Designing a Resilient Deployment
and Reconfiguration Infrastructure
for Remotely Managed Cyber-Physical Systems

Subhav Pradhan®™) Abhishek Dubey, and Aniruddha Gokhale

Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA
{subhav.m.pradhan,abhishek.dubey,a.gokhale}@vanderbilt.edu

Abstract. Multi-module Cyber-Physical Systems (CPS), such as satel-
lite clusters, swarms of Unmanned Aerial Vehicles (UAV), and fleets
of Unmanned Underwater Vehicles (UUV) provide a CPS cluster-as-
a-service for CPS applications. The distributed and remote nature of
these systems often necessitates the use of Deployment and Configura-
tion (D&C) services to manage the lifecycle of these applications. Fluctu-
ating resources, volatile cluster membership and changing environmental
conditions necessitate resilience. Thus, the D&C infrastructure does not
only have to undertake basic management actions, such as activation of
new applications and deactivation of existing applications, but also has
to autonomously reconfigure existing applications to mitigate failures
including D&C infrastructure failures. This paper describes the design
and architectural considerations to realize such a D&C infrastructure for
component-based distributed systems. Experimental results demonstrat-
ing the autonomous resilience capabilities are presented.

Keywords: Self-reconfiguration - Autonomous resilience + Deployment
and reconfiguration + Component-based distributed systems

1 Introduction

Cyber-Physical Systems (CPS) are a class of distributed, real-time and embed-
ded systems that tightly integrate the cyber dimension with the physical dimen-
sion whereby the physical system and its constraints control the way the cyber
infrastructure operates and in turn the latter controls the physical objects [10].
Fractionated spacecraft, swarms of Unmanned Aerial Vehicles (UAVs), and
fleets of Unmanned Underwater Vehicles (UUVs), represent a new class of
highly dynamic, cluster-based, distributed CPS. These systems often operate
in unwieldy environments where resources are very limited, the dynamic nature
of the system results in ever-changing cluster properties, such as membership,
failures and fluctuation in resource availability is common, and human interven-
tion to address these problems is rarely feasible.

© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 838-104, 2016.
DOI: 10.1007/978-3-319-45892-2_7

Designing a Resilient Deployment and Reconfiguration Infrastructure 89

Resilience is thus a key requirement for such cyber physical systems. A
resilient system is defined as a system that is capable of maintaining and recover-
ing its functionality when faced with failures and anomalies. Since human inter-
vention is extremely limited resilience should be autonomous. As such, resilience
can be provided either by using redundancy or by using a self-reconfiguration
(self-adaptation) mechanism. In this paper, we are concerned with the self-
reconfiguration aspect. The goal is to achieve a self-adaptive system [20] for
which following requirements must be met:

— Requirement 1: an adaptation capability that can maintain and recover the
system’s functionality by adapting applications hosted on the system.

— Requirement 2: the adaptation capability itself should be resilient such that
any failure or anomaly does not effect the adaptability of the overall system.

We are concerned with those CPS where the cyber functionalities are imple-
mented using the Component-Based Software Engineering (CBSE) [8] approach,
where applications are realized by composing, deploying and configuring software
components with well-defined interaction ports. A number of different component
models (providing the interaction and execution semantics for the components)
exist: Fractal [3], CORBA Component Model (CCM) [14], LwCCM [13] etc. Simi-
larly, there exists different Deployment and Configuration (D&C) infrastructures
that are compatible with different component modes.

Since the D&C capability is a key artifact of any component-based system, we
surmise that resilience can be improved by enhancing the D&C infrastructure so
that it can provide the adaptation capability. This means the D&C infrastructure
should not only be able to manage the lifecycle of applications, it should also
be able to reconfigure existing applications and do so in a resilient manner [19].
However, existing D&C infrastructures do not support both these requirements.
Either they are not capable of performing runtime reconfiguration [5,7,16,17]
or others that are capable of performing runtime reconfiguration are themselves
not resilient [1,2].

This paper overcomes limitations of existing solutions by presenting a novel
and resilient D&C infrastructure that satisfies both the aforementioned require-
ments. In doing so, we make the following contributions:

— We present the key challenges in achieving a resilient D&C infrastructure.

— We present an architecture for a resilient D&C infrastructure that addresses
these key challenges.

— We present experimental results to demonstrate application adaptability of
our new D&C infrastructure.

The remainder of this paper is organized as follows: Sect. 2 presents existing
work related to this paper and explains how our approach is different; Sect. 3
describes the target system model, D&C model, and fault model to present the
problem at hand; Sect. 4 presents the key challenges that needs to be addressed in
order to achieve a resilient D&C infrastructure; Sect. 5 presents detailed descrip-
tion of our solution and how it addresses aforementioned challenges; Sect.6

90 S. Pradhan et al.

presents experimental results; finally, Sect.7 provides concluding remarks and
alludes to future work.

2 Related Work

Deployment and configuration of component-based software is a well-researched
field with existing works primarily focusing on D&C infrastructure for grid
computing and Distributed Real-time Embedded (DRE) systems. Both Deploy-
Ware [7] and GoDIET [5] are general-purpose deployment frameworks targeted
towards deploying large-scale, hierarchically composed, Fractal [3] component
model-based applications in a grid environment. However, both of these deploy-
ment frameworks are not resilient and they lack support for application reconfig-
uration. As such, they do not satisfy the two requirements essential for realizing
autonomous resilience.

The Object Management Group (OMG) has standardized the Deployment
and Configuration (D&C) specification [15]. Our prior work on the Deployment
And Configuration Engine (DAnCE) [17] describes a concrete realization of
the OMG D&C specification for the Lightweight CORBA Component Model
(LwCCM) [13]. LE-DAnCE [17] and F6 DeploymentManager [6] are some of our
other previous works that extend the OMG’s D&C specification. LE-DAnCE
deploys and configures components based on the Lightweight CORBA Compo-
nent Model [13] whereas the F6 Deployment Manager does the same for compo-
nents based on F6-COM component model [16]. The F6 Deployment Manager,
in particular, focused on the deployment of real-time component-based applica-
tions in highly dynamic DRE systems, such as fractionated spacecraft. However,
similar to the work mentioned above, these infrastructures also lack support for
application adaptation and D&C infrastructure resilience.

A significant amount of research exists in the field of dynamic reconfiguration
of component-based applications. In [2], the authors present a tool called Planit
for deployment and reconfiguration of component-based applications. Planit uses
Al-based planner to come up with application deployment plan for both - ini-
tial deployment, and subsequent dynamic reconfigurations. Planit is based on a
sense-plan-act model for fault detection, diagnosis and reconfiguration to recover
from failures. Another work presented in [1], supports dynamic reconfiguration
of applications based on J2EE components. Although these solutions support
application reconfiguration, none of them focus on resilience of their respective
adaptation engine.

The authors in [4] present the DEECo (Distributed Emergent Ensembles
of Components) component model, which is based on the concept of Ensemble-
Based Component System (EBCS). In general, this approach replaces traditional
explicit component architecture by the composition of components into ensem-
bles. An ensemble is an implicit, inherently dynamic group of components where
each component is an autonomic entity facilitating self-adaptive and resilient
operation. In [9], authors present a formal foundation for ensemble modeling.
However, they do not focus on the management infrastructure required to deploy
and reconfigure these components.

Designing a Resilient Deployment and Reconfiguration Infrastructure 91

3 Problem Description

This section describes the problem at hand by first presenting the target system
model. Second, we present the Deployment and Configuration (D&C) model.
Third, we present the fault model related to system model. Finally, we describe
the problem of self-adaptation in the context of the D&C infrastructure.

3.1 System Model

The work described in this paper assumes a distributed CPS consisting of mul-
tiple interconnected computing nodes that host distributed applications. For
example, we consider a distributed system of fractionated spacecraft [6] that
hosts mission-critical component-based applications with mixed criticality levels
and security requirements. Fractionated spacecraft represents a highly dynamic
CPS because it is a distributed system composed of nodes (individual satel-
lites) that can join and leave a cluster at any time resulting in wolatile group
membership characteristics.

A distributed application in our system model is a graph of software com-
ponents that are partitioned into processes' and hosted within a “component”
server. This graph is then mapped to interconnected computing nodes. The
interaction relationship between the components are defined using established
interaction patterns such as (a) synchronous and asynchronous remote method
invocation, and (b) group-based publish-subscribe communication.

3.2 Deployment and Configuration Model

To deploy distributed component-based applications? onto a target environ-

ment, the system needs to provide a software deployment service. A Deployment
and Configuration (D&C) infrastructure serves this purpose; it is responsible
for instantiating application components on individual nodes, configuring their
interactions, and then managing their lifecycle. The D&C infrastructure should
be viewed as a distributed infrastructure composed of multiple deployment enti-
ties, with one entity residing on each node.

OMG’s D&C specification [15] is a standard for deployment and configura-
tion of component-based applications. Our prior work on the Locality-Enabled
Deployment And Configuration Engine (LE-DAnCE) [17] is an open-source
implementation of this specification. As shown in Fig. 1, LE-DAnCE implements
a strict two-layered approach comprising different kinds of Deployment Managers
(DM). A DM is a deployment entity. The Cluster Deployment Manager (CDM)
is the single orchestrator that controls cluster-wide deployment process by co-
ordinating deployment among different Node Deployment Managers (NDM).

! Components hosted within a process are located within the same address space.
2 Although we use the component model described in [13], our work is not constrained
by this choice and can be applied to other component models as well.

92 S. Pradhan et al.

/ Cluster

o

Deployment §

Manager o

®

(]

w

T

l 3

w [~
Q Node Node \[eel] g
g Deployment Deployment [[NSSSNESNNNNN Deployment 2
u Manager Manager Manager m

Component Server
(LocalityManager)

Component Server
(LocalityManager)

Component Server
(LocalityManager)

/I

Fig. 1. Orchestrated deployment approach in LE-DAnCE [17]

Similarly, a NDM controls node-specific deployment process by instantiating
component servers that create and manage application components.

LE-DAnCE, however, is not resilient and it does not support run-time appli-
cation adaptation as well. Therefore, our work presented in this paper modifies
and extends LE-DAnCE to achieve a D&C infrastructure capable of facilitating
autonomous resilience.

3.3 Fault Model

Failure can be defined as a loss of functionality in a system. The goal of a
resilient system is to ensure that subsystem or component-level faults do not
lead to loss of system functionality, i.e. a failure, for an unacceptable length of
time. The system is expected to recover from a failure, and the threshold on time
to recovery is typically a requirement on the system. Recovering from failures
involves adapting the failed subsystem such that its functionality is restored. For
example, in software intensive systems this process primarily involves adaptation
of applications that are deployed in the failed subsystem.

In the systems under consideration, we observe that subsystem failures can
be categorized as infrastructure or application failures. Infrastructure failures are
failures that arise due to faults affecting a system’s network, participating nodes,
or processes that are running in these nodes. Usually, infrastructure failures
can be classified as primary failures. Whereas, application failures are failures
pertaining to the application itself. We assume that application components
have been thoroughly tested before deployment and therefore classify application
failures as secondary failures caused due to infrastructure failures.

3.4 Problem Statement

For the prescribed system and fault model, the D&C infrastructure should, first
and foremost, be capable of dealing with infrastructure failures. Conceptually, a

Designing a Resilient Deployment and Reconfiguration Infrastructure 93

Desired|behavior Disturbances|(Faults)

ContrO”er

Observed behavior
(Sensing)

Control commands
(Actuation)

Fig. 2. Self-adaptive system as a control system

resilient infrastructure can be modeled as a resilient feedback control loop that
observes the system state and compensates for disturbances in the system to
achieve a desired behavior as shown in Fig. 2.

To find similarities with the traditional self-adaptive loop and the system
under discussion, consider that a failure in the infrastructure can be consid-
ered as a disturbance. This failure can be detected by behavior such as “node
is responding to pings” (indicating there is infrastructure failure) or not. Once
the failure has been detected, the loss of functionality needs to be restored by
facilitating reconfiguration, for example, re-allocating components to a function-
ing node, etc.; this needs to be done in a resilient manner. The presence of the
controller and its actuation ability enables the self-adaptive property needed of
an autonomously resilient system.

4 Key Considerations and Challenges

To correctly provide resilient D&C services to a CPS cluster, the D&C infrastruc-
ture must resolve the challenges described below:

Challenge 1 (Distributed group membership): Recall that the CPS domain illus-
trates a highly dynamic environment in terms of resources that are available for
application deployment: nodes may leave unexpectedly as a result of a failure
or as part of a planned or unplanned partitioning of the cluster, and nodes may
also join the cluster as they recover from faults or are brought online. To pro-
vide resilient behavior, the DMs in the cluster must be aware of changes in group
membership, i.e., they must be able to detect when one of their peers has left
the group (either as a result of a fault or planned partitioning) and when new
peers join the cluster.

Challenge 2 (Leader election): As faults occur in CPS, a resilient system must
make definitive decisions about the nature of that fault and the best course of
action necessary to mitigate and recover from that fault. Since CPS clusters
often operate in mission- or safety-critical environments where delayed reaction
to faults can severely compromise the safety of the cluster, such decisions must be
made in a timely manner. In order to accommodate this requirement, the system
should always have a cluster leader that will be responsible for making decisions

94 S. Pradhan et al.

and performing other tasks that impact the entire cluster.? However, a node that
hosts the DM acting as the cluster leader can fail at any time; in this scenario,
the remaining DMs in the system should decide among themselves regarding the
identity of the new cluster leader. This process needs to be facilitated by a leader
election algorithm.

Challenge 3 (Deployment sequencing): Applications in CPS may be composed of
several cooperating components with complex internal dependencies that are dis-
tributed across several nodes. Deployment of such an application requires that
deployment activities across several nodes proceed in a synchronized manner.
For example, connections between two dependent components cannot be estab-
lished until both components have been successfully instantiated. Depending on
the application, some might require stronger sequencing semantics whereby all
components of the application need to be activated simultaneously.

Challenge 4 (D&C State Preservation): Nodes in a CPS may fail at any time
and for any reason; a D&C infrastructure capable of supporting such a clus-
ter must be able to reconstitute those portions of the distributed applica-
tion that were deployed on the failed node. Supporting resilience requires the
D&C infrastructure to keep track of the global system state, which consists of
(a) component-to-application mapping, (b) component-to-implementation map-
ping?, (¢) component-to-node mapping, (d) inter-component connection infor-
mation, (e) component state information, and (f) the current group membership
information. Such state preservation is particularly important for a new leader.

5 A Resilient D&C Infrastructure

Figure 3 presents an overview of our solution. Infrastructure failures are detected
using the Group Membership Monitor (GMM). Application failure detection is
outside the scope of this paper, however, we refer readers to our earlier work [11]
in this area. The controller is in fact a collection of DMs working together to
deploy and configure as well as reconfigure application components. The specific
actuation commands are redeployment actions taken by the DMs.

5.1 Solution Architecture

Figure 4 presents the architecture of our resilient D&C infrastructure. Each node
consists of a single Deployment Manager (DM). A collection of these DMs forms
the overall D&C infrastructure. Our approach supports distributed, peer-to-peer
application deployment, where each node controls its local deployment process.
Each DM spawns one or more Component Servers (CSs), which are processes
responsible for managing the lifecycle of application components. Note that our

3 Achieving a consensus-based agreement for each adaptation decision would likely be
inefficient and violate the real-time constraints of the cluster.
4 A component can have multiple implementations.

Designing a Resilient Deployment and Reconfiguration Infrastructure 95

Fr—————— — — — Managed System
| Infrastructure Failure|
Network (PrimaryFailure)
[| Failure | | Application |
| 'Failure Propagation | | Failure |
I
| Node | Process ‘l |V Component :
Failure "1 Failure [| Failure
————————— - S — |
Failure Detection Failure Mitigation'r

Adaptation Engine
________ > (Deployment

Monitor Manager)

Fig. 3. Overview of a resilient D&C infrastructure.

T T T T Hanlavment |
!- Deployment :

i Manager!
i- Component Serveri

Application

' L Sender Receiver

' Group Membership | . — —

T Monitor (Client) (Server)
Node 1 Noden

J_.

i

| c

spawns spawns

CS
LN

Distributed Data Space
(Pub/Sub m/w)

Fig. 4. Architecture of a resilience D&C infrastructure.

approach does not follow a centralized coordinator for deployment actions; rather
the DMs are independent and use a publish/subscribe middleware to communi-
cate with each other.

In our architecture, we use the GMM to maintain up-to-date group mem-
bership information, and to detect failures via a periodic heartbeat monitor-
ing mechanism. The failure detection aspect of GMM relies on two important
parameters — heartbeat period and failure monitoring period. These configurable
parameters allows us to control how often each DM asserts its liveliness and how
often each DM monitors failure. For a given failure monitoring period, a lower

96 S. Pradhan et al.

i [J Global Deployment Plan‘ _____ WorstCase Deployment Time
Deployment Manager i -

Component Actions ! :,
,, Starting State ! CREATE 20NN CONNECT
g 1 Bl COMPONENTS Ilgl COMPONENTS
Finishing State‘ &

Activating State i
Barner\ ,’ Publlsh Plan (2, P,)

Lo §Yn?hr9r'5a}!9n !

Publish_| Prow ed |_Service

b
CREATE \ CONNECT
COMPONENTS | COMPONENTS
:’X

/Load Plan

~ Publ|sh Plan (3, P3)
~o

\

Component(s) deployed by “ CREATE N CONNECT
DM, requires service(s) 7 COMPONENTS COMPONENTS

provided by component(s)

deployed in DM, |
ployec! z Actual Deployment Time |

Deployment
Plan

Fig.5. A three-node deployment and configuration setup

heartbeat period results in higher network traffic but lower failure detection
latency, whereas a higher heartbeat period results in lower network traffic but
higher failure detection latency. Tuning these parameters appropriately can also
enable the architecture to tolerate intermittent failures where a few heartbeats
are only missed for a few cycles and are established later. This can be done by
making the fault monitoring window much larger compared to the heartbeat
period. Addressing intermittent failures is out of scope for this paper.

Figureb shows an event diagram demonstrating a three node deployment
process of our new D&C infrastructure. An application deployment is initiated
by submitting a global deployment plan to one of the three DMs. This global
deployment plan contains information about different components (and their
implementation) that make up an application. It also contains information about
how different components should be connected. Once this global deployment plan
is received by a DM, that particular DM becomes the deployment leader for that
particular deployment plan. A deployment leader is only responsible for initiat-
ing the deployment process for a given deployment plan by analyzing the plan
and allocating deployment actions to other DMs in the system. The deploy-
ment leader is not responsible for other cluster-wide operations such as failure
maitigation; these cluster-wide operations are handled by a cluster leader. Two
different global deployment plans can be deployed by two different deployment
leaders since we do not require a centralized coordinator in our approach.

Deployment and configuration in our scheme is a multi-staged approach.
Table1 lists the different D&C stages in our approach. The INITIAL stage is
where a deployment plan gets submitted to a DM and ACTIVATED stage is
where the application components in the deployment plan is active. In the rest
of this section, we describe how information in this table is used in our solution
to address the key challenges.

Designing a Resilient Deployment and Reconfiguration Infrastructure 97

Table 1. D&C Stages

Stage Description

INITIAL (1) Global deployment plan is provided to one of the DMs

(2) DM that is provided with a global deployment plan becomes the
leader DM and loads that deployment plan and stores it in a
binary format

PREPARING | (1) Plan loaded in the previous stage is split into node-specific plans

and they are published to the distributed data space using

pub/sub middleware

(2) Node-specific plans published above are received by all DMs and
only the ones that are relevant are further split into component
server (CS)-specific plans

STARTING (1) CS-specific plans created in the previous stage are used to create
CSs (if required) and components

(2) For components that provide service via a facet, the DM will
publish its connection information so that other components that
require this service can connect to it using their receptacle. This
connection however is not established in this stage

(3) In this stage, barrier synchronization is performed to make sure
that no individual DMs can advance to the next stage before all
of the DMs have reached this point

FINISHING (1) Components created in the previous stage are connected (if
required). In order for this to happen, the components that

require a service use connection information provided in the
previous stage to make facet-receptacle connections

ACTIVATING | (1) Synchronization stage to make sure all components are created
and connected (if required) before activation

ACTIVATED | (1) Stage where a deployment plan is activated by activating all the
related components

(2) At this point all application components are running
TEARDOWN | (1) De-activation stage

5.2 Addressing Resilient D& C Challenges

Resolving Challenge 1 (Distributed Group Membership): To support distrib-
uted group membership, our solution requires a mechanism that allows detection
of joining members and leaving members. To that end our solution uses a dis-
covery mechanism to detect the former and a failure detection mechanism to
detect the latter as described below.

Discovery Mechanism: Since our solution approach relies on an underly-
ing pub/sub middleware, the discovery of nodes joining the cluster leverages
existing discovery services provided by the pub/sub middleware. To that end
we have used OpenDDS (http://www.opendds.org) — an open source pub/sub

http://www.opendds.org

98 S. Pradhan et al.

middleware that implements OMG’s Data Distribution Service (DDS) specifica-
tion [12]. To be more specific, we use the Real-Time Publish Subscribe (RTPS)
peer-to-peer discovery mechanism specified by DDS.

Failure Detection Mechanism: To detect the loss of existing members, we
need a failure detection mechanism that detects different kinds of failures. In our
architecture this functionality is provided by the GMM. The GMM residing on
each node uses a simple heartbeat-based protocol to detect DM (process) failure.
Recall that any node failure, including the ones caused due to network failure,
results in the failure of its DM. This means that our failure detection service uses
the same mechanism to detect all three different kinds of infrastructure failures.

Resolving Challenge 2 (Leader Election): Leader election is required in order to
tolerate cluster leader failure. We do this by implementing a rank-based leader
election algorithm. Each DM is assigned a unique numeric rank value and this
information is published by each DM as part of its heartbeat. Initially the DM
with the least rank will be picked as the cluster leader. If the cluster leader fails,
each of the other DMs in the cluster will check their group membership table
and determine if it is the new leader. Since, we associate a unique rank with
each DM, only one DM will be elected as the new leader.

Resolving Challenge 3 (Proper Sequencing of Deployment): Our D&C infra-
structure implements deployment synchronization using a distributed barrier
synchronization algorithm. This mechanism is specifically used during the
STARTING stage of the D&C process to make sure that all DMs are in the
STARTING stage before any of them can advance to the FINISHING stage.
This synchronization is performed to ensure that all connection information of
all the components that provide a service is published to the distributed data
space before components that require a service try to establish a connection. We
realize that this might be too strong of a requirement and therefore we intend to
further relax this requirement by making sure that only components that require
a service wait for synchronization. In addition, our current solution also uses bar-
rier synchronization in the ACTIVATING stage to make sure all DMs advance to
the ACTIVATED stage simultaneously. This particular synchronization ensures
the simultaneous activation of a distributed application.

Resolving Challenge 4 (D&C State Preservation): In our current implementa-
tion, once a deployment plan is split into node-specific deployment plans, all
of the DMs receive the node-specific deployment plans. Although any further
action on a node-specific deployment plan is only taken by a DM if that plan
belongs to the node in which the DM is deployed, all DMs store each and every
node-specific deployment plans in its memory. This ensures that deployment-
related information is replicated throughout a cluster thereby preventing single
point of failure. However, this approach is vulnerable to DM process failures since
deployment information is stored in memory. To resolve this issue, we are cur-

Designing a Resilient Deployment and Reconfiguration Infrastructure 99

rently working on extending our solution to use a persistent backend distributed
database to store deployment information.

6 Experimental Results

This section presents results to demonstrate the autonomous resilience capabil-
ities of our D&C infrastructure. We show how our resilient D&C infrastructure
adapts applications as well as itself after encountering a node failure during
deployment-time, and runtime.

6.1 Testbed

For all of our experiments, we used a multi-computing node cluster setup that
consisted of three nodes, each with a 1.6 GHz Atom N270 processor and 1 GB
of RAM. Each node runs vanilla Ubuntu server image 13.04 which uses Linux
kernel version 3.8.0-19.

The application we used for self-adaptability experiments presented in
Sects. 6.2 and 6.3 is a simple two-component client-server experiment presented
earlier in Fig.4. The Sender component (client) is initially deployed in node-1,
the Receiver component (server) is initially deployed in node-2, and node-3 has
nothing deployed on it. For both experiments, we consider node-2 to be the node
that fails. Furthermore, we configure our infrastructure with heartbeat period
set to 2s and failure monitoring period set to 5s.

6.2 Node Failure During Deployment-Time

Figure 6 presents a time sequence graph of how our D&C infrastructure adapts
itself to tolerate failures during deployment-time. As can be seen, node 2 and
therefore DM-2 fails at Event 5. Once the failure is detected by both DM-1 in
node-1 and DM-3 in node-3, DM-1 being the leader initiates the recovery process
(Event 6 - Event 7). During this time, DM-1 determines the part of the applica-
tion that was supposed to be deployed by DM-2 in node-2, which is the Receiver
component. Once DM-1 determines this information, it completes the recovery
process by republishing information about the failure affected part of application
(Receiver component) to DM-3. Finally, DM-3 deploys the Receiver component
in node-3 and after this point, the deployment process resumes normally.

6.3 Node Failure During Application Run-Time

Figure7 presents a time sequence graph that demonstrates how our D&C
infrastructure adapts applications at run-time to tolerate run-time node fail-
ures. Unlike the scenario presented before where the initial deployment of the
application has to be adapted to tolerate deployment-time failure, here the ini-
tial deployment completes successfully at Event 19 after which the application is

S. Pradhan et al.

100

£T#, 6L#8L# OlL# VI#EL# ZL# 6# 8#
€Wa
ONLLVALLYV ONLLYVLS ONIYVdIYd
ONIHSINI4
TWa
ONIVdIYd
T0# LT#QT#, LL# Sl# LL# OL# L#)9# v# T#) L# 0#
L'Ng,
ONLLVALLY ONLLYVLS AYINOOTY NV1d avOo1
ONIHSINI4 ONRIVdIYd
Snzs swrel svs suey
50 :uonIsod
LSPS. SWGSEL SpS SWoZL S¥S SPS SWi008 SES SES S0S Sy SOE ssi sz S8 SWIQ0T sy SWI0OS SE SWI00S ST SWwo0s _s

Fig. 6. Node failure during application deployment time.

101

Designing a Resilient Deployment and Reconfiguration Infrastructure

;:.@a mx
H C < e
ONILVALLDY OSNIHSINId ONLLY¥VIS ONINVdIUd
N dis . aigw b
N C /I\\ -
3urva Q3LVALLOV ONILVALLDY SNIHSINId SNILYVLS
SnmvaET
- stsrare. ieis o - - - ool oo
ANM3IAODIN ONILVALLDY ONLLNVLS Nvid avol
binnasig
-
[snyeg swiz iz sgy a8uey
e
Zs8v 7 SWI00Z S8y ssv Siv sov soz soL E3 SWooL SE SWwooL SE Swoo8 sz SWI00S sz SW00Z sz SWI006 St SWI00S St SWwo0Z Tsol

Fig. 7. Node failure during application run-time

102 S. Pradhan et al.

active. However, node-2 and therefore DM-2 fails at Event 20 and the notifica-
tion of this failure is received by DM-1 at Event 21 after which DM-1 performs
the recovery process similar to the way it did for deployment-time failure.

The one significant difference between the deployment-time failure mitigation
and run-time failure mitigation is that dynamic reconfiguration of application
components is required to mitigate application run-time failure. To elaborate,
once DM-3 deploys the Receiver component in node-3 it needs to publish new
connection information for the Receiver component allowing DM-1 to update
Sender the component’s connection.

7 Conclusions and Future Work

This paper described a resilient Deployment and Configuration (D&C)
infrastructure for highly dynamic and remote CPS. This dynamic and remote
nature calls for autonomous resilience in such systems. The D&C infrastructure is
the right artifact to architect such a solution as these systems are commonly built
using Component-Based Software Engineering (CBSE) approach using appropri-
ate component models and their corresponding D&C infrastructure. However,
existing D&C infrastructures do not meet the requirements essential to facili-
tate autonomous resilience. As such, in this paper we presented a novel D&C
infrastructure that is resilient and capable of reconfiguring existing applications.

The work presented in this paper incurs a few limitations: (1) As mentioned
in Sect.5.2, our current implementation for D&C state preservation is suffi-
cient but not ideal. In our on-going research effort [18], we look into using a
distributed database to store relevant D&C state resulting in a stateless D&C
infrastructure. We plan to add similar concept to extend the work presented in
this paper. (2) The D&C infrastructure presented in this paper performs recon-
figuration without any smartness,i.e., we randomly decide where a component
should be migrated. However, this is not sufficient for systems that can host mul-
tiple applications. We require the D&C infrastructure to utilize available system
information to make a more educated decision on how a system should be recon-
figured. Again, some initial work towards achieving such an infrastructure has
been presented as part of our on-going research effort [18].

Acknowledgment. This work was supported by the DARPA System F6 Program
under contract NNA11AC08C, USAF/AFRL under Cooperative Agreement FA8750-
13-2-0050, and Siemens Corporate Technology. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the sponsors.

Designing a Resilient Deployment and Reconfiguration Infrastructure 103

References

1.

10.

11.

12.

13.

14.

15.

16.

Akkerman, A., Totok, A.A., Karamcheti, V.: Infrastructure for automatic dynamic
deployment of J2EE applications in distributed environments. In: Dearle, A.,
Savani, R. (eds.) CD 2005. LNCS, vol. 3798, pp. 17-32. Springer, Heidelberg (2005)
Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic reconfiguration
planning for distributed software systems. In: Proceedings of 15th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, pp. 39-46. IEEE (2003)
Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java. Softw. Pract. Exp. 36(11-12), 1257—
1284 (2006)

Bures, T., Gerostathopoulos, 1., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
Deeco: an ensemble-based component system. In: Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-Based Software Engineering, pp.
81-90. ACM (2013)

Caron, E., Chouhan, P.K., Dail, H.: Godiet: a deployment tool for distributed
middleware on grid’5000. Ph.D. thesis, INRIA (2006)

Dubey, A., Emfinger, W., Gokhale, A., Karsai, G., Otte, W., Parsons, J., Szabo,
C., Coglio, A., Smith, E., Bose, P.: A software platform for fractionated spacecraft.
In: Proceedings of the IEEE Aerospace Conference 2012, pp. 1-20. IEEE, Big Sky,
MT, USA, March 2012

Flissi, A., Dubus, J., Dolet, N.; Merle, P.: Deploying on the grid with deploy-
ware. In: 8th IEEE International Symposium on Cluster Computing and the Grid,
CCGRID 2008, pp. 177-184. IEEE (2008)

Heineman, G.T., Councill, W.T. (eds.): Component-based Software Engineer-
ing: Putting the Pieces Together. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2001)

Hennicker, Rolf, Klarl, Annabelle: Foundations for ensemble modeling — the
HELENA approach. In: Tida, Shusaku, Meseguer, José, Ogata, Kazuhiro (eds.) Speci-
fication, Algebra, and Software. LNCS, vol. 8373, pp. 359-381. Springer, Heidelberg
(2014)

Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363-369. IEEE (2008)

Mahadevan, N., Dubey, A., Karsai, G.: Application of software health manage-
ment techniques. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 1-10. ACM (2011)
Object Management Group: Data Distribution Service for Real-time Systems Spec-
ification, 1.0 edn., March 2003

Object Management Group: Light Weight CORBA Component Model Revised
Submission, OMG Document realtime/03-05-05 edn., May 2003

Object Management Group: The Common Object Request Broker: Architecture
and Specification Version 3.1, Part 3: CORBA Component Model, OMG Document
formal/2008-01-08 edn., January 2008

OMG: Deployment and Configuration Final Adopted Specification. http://www.
omg.org/members/cgi-bin/doc?ptc/03-07-08.pdf

Otte, W.R., Dubey, A., Pradhan, S., Patil, P., Gokhale, A., Karsai, G.,
Willemsen, J.: F6COM: a component model for resource-constrained and dynamic
space-based computing environment. In: Proceedings of the 16th IEEE Interna-
tional Symposium on Object-oriented Real-time Distributed Computing (ISORC
2013), Paderborn, Germany, June 2013

http://www.omg.org/members/cgi-bin/doc?ptc/03-07-08.pdf
http://www.omg.org/members/cgi-bin/doc?ptc/03-07-08.pdf

104 S. Pradhan et al.

17. Otte, W., Gokhale, A.,; Schmidt, D.: Predictable deployment in component-based
enterprise distributed real-time and embedded systems. In: Proceedings of the 14th
International ACM Sigsoft Symposium on Component Based Software Engineer-
ing, pp. 21-30. ACM (2011)

18. Pradhan, S., Dubey, A., Levendovszky, T., Kumar, P.S., Emfinger, W.A.,
Balasubramanian, D., Otte, W., Karsai, G.: Achieving resilience in distributed
software systems via self-reconfiguration. J. Syst. Softw. (2016)

19. Pradhan, S., Gokhale, A., Otte, W., Karsai, G.: Real-time fault-tolerant deploy-
ment and configuration framework for cyber physical systems. In: Proceedings of
the Work-in-Progress Session at the 33rd IEEE Real-time Systems Symposium
(RTSS 2012). IEEE, San Juan, Puerto Rico, USA, December 2012

20. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. (TAAS) 4(2), 14 (2009)

	Designing a Resilient Deployment and Reconfiguration Infrastructure for Remotely Managed Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 System Model
	3.2 Deployment and Configuration Model
	3.3 Fault Model
	3.4 Problem Statement

	4 Key Considerations and Challenges
	5 A Resilient D&C Infrastructure
	5.1 Solution Architecture
	5.2 Addressing Resilient D&C Challenges

	6 Experimental Results
	6.1 Testbed
	6.2 Node Failure During Deployment-Time
	6.3 Node Failure During Application Run-Time

	7 Conclusions and Future Work
	References

