domain Specific Lan-
guage (DSL) [3] to allow modeling of applications using
CHARIOT computation model.

• Design, develop, deploy and evaluate end-to-end smart
city systems to verify the CHARIOT platform architec-
ture.
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