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a b s t r a c t 

Improvements in mobile networking combined with the ubiquitous availability and adoption of low-cost 

development boards have enabled the vision of mobile platforms of Cyber-Physical Systems (CPS), such as 

fractionated spacecraft and UAV swarms. Computation and communication resources, sensors, and actu- 

ators that are shared among different applications characterize these systems. The cyber-physical nature 

of these systems means that physical environments can affect both the resource availability and software 

applications that depend on resource availability. While many application development and management 

challenges associated with such systems have been described in existing literature, resilient operation 

and execution have received less attention. This paper describes our work on improving runtime support 

for resilience in mobile CPS, with a special focus on our runtime infrastructure that provides autonomous 

resilience via self-reconfiguration. We also describe the interplay between this runtime infrastructure and 

our design-time tools, as the later is used to statically determine the resilience properties of the former. 

Finally, we present a use case study to demonstrate and evaluate our design-time resilience analysis and 

runtime self-reconfiguration infrastructure. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Improvements in mobile networking, combined with the ubiq-

uitous availability and adoption of low-cost embedded platforms,

have enabled the vision of mobile cyber-physical platforms, such

as a swarm of Unmanned Aerial Vehicles (UAV) and fractionated

spacecraft, which is an ad-hoc cluster comprising individual satel-

lite modules. Often these platforms are comprised of multiple sys-

tems spanning across physical domains, where each domain is rep-

resented by a separate subsystem. Sensors, actuators, computing

resources, and communication resources shared among different

applications, characterize these systems. These systems are called

“cyber-physical” because (a) their mobility and physical environ-

ment affect the resources available during their operation, and (b)

the software applications often interact with the sensors and actu-

ators to monitor and control physical environment of the system.
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n example for the latter, in case of a swarm of UAVs, is an in-

tance of a flight management application that uses sensors and

ctuators like compass, camera, GPS receiver, accelerometer, gyro-

cope, and propellors to maintain safe flight path for each UAV. 

To design and develop applications for these platforms, there

xist well-established software engineering techniques such as

omponent Based Software Engineering (CBSE) ( Heineman and

ouncill, 2001 ) and Model Driven Engineering (MDE) ( Sztipanovits

nd Karsai, 1997; Schmidt, 2006 ). CBSE promotes robust com-

osition of complex distributed applications using pre-fabricated

nd pre-tested software components as building blocks. This in-

reases reuse and reduces product time to market. The MDE ap-

roach facilitates modeling various aspects of these platforms us-

ng Domain-Specific Modeling Languages (DSMLs). Models created

sing these DSMLs can be used at design-time to perform tasks

uch as code generation, analysis and validation. In our previous

ork ( Levendovszky et al., 2014; Balasubramanian et al., 2015 ), we

escribed the underlying software information architecture and the

upporting DSMLs developed for the domain of distributed, real-

ime cyber-physical platforms. 

Broadly speaking, cyber-physical platforms fall into one of two

ategories: open or closed. Closed platforms do not allow dy-

amic application provisioning and they host software applications

hat are geared towards closed-loop, low-latency and real-time
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nterconnections. Open platforms, however, allow dynamic applica-

ion provisioning and require a set of applications that can provide

ervices such as monitoring, tracking, preventive maintenance and

ogging data for off-line analysis; this paper considers open plat-

orms. 

In these cyber-physical platforms, the tight integration between

he physical and cyber elements, both within and across different

ntities, can lead to failure cascades, which in turn can affect the

elivery of essential services. Mobile nature of cyber-physical plat-

orms also require mechanisms to handle temporary, intermittent,

s well as permanent network connection issues due to fluctuating

ommunication bandwidth. Therefore, resilience , which includes ef-

cient techniques for managing the system and ensuring its correct

peration within the specified parameters, even in the presence of

aults and failures, is crucial. Furthermore, these platforms are re-

otely deployed; for example, a cluster of UAVs might allow a new

AV to join the existing cluster or an existing UAV to leave the

luster, at anytime. As such, the resilience mechanism should be

utonomous due to lack of human interaction opportunity. 

In order to support autonomous resilience, we require both

esign-time as well as runtime support. Appropriate design-time

ools should be used to perform static, design-time analysis as ad-

ittance test. This is important because open cyber-physical plat-

orms can host multiple applications running simultaneously and it

s critical to make sure that addition of new applications does not

ause existing applications to fail. Some examples of design-time

ools are timing analysis tool, network Quality-of-Service (QoS)

nalysis tool, and reliability analysis tool. In this paper, we present

rief description of our prior work related to timing and network

oS analysis tools. A reliability analysis tool, however, is described

n detail. 

Runtime support for resilience involves failure monitoring, de-

ection, diagnosis, and mitigation. For autonomous resilience, these

ctions should be performed as a closed-loop without any exter-

al intervention. Significant amount of work related to monitoring,

etection and diagnosis is already present in existing literature; as

uch, this paper mainly focuses on failure mitigation. In order to

olve the problem of autonomous failure mitigation, a variety of

esign-time explicit encoding approaches have been presented in

xisting literature ( Andrade and de Araújo Macêdo, 2009; Asmare

t al., 2012; Valls et al., 2013; Schaeffer-Filho et al., 2014; García-

alls et al., 2014 ). However, they suffer from two main drawbacks:

t is time consuming, and explicitly enumerating all possible fail-

re scenarios at design-time is impossible for a mobile, dynamic

ystem. 

In comparison, our approach relies on implicit encoding of all

ossible states a system can reach. We refer to this encoding as

 configuration space and it consists of relevant information about

ifferent system goals, functionalities, services, resources, and con-

traints. At any given time, there is exactly one configuration point

hat represents the current state of a platform. At runtime, when

 configuration point is deemed faulty (due to failure or anomaly),

e rely on our runtime self-reconfiguration infrastructure to first

ompute a valid new configuration point that belongs to the same

onfiguration space, and then transition/migrate/reconfigure to the

ewly computed configuration point such that failures or anoma-

ies are mitigated. 

Our work, presented in this paper, can be roughly divided

nto two parts (a) design-time analysis and validation tools, and

b) runtime self-reconfiguration infrastructure for autonomous re-

ilience. Key contributions of this paper are listed below. 

• A novel design-time reliability analysis tool that provides feed-

back about the resilience of a system’s architecture. 
• A novel runtime self-reconfiguration infrastructure that facili-

tates autonomous resilience via transitions between configura-
tion points computed at runtime using implicitly encoded con-

figuration space. 
• A case study to demonstrate and evaluate the design-time re-

silience analysis and runtime self-reconfiguration mechanism. 

It is important to note that our current implementation of the

untime self-reconfiguration infrastructure does not use any of the

nalysis tools, that we use at design-time, to analyze and validate

ew configuration points computed at runtime. We believe that,

ltimately, design-time analysis tools should also be used at run-

ime by the self-reconfiguration infrastructure, however, this is part

f our future work. 

The rest of the paper is organized as follows: Section 2 presents

elated research work and compares it to our work;

ection 3 presents the system model; Section 4 presents a

otivating scenario comprising a cluster of fractionated satellites;

ection 5 presents the problem statement; Section 6 presents

n overview of our solution approach; Section 7 presents our

rior work, as well as, a novel contribution related to design-time

nalysis tools; Section 8 presents our runtime self-reconfiguration

nfrastructure and algorithms; Section 9 first presents a use case

cenario, and then demonstrates and evaluates the design-time re-

ilience analysis tool and runtime self-reconfiguration mechanism;

nally, Section 10 provides concluding remarks and describes

uture work. 

. Related research 

We classify the related works along two broad categories - (a)

esign-time analysis tools, and (b) runtime dynamic reconfigura-

ion mechanisms. 

.1. Design-time analysis tools 

Design-time timing analysis for real-time systems is a ma-

ure field. In Audsley et al. (1995) ; Sha et al. (2004) , authors ad-

ress challenges in uniprocessor and multiprocessor scheduling of

nique task sets, triggering mechanisms and interactions. Simula-

ion tools like Harbour et al. (2001) ; Singhoff et al. (2004) ; Amnell

t al. (2004) ; Derler et al. (2008) are used for various kinds of

iming analysis and verification, providing results that feed back

nto the design for refinement. Component-based design models

re typically transformed into a formal analysis model such as

imed Automata ( Alur and Dill, 1994; Macariu and Cretu, 2010 ) or

igh-level Petri nets ( Masri et al., 2009 ) for which analysis tools

xist. Architecture Analysis and Design Language (AADL) models

ave been translated into high-level Petri nets like Symmetric nets

 Renault et al., 2009b ) and Timed Petri nets ( Renault et al., 2009a )

o verify real-time properties like deadline violations. Our prior

ork, which has been briefly described in Section 7 , uses a Col-

red Petri Net-based (CPN) ( Jensen and Kristensen, 2009 ) analy-

is model to analyze the structural and behavioral properties. This

ork was originally presented in Kumar et al. (2014) ; Kumar and

arsai (2015) . 

Mobile CPS rely on wireless network communications to co-

rdinate the distributed applications’ services. This network com-

unication over dynamic wireless links must provide design-time

uarantees about application and system performance. Methods

or determining these guarantees arise from simulation, mathe-

atical analysis, or a combination of the two. OMNET++ ( Varga

nd Hornig, 2008 ) and the INETMANET framework within OM-

ET++ can be used to simulate network traffic through differ-

nt network layers and over dynamic wireless links. However,

hese tools are less useful for providing design-time applica-

ion performance guarantees. Additionally, large, complex sys-

ems increase the complexity of the simulation. Network Calculus,
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Fig. 1. System model. 
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( Le Boudec and Thiran, 2001 ), focuses on abstracting the applica-

tion traffic and network links as arrival curves and traffic shapers.

Resulting bounds provide design-time guarantees about worst-case

application performance on the network. The network QoS analy-

sis techniques described briefly in Section 7.1.1 are based on the

Network Calculus results, but are designed to provide tighter guar-

antees on the QoS results at the cost of more precise specification

of the system and its applications. This work was originally pre-

sented in Emfinger et al. (2014) . 

Apart from describing timing and network QoS analysis tools,

this paper also presents a novel, design-time reliability analysis

tool. 

2.2. Runtime dynamic reconfiguration 

Significant amount of prior work has been done in order to

achieve dynamically reconfiguring systems. Asmare et al. (2012) ;

Schaeffer-Filho et al. (2014) ; Andrade and de Araújo Macêdo

(2009) presents different policy-based approaches to achieving

dynamic reconfiguration. In Asmare et al. (2012) , the authors

present a policy-based framework that requires mission specifi-

cation, which describes how specific roles are assigned to differ-

ent nodes based on their credentials and capabilities, and how

these roles should be re-assigned in response to changes or fail-

ures. As such, this mission specification explicitly encodes recon-

figuration actions, i.e., role re-assignments, during design-time.

Schaeffer-Filho et al. (2014) also follows similar approach where

declarative policies are used to specify adaptation. In Andrade and

de Araújo Macêdo (2009) , the authors present a policy-based ap-

proach where each adaptation policy comprises rules, actions, and

the rate at which each rule should be evaluated. These approaches

are different from ours, as we do not explicitly encode reconfigu-

ration actions at design-time; it is impossible to cover all possible

combinations of failure scenarios at design-time. 

Alternative approaches to achieving dynamic reconfiguration in-

clude use of system health management techniques ( Srivastava and

Schumann, 2011 ). Our prior work that follows this approach in-

cludes ( Mahadevan et al., 2011a ), which shows how system-wide

mitigation can be performed based on reactive timed state ma-

chines specified at design-time, using the results of a two-level

fault-diagnoser ( Dubey et al., 2011a ). Thereafter, we presented a

boolean encoding for reconfiguring a system using a search based

strategy in Mahadevan et al. (2013) . These approaches have sim-

ilar limitations to aforementioned policy-based approaches since

the runtime reconfiguration mechanism depends on static design

time specifications. 

In Valls et al. (2013) ; García-Valls et al. (2014) , the authors

present a middleware that supports timely reconfiguration in dis-

tributed real-time systems. Application Graph , which contains in-

formation about what services are required and how they depend

on each other, and Expanded Graph , which contains information

about different service implementations, are studied a priori at

design-time. As such, these solutions also have similar limitations

to aforementioned solution since runtime reconfiguration mecha-

nism relies on artifacts computed at design-time. 

In Arshad et al. (2007) , the authors present a tool called Planit

for deployment and reconfiguration of component-based applica-

tions. Planit uses a temporal planner and is based on a sense-plan-

act model for fault detection, diagnosis, and reconfiguration to re-

cover from runtime application failures. As such, it is similar to

our work presented in this paper. In order to facilitate the run-

time planning, Planit allows modeling of both, implicit and ex-

plicit configurations at design-time. Although our reconfiguration

mechanism is also based on implicitly encoded configuration (we

call this configuration space), we capture this encoding in a very

generic manner. To be precise, we use a goal-based system de-
cription approach to ensure loose coupling between requirements

nd actual software entities that fulfill those requirement. How-

ver, in Planit, implicit encoding is defined in terms of low-level

oftware artifacts such as components and their connections. We

elieve that a solution for mobile systems needs to provide better

exibility to account for dynamism. 

. System model 

The target system consists of clusters of remotely deployed,

eterogeneous nodes with computation and communication re-

ources, as well as, a variety of sensors and actuators. As shown

n Fig. 1 , each device hosts a layered software architecture con-

isting of an operating system (OS), middleware, applications and

latform services. Since we are considering heterogeneous systems,

ifferent nodes could consist of varying OS and middleware. How-

ver, solving challenges arising from these heterogeneities are out

f scope of this paper, and is part of our ongoing research efforts. 

Platform services are, in essence, long running services that

erve as an extension of the OS by providing generic services for

pplications to use. Examples of platform services include mon-

toring services and distributed application management service.

s shown in Fig. 1 , applications consists of software components.

hese components are hosted inside processes. Each process can

ost one or more components. Processes are created, deployed,

onfigured, and managed by a specific platform service that is re-

ponsible for application management. Readers are encouraged to

efer to Karsai et al. (2014) to review the system architecture in

etail. 

.1. Goal-based system description 

Mobile CPS are dynamic in nature and therefore require a

eneric way to represent system goals expected to be satisfied

y a system during a given time interval. A time interval se-

uence consisting of high-level system objectives that must be

vailable during those intervals is called a mission goal . Different

ystems associated with a cyber-physical platform are mission ori-

nted and therefore have specific mission goals. Since objectives

re essentially functions, system objectives can be defined using

he concept of functional decomposition, which is the process of

ecomposing high-level functions into a set of sub-functions, un-

il a set of leaf-level functions is reached. Leaf-level functions are

unctions that cannot be decomposed, and they are mapped to

omponents ( Kurtoglu et al., 2010; Mahadevan et al., 2013 ) that
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Fig. 2. Functional decomposition graph for a two-application system. 
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rovide these functions as services . Services are provided or re-

uired by components through their ports. 

Components are the basic unit of system composition. As

hown in Fig. 2 , a component can provide one or more functions

leaf-level or non leaf-level) via its ports. Furthermore, different

omponents can provide the same functionality. If a functionality

s provided by multiple components, then any of those component

an be deployed; this allows more flexibility. Similarly, a compo-

ent can also require one or more functions via its ports. This pro-

ided and required relations between components and functions

llow us to establish dependencies between components. In addi-

ion to functions, a component can also require resources in order

o be considered available. As such, we classify a component’s re-

uirement into functional requirements and resource requirements . 

Fig. 2 presents the functional decomposition graph of a sim-

le two-application system. As shown in the figure, function f is

 high-level function that represents a system’s objective. Function

 can be decomposed into sub-functions f 1 and f 2 . Sub-function f 1 
an be further decomposed into leaf-level functions f 3 provided by

omponent C 3 and f 4 provided by component C 1 . Similarly, sub-

unction f 2 can be decomposed into leaf-level function f 5 provided

y component C 2 . 

efinition 1. A functional decomposition is a directed acyclic

raph (DAG), F D = (F , DE) , where F is the set of functions, and

E = F × F is the set of dependency edges. The functions with

ero indegree are called functions while the others are called sub-

unctions. 

efinition 2. A software component is a collection, C = (P, S, R ) ,

here P is a set of ports associated with a component, S is a set of

unctions provided by a component, and R is a set of requirements.

efinition 3. An application is a graph of components, G = (C, E) ,

here E ⊆ C × C represent the control/data flow dependencies

etween components. These dependencies impose operational re-

uirements on components. That is, unless specified otherwise, a

omponent requires all other components to which it is connected

o be available. 

.2. Resource model 

The physical computing infrastructure provides computation and

ommunication resources. Computation resources correspond to
ardware facilities required to execute computation tasks at a

iven computation node. These include processing speed (num-

er of instructions per second), memory size (amount of mem-

ry required), and specific hardware required for certain tasks

uch as sensing or signal processing. Communication resources

n the other hand correspond to facilities required for interac-

ion between tasks executing on different com putation nodes. This

ncludes communication bandwidth, available security measures 

uch as encryption, etc. 

The resource model represents the capabilities and evolution of

esources that are used to carry out a mission, as a function of

ontrol inputs (actions) applied to the resources. For example, the

esource specification for a network link would include capability

pecifications like the maximum data flow capacity of the link. It

ould also include the possible discrete states of the link, such as

hether it is in service or broken. 

.3. Fault model 

A fault is defined as a problem within a system entity that

an manifest itself in observable discrepancies: deviations from ex-

ected behavior; or it can remain unobservable. A fault may cause

 failure. The failure of a system or a component is the breakdown

f its capability to provide required services or functions. The in-

erconnections between system entities imply that a failure of one

ntity can also lead to a secondary failure in a connected entity. If

he failure propagates to the global level, i.e. the top-level system,

t is called a global failure. In a “system of systems”, fault-tolerance

lgorithms are required to detect faults, mask fault effects, and

ask lower-level component failures so that they do not lead to

 global failure. To be considered fault tolerant, a system must be

ble to detect occurrences of discrepancies that signify faults, to di-

gnose and isolate the probable fault sources, to take actions to ei-

her contain the faults (and thus stop them from propagating out-

ards), and/or mitigate their effects on system functions. 

We classify failures into two categories - (a) infrastructure, and

b) application. Infrastructure failures are failures that arise due

o faults affecting a system’s network, participating nodes, devices

osted on different nodes, or processes running on different nodes.

here exist causality between these four different kinds of infras-

ructure failures. A network failure causes all nodes that are part

f the network to fail since those nodes become unreachable af-

er their network failure. A node failure causes all the devices and

rocesses running on that node to fail. A device failure might cause

rocesses using that device to fail, it might even cause the entire

ode that hosts the device to fail, or if the device is a networking

evice then it might cause network failure. However, a process can

ail without its host node failing or one of the devices it uses fail-

ng. Similarly, a device can fail without its host node failing, and a

ode can fail due to reasons other than network separation or de-

ice failure. We consider infrastructure failures to be primary fail-

res that can result in application failures, ultimately causing the

ystem to lose existing functions. 

Application failures are failures pertaining to the application

omponents. We assume that application components have been

horoughly tested before deployment and therefore classify appli-

ation failures as secondary failures that are caused by to infras-

ructure failures. However, there can be scenarios where an appli-

ation component failure becomes a primary source of failure and

esults in its hosting process, i.e., infrastructure to fail. In this case,

pplication failure becomes a primary failure. Some environmental

hanges could also lead to application failures, where the changes

n the environment can cause an application to receive unexpected

nput or the environment might not react, as expected, to an ap-

lication’s output. 
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Failures can be temporary, intermittent or permanent. Tempo-

rary failures are failures that have a short duration, while intermit-

tent failures are temporary failures that occur at irregular intervals.

Currently, our work focuses on permanent failures but we intend

to handle both temporary and intermittent failures in our future

work. In case of temporary failures, if we assume a fail-stop model,

we can treat them like permanent failures. For example, when a

node fails temporarily due to network partition, all of its hosted

entities are considered failed and appropriate reconfiguration ac-

tions will be taken. However, because the failure is temporary, the

node comes back online after some time, at which point it can be

treated as a brand new node joining an existing cluster. However,

applications that are still running on the node that suffered tempo-

rary failure must be removed before using its resources. A similar

approach can be taken for intermittent failures as well. 

3.4. Deployment model 

Deployment means instantiating a set of components and map-

ping them to available physical resources. Given a set of currently

deployed and active applications and a set of components included

in the application, we can deduce the set of system functions that

can be supported. 

Definition 4. A deployment D = (d V ) is a function that maps soft-

ware structure SC , which is a set of component instances and their

inter-dependencies, to a hardware network HC = (N, L ) , which is a

DAG, where N is the set of nodes, and L = N → N is the set of links

between these nodes. A communication link resource function is a

function N × L ⇒ N that represents the capacity of a specific com-

munication link on a node. d V : C → N , where C is a set of compo-

nents. 

3.4.1. Alternate deployment configurations 

Two deployment configurations are considered to be alterna-

tives if they deploy the same set of applications on the same phys-

ical architecture within the same resource constraints while satis-

fying the same set of goals. Alternate deployment configurations

could be compared against each other on the basis of resource cost

and performance. 

3.4.2. Configuration space and configuration point 

The configuration space of a platform represents the state space

of the platform. This includes (a) goal-based system description

of different systems hosted on the platform, (b) resource require-

ments of different com ponents that are part of the system descrip-

tion, (c) nodes that comprises the platform and their correspond-

ing resources, such as memory, storage, and devices, and (d) de-

ployment constraints that determine whether components should

be collocated on the same node, distributed across different nodes,

or always deployed on a specific node. A configuration space can

expand or shrink depending upon addition or removal of related

entities. 

A configuration space can contain multiple configuration points.

A configuration point represents valid configurations of all systems

that are part of the associated configuration space. A valid con-

figuration of a system represents component to node mappings

(deployment) for all components that are required to satisfy the

system’s goal. We always begin with a valid configuration point,

which we call the initial configuration point. Initial configuration

point represents the initial deployment of different systems. Sim-

ilarly, current configuration point represents the current deploy-

ment. A configuration point, since it is a component-to-node map-

ping, can be represented using a component-to-node matrix de-

fined below. 
efinition 5. The component to node mapping can be represented

sing a component-to-node (C2N) matrix, where rows represent

omponent and columns represent available computing nodes. A

eparate table is used to map the index of a component or a node

nstance to its name. The size of this matrix is α × β , where α is

umber of component and β is the number of available computing

odes. Each element of this matrix is an integer variable that can

ither be 0 or 1, where 0 indicates that the component (row) is

ot deployed on the corresponding node (column), and 1 indicates

therwise. 

2 N = 

⎡ 

⎢ ⎢ ⎣ 

c2 n 00 c2 n 01 c2 n 02 . . . c2 n 0 β

c2 n 10 c2 n 11 c2 n 12 . . . c2 n 1 β

c2 n 20 c2 n 21 c2 n 22 . . . c2 n 2 β

. . . . . . . . . . . . . . . 

c2 n α0 c2 n α1 c2 n α2 . . . c2 n αβ

⎤ 

⎥ ⎥ ⎦ 

2 N = (c2 n cn : c ∈ { 0 . . . α} , n ∈ { 0 . . . β} , (α, β) ∈ Z 

+ ) 

At any given point in time only one of the configuration point

eflects the reality of the deployed system; this is the current

onfiguration point. All other configuration points are implicitly

resent in the configuration space, but have to be computed dy-

amically at runtime. This is precisely what happens when a fail-

re is detected. When a failure occurs, current configuration point

s marked as faulty, specifically some component(s) or node(s) are

arked as faulty, rendering corresponding row(s) or column(s) of

he the C 2 N matrix with 0 markings and a constraint that it cannot

e used in future unless the fault has been removed. For example,

onsider a scenario where multiple configuration points maps one

r more components to a node. If this node fails, then all afore-

entioned configuration points are rendered faulty. Given these

oncepts of configuration space and points, recovering from failure

ssentially involves self-reconfiguration of the system by finding a

ew valid configuration point and determining actions required to

ransition from current (faulty) configuration point to the new (de-

ired) configuration point. As such, configuration points and their

ransitions form the very core of our self-reconfiguration mecha-

ism. 

For a more detailed description of a configuration space and its

onfiguration points, please refer to our previous work ( Pradhan

t al., 2015 ), which presents a feature model that we use to repre-

ent a configuration space. 

. Motivating scenario 

Consider a mobile cyber-physical platform of fractionated

pacecraft, which is a cluster of independent satellite modules fly-

ng in formation and communicating with each other via ad-hoc

ireless networks. Each independent satellite that is part of a

ractionated satellite cluster, can come from different organization.

his architecture can realize the functions of monolithic satellites

t a reduced cost and with improved adaptability and robustness

 Brown and Eremenko, 2006 ). Several existing and future missions

se this type of architecture, including NASA’s Edison Demonstra-

ion of SmallSat Networks, TANDEM-X, PROBA-3, and PRISMA from

urope. In each of these missions, the cooperating fractionated

atellites are expected to provide the foundation for applications

unning simultaneously using shared resources. 

Individual satellite modules of a fractionated satellite cluster are

resent in the Low Earth Orbit (LEO), where one of the basic re-

uirements is to be able to maintain orbital flight so that they

an overcome the atmospheric drag and orbit the Earth while re-

aining in the LEO. Each individual satellite achieves this objec-

ive by periodically using their thrusters to adjust their position.

n addition to this critical objective, other objectives can be added

y hosting different applications. Fig. 3 presents an overview of
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Fig. 3. Mixed-criticality distributed deployment. 

Fig. 4. Tasks performed by components of the cluster flight application . For these tasks, the subscript represents the ID of the node onto which a task is deployed. The total 

latency of the interaction C 1 1 → M 

2 
N represents the total latency between receiving the scatter command and activating the thrusters. This interaction pathway is in bold. 
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a  
 fractionated satellite cluster hosting two different com ponent-

ased applications with mixed criticality. The first application is

 high-priority Cluster Flight Application (CFA), which is responsi-

le for maintaining flight control. The second application is lower

riority Image Processing Application (IPA), which is responsible for

apturing real-time images and processing them. 

As shown in Fig. 3 , the high-priority CFA application comprises

our different com ponents. Next, we briefly describe the different

unctions provided by these components. A schematic overview of

he associated tasks performed by these components is presented

n Fig. 4 . 

• ModuleProxy : This component behaves as an interface between

different satellite sensors and the OrbitMaintenance component,

allowing the OrbitMaintenance component to access available

sensors. 
• OrbitMaintenance: This component is responsible for tracking

the state of a cluster satellite. To perform this task, it uses

the ModuleProxy component to acquire the latest information,

such as location co-ordinates. Once appropriate information is
collected, this component is also responsible for disseminating

this information as a packaged structure to all other satellites

in the cluster. As every satellite runs an instance of CFA, each

node periodically receives updates from the other nodes. 
• CommandProxy: This component performs the task of receiv-

ing commands from a ground station. When a command is

received, it sends the command to its local TrajectoryPlanning

component. Furthermore, commands received from a ground

station are also forwarded to other satellite nodes in a cluster. 
• TrajectoryPlanning: This component is responsible for perform-

ing the task of receiving commands from the local Command-

Proxy component and responding to those commands using

satellite thrusters, if required, to perform highly critical, hard

real-time tasks. 

The lower priority IPA is a comparatively simpler application,

hich comprises a component that uses the camera to capture

eal-time images (sensing) and another component that processes

he captured images. These are periodic CPU-intensive tasks that

re temporally isolated from each other. As mentioned before, the
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IPA is a lower priority application when compared to the CFA. As

such, the IPA tasks are executed by application threads that have

lower priority than that of the CFA. 

5. Problem statement 

A mobile cyber-physical platform can host numerous mission

critical cyber-physical applications. Each application consists of

components providing different functions to meet various objec-

tives and therefore the mission goal. As such, it is of utmost impor-

tance to make sure that all functions and their corresponding com-

ponents required to maintain a system’s goal are preserved in the

face of failures and anomalies. Therefore, for cyber-physical plat-

forms, such as the fractionated satellite cluster described as a mo-

tivating scenario in Section 4 , resilience is a key requirement. We

adopt the definition of resilience from Laprie (2008) : “The persis-

tence of the avoidance of failures that are unacceptably frequent

or severe, when facing changes.” Although a truly resilient system

needs to be resilient against failures, changes (intended or unin-

tended), and updates, in this paper we only focus on resilience

against failures. In addition to hosting mission critical applications,

mobile cyber-physical platforms are remotely deployed and there-

fore require the resilience mechanism to be autonomous. 

We identify the following as requirements that need to be sat-

isfied in order to achieve cyber-physical platforms that are capable

of supporting autonomous resilience: 

Requirement 1 - Design-time analysis tools for admittance check-

ing: Application requirements, such as timing and network QoS re-

quirements, and properties like resilience should be analyzed and

validated at design-time. 

Requirement 2 - Runtime mechanism to facilitate autonomous re-

silience: We require a distributed runtime mechanism capable of

providing autonomous resilience. Any such mechanism should be

able to monitor, detect, diagnose, and mitigate failures. 

Multiple solutions related to Requirement 1 have been published

as part of our prior work; we briefly describe these in this pa-

per. Furthermore, as a minor contribution, we present a novel

design-time tool capable of performing resilience analysis. Most

of the work presented in this paper focuses on Requirement 2 .

There exists significant amount of research literature related to

failure monitoring, detection, diagnosis, and mitigation. Most of

this can be leveraged for mobile cyber-physical platforms, how-

ever, existing solutions for failure mitigation cannot be used as
Fig. 5. Overview of 
hey do not take into account the scale and the dynamic nature of

hese platforms. As such, our contribution in this paper is a novel

elf-reconfiguration mechanism that can be used by mobile cyber-

hysical platforms to facilitate autonomous resilience. 

. Solution approach overview 

An overview of our solution approach is shown in Fig. 5 ; it

omprises design-time and runtime aspects. The design-time as-

ect of the solution includes a graphical modeling tool developed

sing the Generic Modeling Environment (GME) ( Ledeczi et al.,

001 ), associated model interpreters, a set of design-time analy-

is tools (described in Section 7 ), and a database to store artifacts

enerated and analyzed by aforementioned interpreters and analy-

is tools. The database is also part of the runtime aspect. We can

iew this database as a medium through which relevant informa-

ion is shared between entities of the design-time and runtime en-

ities. In addition to the database, the runtime aspect also includes

 management infrastructure, a managed system, a monitoring in-

rastructure, and a resilience infrastructure. These runtime entities

orm an autonomous resilience loop akin to a sense-plan-act loop,

hich is the basis of our approach to realizing a self-reconfiguring

ystem. 

The monitoring infrastructure performs the task of sensing; it

s responsible for monitoring a managed system to detect and

iagnose failures. The resilience infrastructure performs the task

f planning; it is responsible for covering the self-reconfiguration

echanism. Finally, the management infrastructure performs the

ask of acting; it is responsible for undertaking actions computed

planned) by the resilience infrastructure. In our implementation,

hich is described in detail in Section 8 , the monitoring infras-

ructure comprises distributed monitors for failure detection, the

esilience infrastructure comprises a Satisfiability Modulo Theo-

ies (SMT) ( Barrett et al., 2009 ) based solver, and the management

nfrastructure comprises distributed Deployment Managers (DMs),

here a single DM is deployed on every node. 

A typical workflow is as follows. The user begins by creat-

ng a model and defining components, which provide the basic

nits of functionality. The definition of a component includes its

ommunication ports and timing requirements. Next, one or more

pplications are created by assembling components together and

onfiguring their communication. For instance, the output port of

ne component may be connected to the input port of another
the approach. 
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omponent. Based on applications that need to be deployed on the

arget platform, mission goals (see Section 3.1 ) are defined. At this

oint design-time analysis tools and model interpreters are used

o analyze the design-time model and generate appropriate arti-

acts that represent a configuration space and initial configuration

oint (see Section 3.4.2 ) for the modeled system. These are stored

n the database and is later used at runtime; the initial configu-

ation point is used for initial deployment and the configuration

pace is used to compute new configuration points at runtime in

rder to reconfigure the system. We describe this process in detail

n Section 8.2 . 

. Design-time analysis and validation tools 

In this section we present three different design-time analysis

ools. Among these three tools, the first two are related to timing

nd network QoS analysis. These two tools are described briefly as

hey are not the main contribution of our work presented in this

aper; they are part of our prior work but discussed here in order

o present a bigger picture of how different design-time analysis

ools can be used for analyzing and verifying different aspects of a

obile, dynamic distributed system. The third tool we present in

his section is a novel resilience analysis tool, which we describe

n detail. 

.1. Overview of CPN-based timing analysis 

Real-time systems are characterized by strict deadlines. Delayed

esponse times and missed deadlines can have a catastrophic ef-

ect on the health of the system, especially in the case of safety

nd mission-critical scenarios. Many of these scenarios also exe-

ute software in remote environmental conditions where quick ac-

ess to the software is difficult. Therefore, it is imperative that the

emporal behavior of any configuration that can be deployed at

untime, is sufficiently tested and analyzed at design-time. 

Our work, which is presented in detail in Kumar et al.

2014) ; Kumar and Karsai (2015) , uses a Colored Petri Net-based

CPN) ( Jensen and Kristensen, 2009 ) analysis model to analyze the

tructural and behavioral properties of the deployed configuration

n order to verify system properties such as lack of deadlocks and

iming violations. Such behavioral properties not only improve the

onfidence in the deployed configuration but it can also be used as

 deciding metric when choosing a reconfiguration plan. 

To analyze a set of interacting components (both spatially and

emporally), we capture the structural and behavioral properties of

he system with a domain-specific model. The structural model in-

ludes information about (a) component interfaces, ports, timers,

b) application assembly and wiring, and (c) software deployment

spects. These attributes are later parsed and mapped into col-

red tokens in appropriate places of the CPN model. The behavioral

odel encapsulates the sequence of events or steps that are exe-

uted in every component operation. In our timing model, each op-

rational step is accompanied by a worst-case execution time ob-

ained via prototypical testing. These steps directly affect the state

f the executing thread (blocking or unblocking effects) and influ-

nce the behavior of the system. The CPN model is equipped with

ists of tokens that capture these behavioral properties succinctly. 

Analyzing the behavioral properties of the modeled system in-

olves exploring its bounded state space. Here, the initial state rep-

esents the point in time right after successful deployment and

onfiguration of application components but right before the first

perational trigger. Each state space node is a list of tokens de-

cribing the state of each place in the model. By using standard

tate space queries and graph searching techniques, the system

an be evaluated for both qualitative and quantitative measures of

ealth. For simulation and analysis of our CPN models, we use CPN
ools ( Ratzer et al., 2003 ). Different system-level properties can be

erified using this methodology e.g. absence of deadline-violations,

bsence of deadlocks or livelocks, satisfactory worst-case trigger to

esponse times, and estimated processor utilization. 

.2. Overview of network QoS analysis 

At design time, component developers supply their component

mplementation models with information about the implementa-

ions’ network QoS requirements. These requirements contain in-

ormation about the component’s produced network bandwidth as

 function of time, the maximum size afforded to the buffer, and

he maximum tolerable network buffering delay. 

We have developed a paradigm for modeling the components’

nd system’s network QoS requirements which is similar to Net-

ork Calculus’ traffic arrival curves and traffic shaper curves,

 Le Boudec and Thiran, 2001 ). Using each component implementa-

ion’s network QoS constraints, together with the network service

haracteristics provided by the system, the feasibility of the mod-

led application and system deployment can be determined. The

eployment is only feasible if the component’s constraints are met

y the node for all components on all nodes of the system. 

Component profiles model how components’ traffic generation

hanges with respect to discrete time, and system profiles model

ow the network bandwidth (e.g. bits per second) between nodes

f the cluster varies with respect to discrete time. These determin-

stic models describe exactly the data generated by the component

nd the data which could be sent through the network. By time-

ntegrating the component and system profiles, the data generation

nd data throughput as functions of time can be determined for

omponents and the system, respectively. Convolving these profiles

esults in a profile describing the data actually transmitted on the

etwork link. 

The network analysis techniques described above can be ap-

lied to different component-based applications that need to be

osted on a mobile cyber-physical platform. The results of this

nalysis inform us whether or not the applications and services

hey provide can execute reliably. Consider the motivating scenario

f a fractionated satellite cluster presented in Section 4 . In this ex-

mple, the network profiles for the resources provided by the sys-

em’s network links follow periodic patterns since they are gov-

rned by the orbital mechanics of the satellites in the cluster and

ecause of which the distances between the satellites varies peri-

dically as a function of time. Similarly, many applications on the

luster, such as the mission- and safety-critical cluster flight soft-

are are also periodic in nature, as they periodically retrieve sen-

or data and disseminate those data to the rest of the nodes in the

luster. Since these are the most critical tasks in the system, they

ill preempt all other application and system tasks. As such, we

an analyze their network characteristics using these techniques to

nsure that they are able to meet their latency and memory con-

traints throughout the duration of each orbit. The remaining net-

ork capacity will be used by other applications, and can be itera-

ively analyzed according to their priority-based network resource

haring. 

For detailed description of our network QoS analysis tool, we

efer the reader to our previous work ( Emfinger et al., 2014 ). 

.3. Resilience analysis 

In addition to timing analysis and network QoS analysis, re-

ilience analysis is another design-time analysis that is useful in

ontext of mobile cyber-physical platform for which resilience is

f utmost importance. In general, the task of a resilience analysis

ool is to provide feedback to the system integrator about how re-

ilient a system design is, before the system is actually deployed.



352 S. Pradhan et al. / The Journal of Systems and Software 122 (2016) 344–363 

Table 1 

Constraint primitives 

Primitive Description 

Assign(i, j) Input: a component instance and a node. 

Effect: a constraint that assigns component i to node j 

TurnToBinaryResource(c, n, c_list) Input: a component instance, a node, and a set of components that are using the resource. 

Effect: a constraint that assigns component c to node n, and collocates all the client components present in c_list with c. 

Enabled(i) Input: a component instance. 

Effect: a Boolean expression that is true if the component is assigned to a node; false otherwise. The constraint sums the row of 

the component instance and checks if it is greater than zero. 

CollocateComponents(c1, c2) Input : two component instances. 

Effect: a constraint that ensures that the component instances must be assigned to the same node. 

DistributeComponents(c_list) Input: a list of component instances. 

Effect: a constraint that ensures that the component instances must be assigned to different nodes. 

Communicates(i,j) Input: two component instances. 

Effect : a constraint that makes sure that there is a link between the nodes,the components are deployed on. If the,two 

components are on the same node, the constraint is still satisfied. 

ForceExactly(f, c_list, n) Input: a function and a list of components; a positive integer n. 

Effect: a constraints that makes sure that exactly n of the components in the list must be enabled, to provide the function. 

ForceAtleast(f, c_list, n) Input: a function and a list of components; a positive integer n. 

Effect: a constraints that makes sure that at least n of the components in the list must be enabled to provide the function. 

ForceAtmost(f, c_list, n) Input: a function and a list of components; a positive integer n. 

Effect: a constraints that makes sure that at most n of the components in the list must be enabled to provide the function. 
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Our resilience analysis tool calculates two fundamental resilience

metrics as a pair of integers: a lower bound and an upper bound

on the degree of resilience. When these bounds are calculated, all

possible remedial actions are considered. The lower bound mea-

sures the least number of faults that can (but not necessarily) lead

to a complete system failure. The upper bound is the maximum

number of faults the system can possibly tolerate due to the re-

medial actions of the reconfiguration engine; a higher number of

faults will lead to a system failure, regardless of redundancy. 

In simple terms, the upper bound is an optimistic resilience

metric and the lower bound is a pessimistic resilience metric. If

we are designing a safety critical system, the system designer will

evaluate design choices based on the pessimistic criteria. However,

for a regular enterprise system, a number within the two bounds

will be used. It can be argued that the system requires a larger de-

gree of redundancy around critical components to achieve a larger

lower bound, increasing the overall cost of the system. Below we

provide a formal definition of these two resilient metrics. 

Definition 6. A reliability block diagram RBD ( Src, Snk, C, N, Dep )

is a directed graph whose nodes are the system components or

source/sink nodes ( Src ∪ Snk ∪ C ∪ N ). An edge between a node A

and a node B means that B depends on A. Dep : Src ∪ C ∪ N ×
Snk ∪ C ∪ N . 

Definition 7. The worst-case resilience is defined as the least

number of failures that will render one or more system goals un-

achievable. Alternatively, the worst-case resilience is the number

of the node disjoint paths in the RBD. 

Definition 8. The best-case resilience is defined as the maximum

number of failures that can be sustained while the system goals

are met. Alternatively, the best-case resilience is the number of

parallel paths in the RBD. 

At design-time, we compute these metrics for a system design.

We consider a system design as a pair: (a) an initial design i.e. the

initial configuration point and (b) the configuration space. While

the initial design describes the initial state of the system without

any failure, the configuration space implicitly describes all the fea-

sible designs. If a primary fault causes secondary faults of other

system entities, it is captured by the logical constraints. For exam-

ple, to enforce that the failure of a component brings down its host

process, we can add a constraint that enforces that. However, our
urrent implementation only considers node and component fail-

res. 

In order to perform resilience metrics computation, we for-

ulate the problem as a SMT problem, and use the Z3

olver ( de˜Moura and Bjørner, 2008 ) to solve the SMT problem. We

escribe the deployment as an adjacency matrix (see Definition 5 ).

he constraints are defined in Table 1 . These primitives are trans-

ated to equations over the adjacency matrix. For example, the

rimitive Enabled and Assign are mapped as shown in Listing 1 . The

nabled function returns true if a component with index i is as-

igned to any node. To do this it checks if the sum of the row cor-

esponding to that component is greater than 0. The Assign func-

ion ensures a component is assigned to a particular node. The

ssignment is valid only if the component is not in faulty state.

hus, the component being enabled implies the assignment, which

eans that the element in the component’s row and the node’s

olumn must be one. The variable c 2 n represents the adjacency

atrix in Z3, and Implies is the Python wrapper around the im-

lication in the Z3 library. 

Once the components and the constraints have been gen-

rated, the solver is able to compute solutions. As shown in

lgorithms 1 and 2 , we find the worst case resilience metric by

erforming a breadth-first search in the search space of injected

aults. We inject faults in the solver by specifying constraints, typ-

cally disabling one or more components or nodes. The second

hase of the algorithm is the recursive Breadth-First Search (BFS).

ssentially, we increase the number of faults each round in which

e call the BFS. The BFS combines together all the variations of

aults, and when the level counter reaches zero, the current state is

valuated by making all the components/nodes in the list fail and

hecking if there is a solution. We save the solver state before this

omputation ( push ) and restore it afterward on each control path

 pop ). Since the order is provided by a BFS, whenever we cannot

nd a solution, we have found a minimal number of faults. This is

ur worst case faults. 

The computation of the best-case metric is rather indirect. In-

tead of finding the maximum number of faults, we find a mini-

al configuration, and then subtract its number of elements from

he maximum number of elements in the initial model. This makes

ur computation much more efficient because we can phrase this

roblem as a set of constraints for Z3. We express the number of

odes and components as an integer variable n for the solver, and

e keep calling the solver by requesting a solution with a smaller
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Listing 1. Sample implementation of primitive constraints enabled and assign . 

Algorithm 1 Worst Case Metric Computation — Phase 1: Calling 

BFS 

INPUT: Adjacency Matrix and Constraints 

OUTPUT: Worst case metric 

1: min = 0 

2: for e 0 to | nodes 
⋃ 

components | − 1 do 

3: res = get _ min _ faults _ b f s _ r(0 , [] , e ) 

4: if res == true then 

5: return 

Algorithm 2 Worst Case Metric Computation — Phase 2: BFS 

Traversal — get _ min _ faults _ b f s _ r

INPUT: start, list, level 

OUTPUT: Worst case metric 

1: if level == 0 then 

2: solver.push() 

3: for each element e in list do 

4: fail e 

5: solver.check() 

6: if no solution then 

7: save min as metric 

8: solver.pop() 

9: return true 

10: solver.pop() 

11: return false 

12: for e in range of start and | nodes 
⋃ 

components | − 1 do 

13: res = get _ min _ faults _ b f s _ r(n + 1 , list + [ e ] , le v el − 1) 

14: if res == true then 

15: return true 

16: return false 
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 . If the solver cannot find a solution, the previous solution is the

mallest model. 

We have introduced several metrics, such as, a weighed met-

ic w = W M, where M = (m worst , m best ) , and W is an appropri-

te weighing vector. We extended the notion of this metric for

ubsystems. The vector M for the system can be expressed as

(min (m 

i 
worst ) , sum (m 

i 
best 

)) . The first element takes the minimum of

 

i 
worst for all critical subsystems i . The second element adds all the

 

i 
best 

. Based on the distance in Definition 9 , it is possible to assign

istance metric to the worst and best case metrics. If the distance

s weighed, we need to modify the BFS algorithm to Dijkstra’s path

nding algorithm to compute the worst case, and instead of the

umber of nodes, the distance must be expressed for the solver

or the best case metric. 
. Runtime infrastructure for self-reconfiguration 

This section presents our runtime self-reconfiguration infras-

ructure. First, we provide an architectural overview of our dis-

ributed infrastructure. Then, we present the reconfiguration mech-

nism. 

.1. Architecture overview 

Fig. 6 presents an overview of our resilient reconfiguration in-

rastructure. There are two kinds of nodes - a computation node,

nd a solver node. Each computation node hosts (a) applications,

b) an instance of the distributed database to store the configura-

ion space, the initial configuration point, the current configuration

oint, and deployment actions, (c) a Deployment Manager (DM)

hat is responsible for managing lifecycle of different applications,

nd (d) a monitor to detect failures. There is a notion of a leader

mong different computation nodes and we use the existing capa-

ilities of the distributed database to determine a leader.Unlike a

omputation node, a solver node only hosts an instance of the dis-

ributed database and a Resilience Engine (RE) that can compute a

ew configuration point when a system needs to migrate from one

onfiguration point to another to mitigate failures. Further descrip-

ions of these are provided below. 

Applications : As mentioned in Section 3 , applications hosted by

ur system are component-based. Therefore, each application is a

et of components that interact with each other or with compo-

ents of different applications. All information required to deploy

nd configure these applications on the target system is stored in

 distributed persistent backend. 

Distributed database : A distributed database is required to

tore relevant information such as (a) the configuration space, (b)

he current configuration point, and (c) the initial configuration

oint. The initial configuration point is provided by a system ar-

hitect and is used as the baseline for further reconfiguration when

equired. Well known faults are also stored in the database as part

f the configuration space. We use MongoDB ( MongoDB Incorpo-

ated, 2009 ) as our choice of database and deploy multiple in-

tances of this in a replica set. 

Monitor : A monitor is responsible for monitoring, detecting and

iagnosing failures. This is an important aspect of a resilient sys-

em. However, there exists significant amount of existing work in

his particular research area, including our prior work presented

n Mahadevan et al. (2011b ); Dubey et al. (2011b ); Mehrotra et al.

2012) . As such, our work, presented in this paper, does not focus

n failure monitoring, detection and diagnosis. For our experiments

resented in Section 9 , we simply inject failures by updating sys-

em configuration stored in the database. In essence, monitors in
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Fig. 6. Overview of the distributed self-reconfiguration infrastructure with deployment and reconfiguration action sequences. Initial deployment is triggered when a 

user/system integrator generates and stores the configuration space and the initial configuration point for a system using the design-time modeling tool. Once this is 

done, a resilience engine (RE) is invoked to instigate initial deployment. The RE then computes the required deployment actions and stores them in the database. At this 

point, the deployment managers (DMs) that are responsible for taking these actions are notified after which they execute those commands locally to complete initial de- 

ployment. Reconfiguration is similar, however, unlike a user/system integrator instigating the process, it is a monitor that instigates the process by logging information about 

any detected failure to the database and invoking the RE. This should only be done by a single monitor, as such we dedicate this task to the leader monitor, i.e., the monitor 

running on the leader node. 
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our architecture, as shown in Fig. 6 , are responsible for reporting

diagnosed failures to the database and invoking the Resilience En-

gine (RE) in order to initiate system reconfiguration. 

Resilience engine : A Resilience Engine (RE) is primarily respon-

sible for computing a new configuration point at runtime when

faults occur in the current state. This is important because once

a new configuration point is computed, reconfiguring the system

involves moving the system from the current configuration point,

which is considered faulty, to the new configuration point. The

mechanism used to calculate a new configuration point is de-

scribed in Section 8.2 . In general, a RE first determines different

entities affected by the failure, and then it uses the Z3 solver to

compute a new configuration point, considering various constraints

and available resources. If a new configuration point is successfully

computed, the local database instance is updated accordingly. This

updated information is later used by appropriate DMs to reconfig-

ure the system. 

Deployment manager : In our architecture, Deployment Man-

agers (DMs) running on each node are used as local adapta-

tion engines that are responsible for managing the lifecycle of

application components deployed on its node. Therefore, collec-

tively, these DMs form a distributed deployment and configura-

tion infrastructure that manages various distributed applications

by performing (a) initial deployment and configuration, (b) run-

time adaptation via reconfiguration, and (c) termination. In our

prior work ( Pradhan et al., 2014 ), we identified key requirements

for resilient deployment and configuration infrastructure and im-

plemented a prototype. Here we address the same requirements

but our implementation is different and relies heavily on capabili-

ties already provided by the distributed database. For example, dy-

namic group membership is one of the key requirements identified

and implemented in Pradhan et al. (2014) . However, for the work

presented in this paper, we simply make use of group membership

capability (i.e., replica set) supported by MongoDB. 
As shown in Fig. 6 , DMs in our architecture simply listen for

otification from their local database instance. Although MongoDB

oes not include notification service, we implement a simple no-

ification mechanism based on MongoDB replica set Oplog, which

s a database collection that stores every database event. Once a

M is notified of an event of its interest, it queries the database

o obtain a set of application management actions that it should

erform. These actions will be related to application components

osted on locally on the same node; a DM in one node can-

ot manage application components deployed on a different node.

nce a DM takes required actions, it updates the database accord-

ngly. 

.2. Self-reconfiguration mechanism 

Once a failure is detected, our two-phase resilient recovery

echanism outlined in Algorithms 3 and 4 ensures that the sys-

em undergoes the required reconfiguration. The different actions

nvolved in this mechanism are also illustrated in Fig. 6 . 

Phase 1 — Computing a new configuration point: The first phase

f the reconfiguration mechanism is instigated once a RE is in-

oked after detection of a failure. In this phase, the RE computes

 new configuration point by using information about the failure,

he current configuration point, and relevant deployment and re-

ource constraints in the configuration space. In order to do so, the

E uses aforementioned information to form a SMT problem and

eeds it to the Z3 solver as we did for the design-time resilience

nalysis ( Section 7.2 ). 

Algorithm 3 presents the different steps involved in computing

 new configuration point. In the beginning of this algorithm (step

), a component-to-node (C2N) matrix (see Definition 5 ) is con-

tructed using information about different available components

nd nodes. The next step (step 2) creates a SMT constraint over
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Algorithm 3 Configuration point computation algorithm. 

Input: functions ( f n ), components ( c), nodes ( n ), failure ( f l) 

Output: a valid configuration point 

1: c2 n = a C2N matrix constructed using c and n � See Definition 

5. 

2: cst _ 1 = an assignment constraint over c2 n � Ensures that a 

component is only deployed in a single node 

3: r2 n = a R2N matrix constructed using nodes in n and resources 

provided by each node � R2N matrix is a resource-to-node 

matrix. 

4: r2 c = a R2C matrix constructed using components in c and re- 

sources required by each component � R2C matrix is a 

resource-to-component matrix. 

5: cst _ 2 = a resource constraint over r2 n and r2 c � Ensures that 

resource requirements of components are met. 

6: cst _ 3 = a failure constraint using f l � Ensures that a failed 

node is empty or failed a component is not re-deployed. 

7: solv er = create _ Z3 _ solv er() 

8: add constraint to solv er using f n � Ensures that all functions 

are provided. 

9: add constraint cst _ 1 , cst _ 2 , and cst _ 3 to solv er 

10: solution = null 

11: while true do 

12: resul t = sol v er.check () 

13: if result == unsat then 

14: solv er.pop() 

15: if solution == null then 

16: return null 

17: else 

18: return solution 

19: else 

20: solution = solv er.model() 

21: add distance constraint to the solver using solution 
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Algorithm 4 Reconfiguration commands computation and recon- 

figuration execution algorithm. 

1: procedure Compute Reconfiguration Commands � Executed 

by the RE that computes a new configuration point. 

2: commands = null 

3: c2 n _ new = C2N matrix of the new configuration point 

� This is computed using Algorithm 3 

4: c2 n _ cur = C2N matrix of the current configuration point 

5: for component c in c2 n _ new do 

6: for node n in c2 n _ new do 

7: if c2 n _ curr cn < c2 n _ new cn then � Component missing 

in current 

8: create start command for component c in node n 

9: add command to commands list 

10: if c2 n _ curr cn > c2 n _ new cn then � Component missing 

in new 

11: create stop command for component c in node n 

12: add command to commands list 

13: store commands in the database 

14: 

15: procedure Reconfiguration Execution � Runs infinitely in 

each DM. 

16: if reconfiguration notification received then � One per 

command. 

17: retrieve the recon f iguration _ command from the database 

18: if recon f iguration _ command is for this node then 

19: if recon f iguration _ command == START then 

20: create a new process and save pid in the database 

21: if recon f iguration _ command == STOP then 

22: use component name to retrieve pid from the 

database 

23: kill the process using pid 

24: mark recon f iguration _ command as executed in the 

database 
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he C2N matrix such that a component is only deployed in a sin-

le node. This constraint is encoded in a way to ensure that the

um of each row of the C2N matrix is exactly one. 

The next step (step 3) creates a resource-to-node (R2N) matrix

sing information about different nodes and resources provided

y those nodes. The R2N matrix comprises resources as rows and

odes as columns, and each element of the matrix is the value of

 particular resource provided by the corresponding node. Simi-

arly, a resource-to-component (R2C) matrix is created in the next

tep (step 4) using information about different com ponents and re-

ources required by those components. The R2C matrix comprises

esources as rows and components as columns, and each element

f the matrix is the value of a particular resource required by the

orresponding component. The next step (step 5) of this algorithm

s to create a resource constraint using the aforementioned R2N

nd R2C matrices. This constraint ensures that the resources re-

uired by components deployed on a node is satisfiable. 

Once the assignment and resource constraints are encoded, the

ext step (step 6) in Algorithm 3 is to encode a failure constraint

elated to the failure that was initially detected. If the failure was

 node failure, we encode the constraint such that no components

re deployed on the failed node. Whereas, if the failure was a com-

onent failure, then we encode the constraint such that the com-

onent is not re-deployed. The failure constraint related to compo-

ent failure could be relaxed by ensuring that a component gets

e-deployed but not on nodes where it has previously failed. At

his point, all constraints are encoded and the next few steps (steps

– 9) involves creating a Z3 solver and adding different constraints

o the solver. 
efinition 9. Assume configuration points are represented using

omponent-to-node matrices. The distance between two configu-

ation points CP 1 and CP 2 can be expressed as CP di f f = C 1 − C 2 ,

on f iguration _ distance = sumabs (C di f f , (i )) . 

After adding constraints to the solver, the next set of steps

steps 10–21) is responsible for computing a configuration point

hat is the least distance (see Definition 9 ) away from the current

onfiguration point. In order to do so, we use a recursive logic,

hich upon every successful solution computation (step 20) adds

 distance constraint (step 21) and invokes the solver again. The

istance constraint is encoded using distance between computed

olution and the current configuration point. It is encoded to en-

ure a new solution (one that will be computed in the next round

f iteration) is lesser distance away from the current configuration

oint in comparison to the solution computed in this iteration. As

uch, by adding this constraint, we are asking the solver to find a

etter solution in every iteration of successful solution computa-

ion. There will come a point when the solver will not be able to

nd a better solution (step 13), in which case we check if the so-

ution from previous step is valid (step 15) and return that as the

losest configuration point (step 18). This is an important heuristic

s we do not want the system to deviate too much from its cur-

ent configuration. It also guarantees minimal reconfiguration time

s the number of changes required will be minimal due to the fact

hat the distance between the configuration points is the least pos-

ible. 

Once a new configuration point is computed, it is stored

n the database as a desired state. The next phase of our
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self-reconfiguration mechanism is responsible for using this con-

figuration point to compute reconfiguration commands required to

transition from the current configuration point to the new con-

figuration point; we discuss this is detail below. Here, it is im-

portant to note that our current implementation of the runtime

self-reconfiguration mechanism does not analyze or verify differ-

ent properties (timing, network QoS) of the configuration points

computed at runtime. As mentioned before, this is an important

processes, specially for mobile CPS that host mission critical appli-

cations. However, our work presented in paper demonstrates our

initial effort towards achieving autonomous resilience; integrating

analysis and verification of different properties with the runtime

reconfiguration loop is part of our future work. 

Phase 2 — Computing reconfiguration commands and reconfigur-

ing the system using those commands: The second phase of our

reconfiguration mechanism, shown in Algorithm 4 , is responsi-

ble for computing reconfiguration commands and performing the

reconfiguration itself. In order to compute the reconfiguration

commands required to transition from one configuration point

to another, the compute reconfiguration commands procedure of

Algorithm 4 is used. As shown, this procedure takes C2N matrices

of newly computed configuration point (step 3) and current config-

uration point (line 4) to determine different reconfiguration com-

mands (steps 5–13). To determine reconfiguration commands, we

check how each element of the aforementioned matrices are dif-

ferent when compared to each other (steps 7 and 10). Depending

on the difference we either create a start command or a stop com-

mand. The former results in creation of a new process, whereas,

the latter results in termination of an existing process. 

Once all reconfiguration commands are computed and stored

in the database, the reconfiguration execution procedure of

Algorithm 4 is used to ensure all reconfiguration commands are

executed. This procedure is executed infinitely by each DM. 

When a DM is notified about a reconfiguration command (step

16), it checks if it should execute that command (step 17). A DM

should only execute commands that are targeted for its host node.

Once a DM determines a command that it should execute, it will

check whether the command is a start or stop command and exe-

cute the command accordingly (steps 19–23). Finally, after execut-

ing a command, the DM updates the database to acknowledge that

the command has been executed. Once this happens for all recon-

figuration commands pertaining to a configuration point transition,

we can claim that the system has successfully self-reconfigured. 

9. Case study: fractionated satellite cluster 

In this section, we first present our use case scenario com-

prising three applications deployed on a cluster of fraction-

ated satellite. Second, we demonstrate the design-time resilience

metrics computation. Finally, we demonstrate the runtime self-

reconfiguration mechanism using a small scale system, and eval-

uate it using a larger system. 

9.1. Scenario 

In order to perform different demonstrations and evaluation, we

use a fractionated satellite scenario where we have a simple sys-

tem with the following objectives: (a) satellite flight applications

to control the position of each satellite, (b) an imaging application

to capture images, and (c) a cluster flight planning application to

coordinate the flight paths and positions of the different satellites.

The software (application) model for this system is shown in Fig. 7 .

We use a GME ( Ledeczi et al., 2001 ) based modeling front-end that

allows a user to model complex systems using a graphical model-

ing language. 
As shown in Fig. 7 , this system is comprised of

hree different kinds of applications: (a) a single instance

f ClusterFlightApplication , which is responsible for satisfying

he objective of coordinated flight planning, (b) three different

nstances of a flight control application called SatelliteFlightAp-

lication , one for each node for a three-node initial deployment

cenario, and (c) a single instance of WAMApplication , which is

esponsible for satisfying the imaging objective. The HardwareCon-

gurations for this application suggest the requirements for the

hree nodes, which are named SatAlpha, SatBeta , and SatGamma in

he model. The initial deployment maps the ClusterFlightApplication

o node SatAlpha , the SatelliteFlightApplication instances to all three

odes, and three different components of the WAMApplication to

he three different nodes. 

Each instance of the SatelliteFlightApplication is composed of

hree components (a) an OrbitController component, which is re-

ponsible for manipulating thrusters to control satellite movement

nd position, (b) a GroundInterface component, which is responsi-

le for communicating with a ground station, and (c) a SatelliteBus-

nterface component, which is responsible for interacting with the

atellite bus. The ClusterFlightApplication contains a single compo-

ent, a TrajectoryPlanner component, which is responsible for plan-

ing and co-ordinating flights paths of the different satellites. The

AMApplication is composed a HighResolutionImageGrabber compo-

ent, a LowResolutionImageGrabber component, and a ImageProces-

or component; the first two components are responsible for cap-

uring images of varying resolution while the third component is

esponsible for processing different images. 

Not shown in Fig. 7 are the different devices present on each

ode. For our scenario, all three nodes host a BusController device

o control the satellite bus and a GroundInterface device to com-

unicate with a ground station. In addition, node SatAlpha also

osts an HR_Camera device to capture high resolution images, an

R_Camera device to capture low resolution images, and a GPU de-

ice to process captured images. Similarly, node SatBeta also hosts

 GPU device, and node SatGamma also hosts an HR_CAMERA de-

ice. In addition to representing the system configuration after the

nitial deployment, Fig. 8 also shows all these different devices

ith respect to their hosting nodes. 

.2. Resilience metrics calculation 

Our current implementation of the design-time resilience anal-

sis tool only considers software component (application) failures

nd node failures. As such, the resulting resilience metrics are true

nly for component failures and node failures. In other words, the

inimum and maximum number of failures tolerable are strictly

omponent failures or node failures. Resilience analysis of system

onfiguration presented in Fig. 8 results in resilience metrics of (1,

2), where 1 is the worst-case metric and 12 is the best-case met-

ic. This means that the system is capable of tolerating at least one

ailure, regardless of what the failure is, and at most twelve fail-

res. Again, these failures are either component or node failures.

he thirteenth failure, regardless of which node or component it

s, will definitely cause the system to fail. 

To further explain the computed resilience metrics, let us exam-

ne the worst-case metric. Since the worst-case metric of 1 tells us

hat the system is always capable of tolerating a single failure, let

s come up with a scenario where two failures result in the sys-

em to be non recoverable. If node SatGamma fails followed by the

ailure of node SatAlpha , we lose both image capturing components

f which at least one is required by the ImageProcessor component

n node SatBeta . Therefore, in this scenario, the two node failures

as enough to render the system non recoverable. 

Similarly, we can evaluate the best-case metric by coming up

ith one or more scenarios that shows how the system can
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Fig. 7. Software model design using GME based modeling language. 

Fig. 8. System configuration after initial deployment of model in Fig. 7 . 
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olerate twelve failures. One such scenario is as follows - (a) fail-

re of the GroundInterface component on node SatGamma , which

as no effect as there are two other GroundInterface components,

b) failure of the GroundInterface component on node SatAlpha ,

hich doesn’t require instantiation of the component on another

ode but it does result in the TrajectoryPlanner component be-

ng restarted on node SatBeta since this node has a functioning

roundInterface component to receive important commands from

round station, (c) failure of the HighResolutionImageGrabber com-

onent on node SatGamma , which results in this component being

estarted on node SatAlpha , (d) failure of the SatelliteBusInterface

n node SatGamma , (e) failure of the OrbitController component on

ode SatGamma , (f) failure of node SatGamma itself, (g) failure of

he TrajectoryPlanning component on node SatBeta resulting in it
eing restarted on node SatAlpha , (h) failure of the ImageProcessor

omponent on node SatBeta resulting in it being restarted on node

atAlpha , (i) failure of the LowResolutionImageGrabber on node Sa-

Alpha , which has no affect as the ImageProcessing component only

equires one out of two image capturing components, (j) failure

f the GroundInterface on node SatBeta , which results in system

till being functional but not able to receive any new ground com-

ands, (k) failure of the SatelliteBusInterface component on node

atBeta , and finally (l) failure of the entire node SatBeta , which re-

ults in all remaining components being hosted on node SatAlpha . 

The purpose of computing these resilient metrics is to quan-

ify the resilience of a system. Using these metrics we can com-

are between different deployments or versions (for example, with

ifferent resources) of the same system and determine the most
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Fig. 9. Resilience metrics (left) and corresponding computation time (right) for different variation of system model presented in Fig. 7 . A represents the default model 

(shown in Fig. 7 ), B represents a model in which a GPU device is removed from SatAlpha , C represents a model in which a HR_Camera is added to SatBeta , D represents a 

model in which a new node similar to SatGamma is added to the system, and E represents a model in which a new node similar to SatAlpha is added to the system. 
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resilient. Based on this analysis, we can judge the tradeoffs be-

tween resilience and the different system designs, and make a

well-informed decision before deploying a system. 

Fig. 9 presents resilience metrics ( Fig. 9 (a)) and correspond-

ing computation time ( Fig. 9 (b)) for different variations of system

model presented in Fig. 7 . As shown in the figure, maximum fail-

ure computation time ranges between 20 and 30 s. Similarly, mini-

mum failure computation time ranges between 0 and 20 s for sys-

tem models A –D . However, minimum computation time for sys-

tem model E is considerably higher at 126.63 s. This is because

when a new node with five different devices is added to the de-

fault model, the search space expands considerably for each failure

scenario considered. However, this is acceptable as this analysis is

done during design-time. 

9.3. Runtime self-reconfiguration mechanism demonstration 

In this section, we demonstrate the self-reconfiguration capa-

bility provided by our runtime infrastructure. Fig. 8 shows the sys-

tem configuration after the initial deployment. From this figure, it

is clear that the system requires three different objectives – Satel-

liteFlight, Imaging , and ClusterFlightPlanning – to satisfy its high-

level goal. To test resilience, we first inject a component failure 1 by

failing the ImageProcessor component in node SatBeta . Once a Re-

silience Engine receives this failure report, it computes a new con-

figuration point and a list of reconfiguration commands to transi-

tion the system from its current configuration point (faulty) to the

new configuration point. In this particular scenario, the Resilience

Engine computes a solution that requires the ImageProcessor com-

ponent to be moved from node SatBeta to SatAlpha ; this makes

sense because the ImageProcessor component requires GPU device

and the only other node with a GPU device is node SatAlpha . The

resulting configuration is presented in Fig. 10 . 

9.4. Runtime self-reconfiguration mechanism evaluation 

Fig. 11 presents result of two experiments we performed to

evaluate our self-reconfiguration mechanism. First, we compare the

time taken to compute new configuration points after failures in

the system model presented in Fig. 7 . As shown in the Fig. 11 (a),

we consider four failures; first two failures are component failures
1 Failure injection is as simple as changing the status of the device to mark it as 

failed. 

t  

h  

l  
 ImageProcessor and LowResolutionImageGrabber ), third failure is a

ode failure ( SatBeta ), and fourth failure is another component fail-

re ( TrajectoryPlanner ). The time taken to compute a new configu-

ation point for all four failure cases is 0.34 s on average, with

inimum 0.31 s and maximum 0.36 s. The range here is 50 mil-

iseconds. This is because all four failures are invoked in the same

ystem, which means the size of the C2N matrix will be the same.

Second, we compare the time taken to compute new configu-

ation points for different system models. As shown in Fig. 11 (b),

e use seven different system models and for each system model

e compute the average configuration computation time with re-

ards to the same four failures that we used for our first eval-

ation experiment ( Fig. 11 (a)). Although all seven system models

omprise similar nodes and components, the number of nodes and

omponents in each system model is different. System model A

s the simplest and resembles the basic system model shown in

ig. 7 ; it comprises of three nodes and thirteen components. Sys-

em model B comprises five nodes and nineteen components. Sys-

em model C comprises eight nodes and twenty-eight components.

ystem model D comprises ten nodes and thirty-four components.

ystem model E comprises twelve nodes and forty components.

ystem model F comprises fifteen nodes and forty-nine compo-

ents. System model G comprises eighteen nodes and fifty-eight

omponents. So we can see that these system models have in-

reasing complexity. As we can clearly see in Fig. 11 (b), systems

ith higher complexity have higher average configuration compu-

ation time. The reason behind this is the size of the C2N matrix

ver which all constraints are encoded. Furthermore, the size of

he C2N matrix also tells us about the size of the resource matri-

es (R2C and R2N). Since, we are considering increasing scale of

he same system model, we can argue that the size of the R2C and

2N matrices will also increase as the system complexity increases.

s such, the more complex a system, the larger its configuration

pace (all three different matrices and corresponding constraints

ritten over them) and therefore the increase in time taken by the

nderlying Z3 solver to find a solution. 

Here, we would like to state that, although Fig. 11 (b) presents

esult based on single iteration of the experiment, we were able to

eproduce similar results for multiple iterations of the same exper-

ment. 

From these results we can see that configuration computation

ime increases with increase in system complexity. As such, we

ave to be careful when choosing what classes of systems this so-

ution is applied to. For example, it might not be feasible to deploy
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Fig. 10. System configuration after recovering from ImageProcessor component failure in node SatBeta . Compare it to the initial configuration shown in Fig. 8 . 

Fig. 11. Configuration computation time for failures in a simple model (left) and average configuration computation time for four failures in different system models (right). 

The different system models have increasing complexity; A has three nodes and thirteen components, B has five nodes and nineteen components, C has eight nodes and 

twenty-eight components, D has ten nodes and thirty-four components, E has twelve nodes and forty components, F has fifteen nodes and forty-nine components, and G 

has eighteen nodes and fifty-eight components. 
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this solution as is to large-scale hard real-time systems. To resolve

this issue, we are currently working on developing a variation of

the self-reconfiguration mechanism presented in this paper. The

self-reconfiguration mechanism presented in this paper follows a

reactive approach, where the system reacts to failures. However,

instead of reacting to failures, another interesting approach would

be to look-ahead for failures, and pre-compute and store solutions

before failures happen. 

10. Conclusions 

Mobile distributed Cyber-Physical Systems (CPS) – such as frac-

tionated spacecraft, UAV clusters and team-centric autonomous

robots – hosting heterogeneous embedded applications have

grown in popularity in recent years. Such platforms are typi-

cally deployed by composing several smaller CPS units, each with

its own complex physical dynamics and time-varying resource

requirements. Resilience is an important attribute for such dis-

tributed systems since these platforms could potentially be hosting

mixed-priority mission-critical applications with various functional

goals. Systems such as fractionated spacecraft and UAV clusters are

remotely deployed, which necessitates resilience to be autonomous

since human intervention is very limited. Resilience autonomy is

important also because these systems can be very complex for

manual reconfiguration. It is therefore necessary to study such sys-

tems both prior to deployment and during runtime lifecycle man-

agement to ensure that failures are either completely avoided or

safely handled. 

In this respect, we have identified two key requirements: (a)

the need to analyze the system at design-time before deployment

in order to admit the deployment units as sufficiently safe for op-

eration, e.g., with respect to timing and network requirements, and

(b) the need for a runtime infrastructure to handle failures by per-

forming self-reconfiguration in an autonomous manner. To address

these requirements, this paper makes the following contributions:

(a) a set of design-time analysis tools to perform timing, network

QoS, and resilience analysis, and (b) a runtime infrastructure that

governs the self-reconfiguration mechanisms. The timing and net-

work analysis tools were evaluated in our prior work. In this pa-

per we present empirical evaluation of the design-time resilience

analysis tool and the runtime self-reconfiguration infrastructure.

The algorithms and computations discussed here include the re-

sult of multiple iterations and lessons learned while implementing

DREMS ( Levendovszky et al., 2013 ). 

In the future, we intend to extend the work presented in this

paper by focusing on following runtime infrastructure improve-

ments: (a) integrating design-time tools with the runtime infras-

tructure such that new configuration points calculated at runtime

can be analyzed and validated before reconfiguring the system, (b)

adding comprehensive monitoring, detecting, and diagnosing capa-

bilities, (c) adding mechanisms to handle temporary and intermit-

tent failures, and (d) implementing a complete look-ahead algo-

rithm to reduce configuration computation time. 
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