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Abstract

Next generation large-scale distributed systems – such as smart cities – are dynamic, heterogeneous and multi-domain
in nature. The same is true for applications hosted on these systems. Application heterogeneity stems from their Unit of
Composition (UoC); some applications might be coarse-grained and composed from processes or actors, whereas others might
be fine-grained and composed from software components. Software components can further amplify heterogeneity since there
exists different component models for different domains. Lifecycle management of such distributed, heterogeneous applications
is a considerable challenge.

In this paper, we solve this problem by reasoning about these systems as a Software Product Line (SPL) where individual
dimensions of heterogeneity can be considered as product variants. To enable such reasoning, first, we present UMRELA
(Universal feature-Model for distRibutEd appLicAtions), a conceptual feature model that identifies commonalities and variability
points for capturing and representing distributed applications and their target system. This results in a product line of a family
of distributed applications. UMRELA facilitates representation of initial configuration point, and the configuration space of
the system. The latter represents all possible states the system can reach and is used as an implicit encoding to calculate new
configuration points at runtime. Second, we present a prototype Application Management Framework (AMF) as a proof of
concept configuration management tool that uses UMRELA to manage heterogeneous distributed applications.
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Abstract— Next generation large-scale distributed systems –
such as smart cities – are dynamic, heterogeneous and multi-
domain in nature. The same is true for applications hosted
on these systems. Application heterogeneity stems from their
Unit of Composition (UoC); some applications might be coarse-
grained and composed from processes or actors, whereas others
might be fine-grained and composed from software components.
Software components can further amplify heterogeneity since
there exists different component models for different domains.
Lifecycle management of such distributed, heterogeneous ap-
plications is a considerable challenge.

In this paper, we solve this problem by reasoning about these
systems as a Software Product Line (SPL) where individual
dimensions of heterogeneity can be considered as product
variants. To enable such reasoning, first, we present UMRELA
(Universal feature-Model for distRibutEd appLicAtions), a
conceptual feature model that identifies commonalities and
variability points for capturing and representing distributed
applications and their target system. This results in a product
line of a family of distributed applications. UMRELA facilitates
representation of initial configuration point, and the configura-
tion space of the system. The latter represents all possible states
the system can reach and is used as an implicit encoding to cal-
culate new configuration points at runtime. Second, we present
a prototype Application Management Framework (AMF) as
a proof of concept configuration management tool that uses
UMRELA to manage heterogeneous distributed applications.

I. INTRODUCTION

Next generation large-scale distributed systems, such as
smart cities [1], [2], [3], are dynamic, heterogeneous and
multi-domain in nature. They are dynamic because the par-
ticipating nodes of these systems can join or leave a cluster
at any given time; heterogeneous because the participating
nodes can have varying resources since some can be as
simple as RFIDs and simple sensors running on batteries
while others can be something more resourceful; multi-
domain because these systems can comprise multiple sub-
systems pertaining to various domains as we show in our
motivating scenario presented in Section III.

These systems can be used as a platform for hosting a va-
riety of distributed applications, where each application can
provide and/or require one or more services. Like the system
itself, these applications are also dynamic, heterogeneous
and cross multiple domains. These applications are dynamic
because they can be added, removed, reconfigured, and
updated at any time; similar to “apps” in smartphones and
tablets. These dynamic applications are different when com-
pared to traditional distributed applications that are static,
one-time deployment applications. Managing such dynamic

applications is a considerable challenge particularly in the
case of large-scale distributed systems that are remotely
deployed and therefore have limited opportunity for human
interventions.

The challenge of managing dynamic applications in large-
scale distributed systems is further amplified if we consider
the heterogeneous nature of these applications. Heterogeneity
in applications stems from their varying Unit of Composi-
tion (UoC). Some applications can be coarse-grained, i.e.,
composed from processes or actors, while others can be fine-
grained, where they follow the Component-Based Software
Engineering (CBSE) [4] approach by using software compo-
nents as the UoC.

The variability in the UoC of applications gives rise to
a corresponding variability in the middleware technologies
used to develop the applications. For example, middleware
such as Alljoyn [5], MQTT [6], ROS [7], and DDS [8]
can be used for coarse-grained applications; whereas, fine-
grained applications that use software components can rely
on different underlying component models. Component mod-
els are at the very core of the CBSE approach. However, due
to varying demands and domain-specific requirements, there
exist many different component models [9]. For example,
COM [10] and .NET [11] from Microsoft, , Enterprise Java
Beans (EJB) [12] from Sun/Oracle, and CORBA Component
Model (CCM) [13] from Object Management Group (OMG)
are some of the most popular component models. CCM
is a standard defined by OMG and there exists multiple
implementations of this standard. This heterogeneity in ap-
plication UoC and associated middleware further complicates
application management.

In this paper we present a novel approach to addressing the
challenges of managing distributed applications by treating
the different heterogeneous instances of application design
as variants of a software product line (SPL) [14], [15], [16].
The key idea behind SPLs is to support the development
of a family of similar software products, rather than in-
dividual systems, through a systematic and planned reuse
of common assets (commonalities) in tandem with product
specific variabilities. Figure 1 presents a high level variability
model of distributed applications that captures application
heterogeneity.

This paper makes the following contributions: first, we
show how the various dimensions of heterogeneity described
above form the basis of our feature model called UM-
RELA (Universal feature-Model for distRibutEd appLicA-



Fig. 1. High level application variability model.

tions). UMRELA is a conceptual feature model that identi-
fies commonalities and variability points for capturing and
representing distributed applications, with varying UoC, and
their target system. It allows us to create a product line of a
family of heterogeneous, distributed applications. UMRELA
facilitates representation of both (a) the initial configuration
point of the system, which is required for initial deployment
of related applications, and (b) the configuration space of the
system. The configuration space is an implicit encoding that
can be used to calculate new configuration points at runtime
if the system needs to reconfigure to mitigate failures or
anomalies.

Second, we present the architecture of a prototype Appli-
cation Management Framework (AMF), which is a configu-
ration management tool that leverages UMRELA to manage
heterogeneous applications. The architecture of AMF com-
prises platform-independent and platform-specific modules.
The former uses UMRELA to monitor the configuration
space and determine generic application management ac-
tions. The latter uses specific plugins to handle platform
specific management actions depending on the UoC.

The rest of the paper is organized as follows: Section II
presents related research work and compares them with UM-
RELA; Section III describes a concrete motivating scenario
for our work presented in this paper; Section IV describes
UMRELA in detail; Section V presents a use case scenario
by describing the prototype AMF; and finally Section VI
provides concluding remarks and alludes to future work.

II. RELATED WORK

In this section we present existing related research and
compares them to our work presented in this paper. We
roughly classify existing work into three groups - (a) Model
Driven Engineering (MDE) for large scale distributed appli-
cations, (b) standardization activities, and (c) management
infrastructure for large scale distributed applications.

A. MDE approach for large scale distributed applications

In [17], authors present K@RT, an aspect-oriented and
model-driven framework for supervising component-based

systems. The purpose of this framework is to facilitate de-
velopment, test and validation of Dynamic software Product
Lines (DSPL) [18]. DSPLs are useful for modeling adaptive
systems as they can reconfigure themselves at runtime by
modifying corresponding feature model. K@RT is based on
a generic and extensible metamodel to represent component-
based systems.

This work was extended in [18] by presenting a frame-
work, called DiVA, for managing dynamic variability in
adaptive systems. DiVA can be used to model a dynamic
component-based system. The different metamodels resulted
in different domain specific modeling languages that can be
used to model (a) feature model that describes the system’s
variability, (b) context model that specifies the system’s
environment, (c) reasoning model that describes selection of
features based on context, and (d) architecture model that
describes the component-based architecture. In general, the
idea here is to observe system changes. Any change in the
system can possibly result in changes in the context model
which then results in the update of the feature model (i.e.
DSPL). The updated features of the feature model is con-
verted to the aspect model in order to obtain corresponding
global configuration which is first checked for correctness
and then used to derive appropriate configuration actions to
adapt the system from the current configuration to the one
obtained from the abstract model representation of updated
feature model.

DiVA is a very interesting approach to achieving dynamic
systems by using DSPLs. However, this work is strictly
related to fine-grained applications composed of software
components. One of the key challenges we are trying to
address in our work presented in this paper is to design
a model that can be used for heterogeneous applications.
Another key difference is how DiVA performs reconfigura-
tion. Unlike DiVA, we do not consider UMRELA to be a
DSPL. As such, modifying the feature model itself does not
initiate reconfiguration. In our approach, configuration points
and space can be represented using UMRELA and these are
what drive our reconfiguration logic.

B. Standardization activities

An advantage of technology standardization is the pos-
sibility of interoperability. Having a common source is
beneficial in adding mechanisms for interoperability between
implementations that are based on the common source. In
case of coarse-grained applications, processes or actors can
use different kinds of middleware and frameworks, as shown
in Figure 1, in order to communicate with others in a large
scale distributed scenario. Standardization at this level of
application granularity would mean standardizing the various
middleware that processes or actors can use. To the best
of our knowledge, there does not exists any previous work
related to this. Since these are vendor specific products,
standardization might not be feasible at all. Solutions towards
interoperability between these middleware is something that
we are interested in and is part of our future work but is out
of scope for this paper.



However, for fine-grained applications composed from
software components, there exists some component model
standards but even these standards are domain-specific.
For example, the Object Management Group’s (OMG)
CORBA Component Model (CCM) [13] is one of the
most common component model standard that has differ-
ent variations. Light-weight CCM (Lw-CCM) [19] is one
such variation of CCM that is targeted towards resource-
constrained Distributed Real-time Embedded (DRE) systems.
Other examples of component model standardization are
AUTOSAR [20] and EJB; AUTOSAR is targeted towards
automotive domain, whereas, EJB is targeted towards server-
side components. This shows that, even though there exists
standard component models, they are specific to certain do-
mains and still necessitate a common abstract representation
if they were to be used in a multi-domain scenario.

Currently, OMG is leading the effort towards achiev-
ing a Unified Component Model (UCM) [21]. UCM is
OMG’s approach to evolve Lw-CCM, by overcoming its
shortcomings, and eventually replace Lw-CCM. One primary
shortcoming of Lw-CCM is that it is tightly coupled to the
CORBA standard. Therefore, one of the key requirements of
UCM is to achieve a component model which is completely
independent of any distribution middleware; the middleware
should be completely pluggable via connectors. Another
UCM requirement is better MDE support. This requirement
exists to facilitate standard meta-models for UCM concepts,
which will eventually result in tools and vendor independent
models. One possible approach of doing this, as proposed
by CEA [22], is to use UML to model UCM concepts. This
approach is very close to our work presented in our paper.
However, the obvious difference is that UCM is targeted only
towards fine-grained, component-based applications. Having
said that, we will be following UCM’s progress closely.

C. Management tools for distributed applications
Large scale distributed systems such as smart cities are dy-

namic and remotely deployed. This necessitates application
management tools that are capable of managing remotely
deployed distributed applications of varying granularity. For
coarse-grained applications, various Configuration Manage-
ment (CM) tools such as Chef1, Puppet2 could be used
to perform remote deployment, configuration and updates.
However, these CM tools by themselves cannot be used
as runtime management tools. Furthermore, these tools are
not intended to support management of component-based
applications. Deployment specific tools such as Capistrano3

and Fabric4 have similar issues. Docker5 with compatible
deployment tool such as Centurion6 can be used to deploy
docker containers but these are not suitable for component
models such as CCM which require explicit wiring between
components that use point-to-point interactions.

1https://www.chef.io/chef/
2puppetlabs.com
3capistranorb.com
4www.fabfile.org
5https://www.docker.com
6https://github.com/newrelic/centurion

For fine-grained applications composed from software
components pertaining to different component models, there
exists multiple management tools. However, these tools are
specific to their component models; there does not exist any
generic management tool or framework. DeployWare [23]
can be used to deploy Fractal [24] components in grid
environment. GoDIET [25] can be used to deploy DIET
components in grid environment. LE-DAnCE [26] can be
used to deploy Lw-CCM components. In this paper, we
present a application management framework that, given
appropriate plugins, can be used as a generic management
tool for heterogeneous applications.

III. MOTIVATIONAL SCENARIO

In this section we present Emergency Response System
(ERS) as a smart city application that spans multiple domain
to highlight the challenges. As shown in Figure 2, ERS
consists of 5 different domains where each domain can
be treated as a different sub-system. Following are brief
descriptions of each domain:

Domain A represents smart buildings equipped with smart
devices – such as smart smoke detectors, thermostats, eleva-
tors – that use micro-controllers. Since devices in this domain
use micro-controllers we can assume fine-grained applica-
tions that are composed from components with µ-Kevoree
[27] as an example of the underlying component model.
These applications would detect emergency situations and
report to appropriate remote application servers in Domain
B.

Domain B represents servers for smart building applica-
tions. These application servers are remotely hosted on some
cloud or datacenter and are responsible for receiving incident
reports from smart buildings, processing the report and
forwarding meaningful information to application in Domain
C. Timing and reliability is crucial for these applications.
Furthermore, these server applications will need to handle a
large amount of data. Therefore, applications in this domain
can be coarse-grained and implemented on top of data
oriented middleware such as DDS [8], 7, which also supports
flexible Quality of Service (QoS) properties.

Domain C represents a sub-system consisting of a cluster
of small satellites. In our scenario, this sub-system is used to
provide GPS location dissemination application, which takes
input from an application in Domain B, calculates precise
GPS location of the incident, and sends it to smart Road Side
Units (RSUs) in Domain D. Applications in this domain can
be built using F6COM [28], which is designed for dynamic,
resource-constrained, embedded systems such as a cluster of
satellites.

Domain D represents sub-system consisting of smart
RSUs. In our scenario, this sub-system is used to provide
GPS notification (location forwarding) application. This ap-
plication takes the GPS location as input from the corre-
sponding application in Domain C and forwards that infor-
mation to nearby emergency response vehicles. Since RSUs

7Data Distribution Service (DDS) is an OMG standard that has been
implemented by different vendors.



Fig. 2. Emergency Response System consisting of five domains/sub-systems.

are embedded systems that require real-time properties,
Light weight CORBA Component Model (LwCCM) [19]
can be used as the underlying component model to build
fine-grained, component-based applications. Connectors are
required for this domain as well.

Domain E represents a sub-system consisting of emer-
gency response vehicles such as police vehicles, fire trucks,
and ambulances. In our scenario, this sub-system is used
to receive GPS notification from Domain D so that the
aforementioned emergency response vehicles can attend to
the initial incident site and provide the required services.
AUTOSAR [20] is one component model that can possibly
be used for applications in this domain.

The above description of the ERS system shows the need
for a of a common application representation model that can
be used to manage such heterogeneous applications. Further-
more, requirements for inter-domain interaction and therefore
communication interoperability across different middleware
is also evident. Interoperability for large-scale, dynamic,
and heterogeneous distributed system is of keen interest to
researchers working in the field of the Internet of Things
(IoT) [29]. However, communication interoperability is out
of scope for our work presented in this paper and is part of
our future work.

IV. UMRELA FEATURE MODEL

This section describes the UMRELA feature model in
detail. We first present an overview of a target system
architecture for UMRELA. Second, we present the core
feature model and describe the different categories and
entities of UMRELA to show how it can be used to represent
heterogeneous applications with varying UoC. Third, we
show how configuration points and space represented using

UMRELA can be used to re-configure applications.

A. System overview

The target system consists of cluster of remote deployed
devices. As shown in Figure 3, each device hosts an Operat-
ing System (OS). It also hosts one or more communication
middleware that are compatible with the underlying OS. A
communication middleware essentially provides well defined
patterns for both local and remote connections. Some exam-
ple of such communication middleware that are relevant for
large-scale distributed systems are different implementations
of OMG’s DDS [8], Alljoyn [5], MQTT [6].

Each device can also host one or more component models
to facilitate fine-grained applications. Component models de-
pend on specific underlying middleware to allow components
to interact with each other. For example, Lw-CCM, which
is an implementation of OMG’s CCM standard, requires
underlying middleware that is an implementation of OMG’s
CORBA standard.

Furthermore, each node can host multiple applications and
each application can use different middleware or can be com-
posed using components pertaining to different component
model. Each application can have multiple implementations.
However, regardless of the implementation, applications can
provide and/or require one or more services. Since the
target system is composed of remotely deployed devices, we
require a distributed infrastructure that is capable of handling
lifecycle of aforementioned heterogeneous applications. As
a solution, Section V presents a prototype Application Man-
agement Framework (AMF).

B. Feature model description

Figure 4 presents a version of the simplified UMRELA
feature diagram. For better understanding, UMRELA can



Fig. 4. Overview feature diagram of UMRELA.

Fig. 3. Overview of target system architecture.

be classified into five different categories - (a) assemblies
category, (b) components category, (c) connections category,
(d) hardware category, and (e) constraints category. The fea-
ture diagram shown in Figure 4 consists of features belong-
ing to assemblies, components, hardware, and constraints
categories. We use UML class diagrams to better explain
commonalities and variability points of some categories
which otherwise might not be clear from the feature model in

Figure 4. Following is a detailed description of each category
of UMRELA:

1) Assembly Category: Figure 5 presents a UML class
diagram consisting of entities belonging to the assembly
category. This category consists of entities that allows hier-
archical structuring of applications allowing various entities
related to an application to be represented in a hierarchy
that corresponds with the system architecture. Namely, as
shown in Figure 4 and Figure 5, there exists a top level Sys-
temAssembly, which represents a system level assembly
that either contains subsystems or application assemblies.
Each Subsystem represents part of the system, and is spe-
cially useful in cases where a system is multi-domain, like
the ERS example presented in Section III, and each domain
of the system forms a separate part of the overall system.

Application assemblies are either contained
within SystemAssembly or Subsystem depending on
whether the system is divided into multiple subsystems.
Each ApplicationAssembly represents an application
and it consists of node assemblies. Since we are
considering distributed applications that are deployed
on distributed system consisting of multiple participating
nodes, a NodeAssembly entity is used to represent parts



of an application that belongs to a particular node.
Therefore, an application assembly can consist of multiple
node assemblies. Each NodeAssembly consists of process
assemblies, where each ProcessAssembly represents parts
of an application that belongs to a particular process.
Each ProcessAssembly, in turn, consists of multiple
component assemblies, which is useful only for fine-grained
applications composed of one or more ComponentInstance.
For coarse-grained applications, ApplicationImplementation
and ApplicationArtifact can be used to represent appropriate
application implementation and artifact.

ApplicationAssembly, NodeAssembly, ProcessAssembly
and ComponentAssembly entities are deployable entities
and therefore have associated states (INACTIVE, AC-
TIVE, FAULTY), and commands (DEPLOY, TEARDOWN,
NOACTION). Furthermore, each of these entities can also
contain Constraints, Connection and AssemblyPort. Con-
straints are described with further detail in Section IV-B.5.
Connection and assembly port entities are used to represent
connections between different parts of an application. They
are present at every layer of the assembly hierarchy because
connections can be established at different levels. For ex-
ample, there can be connections between two component
instances present in different component assemblies of a
process assembly; in this scenario the process assembly
entity will store appropriate connection since the connection
is between elements of component assemblies that are part
of the process assembly. Furthermore, in order to represent
this connection, the actual communication ports of the com-
ponent instances needs to be propagated to their respective
component assemblies.

System assemblies also contain connections, which are
used to represent interaction between subsystems and their
applications. Also, system assemblies contain Goal, which is
an entity used to represent the goal of the system. A system’s
goal is fulfilled via services provided by different applica-
tions that belongs to that system. For example, the goal of the
ERS system presented in Section III is to be able to provide
automatic emergency response for various incidents that can
happen in smart buildings. Different domains of this system
have their own goals and combination of these domain goals
yields in fulfillment of the overall system goal.

In general, entities of assembly category are used to
represent an application’s layout with respect to the system.
As such, the variabilities arise from how the same application
or application with similar purpose can have varying layouts
depending on the system they will be deployed on. As a
simple example, we can consider a scenario where we have
an application that can be distributed across varying number
of nodes depending on how many nodes are available. In
this scenario, we can have multiple variants (products) of the
application where each variant has different number of node
assemblies. Another example is when similar applications
are implemented using processes and components.

2) Connection category: Due to space constraint, we do
not present a UML class diagram for connection category.
Furthermore, it is also true that features in this category

Fig. 5. UML class diagram for Assembly category.

are less likely to vary as this category only consists of
features required to represent interactions at different levels
of assembly hierarchy, as previously explained in Section IV-
B.1. The main purpose of this category is to ease connection
management, which can be very complicated for large-scale
distributed applications if all connections at different level
of hierarchy is represented using a flat model.

Basically, this category consists of features that allows
communication ports to be propagated from one level of as-
sembly hierarchy to another. For each such port abstraction,
there exists another feature that can be used to identify the
source of the abstraction.

3) Component catogery: Figure 6 presents a UML class
diagram consisting of entities belonging to component cat-
egory. Entities of this category are only used for fine-
grained applications as it allows representation of various
related entities. The ComponentInstance entity represents
the actual component that will be deployed in the system.
Each component instance uses a ComponentImplementation,
while a component implementation implements a Compo-
nentDefinition and contains a logical grouping of different
artifacts that are required to instantiate a component instance.
A component implementation contains multiple Implemen-
tationArtifact each of which refers to an Artifact in the
filesystem. A component definition, via ports (interfaces),
defines interactions of a component. A component defini-
tion can be implemented by multiple different component
implementation and among those various implementations,
a component instance uses one.

Furthermore, since some component models (e.g. Frac-



Fig. 6. UML class diagram for Component category.

tal [24]) support hierarchical components, component in-
stances are recursive. Each component can have associ-
ated Constraints, which allows representation of any require-
ments that a component might have or any requirement that a
component could satisfy. Also, each component can provide
or require services; this is represented using Service entity.

In this category, variabilities can arise due to different
component instance, implementation, definition and artifacts.
A simple and most common scenario is when an application
has multiple variants, each with a different implementation
and related constraints. Another example could be a scenario
where we a variant in which a component instance does not
expose its service, and another variant which does by using
the service feature.

4) Hardware category: As shown in Figure 4, the hard-
ware category of UMRELA represents different nodes that
are part of the distributed system. Each Node could possibly
contain multiple Device, such as camera, thermal sensors, or
GPS. Each node also consists of NetworkInterface, which
contains information about associated IP addresses. Also,
each network interface is part of a Network. Therefore, a
node with multiple network interfaces can be part of multiple
networked cluster. A node could be associated with node-
specific goals as well.

This category of UMRELA, essentially, models the system
on which different applications are hosted. As such, any
variation with respect to features of this category would
represent a different configuration of the system and not the
applications. However, any modification to features of this
category might render some existing application products to
be invalid.

5) Constraints category: Figure 7 presents a UML class
diagram consisting of entities belonging to constraints cate-

Fig. 7. UML class diagram for Constraint category.

gory. Constraints are associated with various features in dif-
ferent categories of our feature model, as shown in Figure 5
and Figure 6. The Constraints feature essentially represents
requirements and satisfiers. Requirements are represented
as Constraint and satisfiers are represented as Provision
in the UML class diagram. Satisfiers are represented as a
type/value pair. Requirements can be of three types - Sim-
pleRequirement, BooleanConstraint, and SubsetConstraint.

Simple requirement, as the name suggests, can be used to
represent very simple requirements as type/value pair. For
example, memory requirement for a particular component
implementation can be represented as type: memory, value:
64 MB. Boolean constraints can be used to represent more
complex constraints as boolean tree that can be n-level deep
and each node in the boolean tree can be any of the three
requirements type. However, the leaf nodes of the tree needs
to be anything but a boolean constraint.

Constraint category also includes Goal feature which is
related to system assemblies, subsystems, and nodes. A goal
is essentially used to represent purpose to entities it is related
to. For example, the entire ERS presented in Section III, has
a collective goal of providing emergency response to smart
buildings. However, each of its subsystems could also have
their own goals, for example, the smart buildings subsystem
has the goal of sensing dangerous situations and relaying
related information promptly. A goal when related to a node
becomes a node-specific goal. A node-specific goal is only
used when certain system or subsystem goals are explicitly
tied to a node due to certain classification of resources
available in that node (or for other similar reasons). A goal is
represented as a collection of different types of constraints.

C. Application reconfiguration

Using features of different categories, UMRELA can be
used to represent the initial configuration point as well as the
configuration space of a system. As shown in Figure 8, the



configuration space of a system consists of multiple config-
uration points among which one is the initial configuration
point. A configuration point is essentially a mapping of one
or more applications present in the system to the hardware
nodes of the system. Adding, updating, or removing appli-
cations, hardware nodes and related constraints results in the
associated configuration growing or shrinking in size.

Fig. 8. Configuration space and re-configuration.

When failures or anomalies occur due to faults or unex-
pected changes in the system, the current configuration point,
which represents the current state of the system is rendered
faulty. Since we have access to the configuration space, we
can calculate a new configuration point at runtime by pruning
the configuration space. Once a new configuration point is
calculated we can reconfigure the system by migrating the
system from the current faulty configuration point to a newly
calculated configuration point.

Detailed description of the runtime configuration calcu-
lation process is out of scope for this paper. In general,
a constraint solver can be used to check the configuration
space for various requirements, provisions, system goals,
application dependencies and deployment constraints. All of
this information can be encoded as a Satisfiability Modulo
Theories (SMT) [30] problem, for which the constraint solver
will find a solution, i.e. a valid configuration point, if there
is one in the configuration space.

In Figure 8, configuration point a denotes the initial
configuration point. Three configuration points including the
initial configuration point are affected by a fault, after which
configuration point b is computed as the new configuration
point and the system migrates to the new configuration point
via reconfiguration. A second fault occurs in the system
rendering configuration point b to be faulty as well. Again, a
new configuration point, configuration point c, is calculated
and the system migrates to this configuration point in the
space. While a constraint solver can be used to calculate
new configuration points in the system, a management infras-
tructure is required to actually reconfigure the system from
one point to another. For this very purpose, we present an
Application Management Framework (AMF) in Section V.

V. USE CASE SCENARIO

In this section we present a prototype Application Man-
agement Framework (AMF) as a proof of concept configu-

ration management system that uses UMRELA. The AMF
presented in this section is capable of managing applications
modeled using UMRELA; it uses UMRELA to access,
maintain and evolve system configuration by deploying,
configuring, reconfiguring, and removing applications from
the system. To better describe the prototype AMF and how
it uses UMRELA, we present an architectural overview of
AMF.

Fig. 9. AMF architecture overview.

Figure 9 presents the architecture of the AMF and shows
how it fits in the overall system consisting of a modeling
front-end based on UMRELA, a generative interpreter, dis-
tributed database, and solver. As shown in the figure, each
node in the system hosts (a) a local instance of the distributed
database, (b) a solver, which is used to calculate new config-
uration points at runtime, (c) multiple user applications, and
(d) an Application Manager (AM). Different AMs present in
a system constitutes the AMF.

Applications are designed using a Domain Specific Model
Language (DSML) based on UMRELA. The interpreter
associated with the aforementioned DSML is capable of
interpreting an application model and generating correspond-
ing configuration points and space as a set of JSON files.
These generated JSON files are then stored in the distributed
database for which we are using MongoDB [31]. System
configuration information stored in this distributed database
is accessed and updated by solvers or AMs. A solver
updates the database when it calculates a new configuration
point. Whereas, an AM updates the database to reflect
consequences of various management actions. Since we are
using document/aggregate oriented databases, there does not



exist an explicit schema that is enforced by the database.
Therefore, solvers and AMs use UMRELA as an implicit
schema to interact with the database.

Figure 9 also presents a detailed architecture of an AM.
Each AM has a platform-independent module and a platform-
specific module. The platform-independent module consists
of the following:

Database Monitor: It is responsible for monitoring local
instance of the distributed database. This functionality is
achieved by monitoring the log file, which is updated by the
database. For example, let’s consider a scenario where a new
application needs to be deployed. Once the configuration re-
lated JSON files are generated and injected into the database,
its log file gets updated accordingly. This update in the log
file is observed by the Database Monitor and information
about each update is provided to the Planner.

Planner: It is responsible for analyzing changes observed
by the Database Monitor. For each update, or a group of
related updates, the planner figures out if any application
management action needs to be taken. In order to do this,
the Planner first checks to see if the changes require any
local action. For example, when deploying a new application,
Planners in each AM checks to see if any part of the new ap-
plication needs to be deployed in their node. Once a planner
determines that local actions are required, it calculates a set
of actions, i.e. a plan, that needs to be executed. This plan is
what transitions the system from current configuration point
to the one stored in the database, which includes the new
application that needs to be deployed.

Solver Proxy: It is responsible for communicating with
the collocated Solver. This communication is required by the
AM to be informed about any configuration changes made
by the Solver in response to failures or anomalies.

Action Executor: The Action Executor is responsible for
executing management actions computed by the Planner. In
order to do so, the Action Executor analyzes each action and
passes them on to the platform-specific module such that
management actions are forwarded to appropriate plugins.

The platform-specific module, as shown in Figure 9,
is a collection of Platform Specific Management Plugins
(PSMP). Each PSMP is responsible for handling manage-
ment actions for a specific component model or middleware.
A PSMP receives generic commands from the Action Ex-
ecutor part of platform-independent module, after which, it
converts that generic command to a set of platform-specific
commands and carrying out those command.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we first presented UMRELA, which is an
abstract feature model that identified commonalities and
variability points for capturing and representing heteroge-
neous distributed applications that can have varying Unit
of Compositions (UoC) and use different middleware. We
motivated the need for UMRELA by presenting the Emer-
gency Response System (ERS), as a large-scale multi-domain
distributed application. Using UMRELA, different heteroge-
neous distributed applications can be represented as a product

line family where each application representation becomes
a product of the family. An application can have multiple
implementations and therefore multiple representation; in
this case, the same application will have multiple products
with varying degree of common features.

This paper also presents a prototype Application Man-
agement Framework (AMF) as a proof of concept con-
figuration management system that uses UMRELA. AMF
is a distributed framework that uses UMRELA to manage
lifecycle of heterogeneous applications. Current version of
AMF includes a platform specific management plugin for
the Lightweight CORBA Component Model (Lw-CCM). As
such, the AMF is capable of managing distributed applica-
tions composed of Lw-CCM components.

Our future work includes plans to (a) extend the AMF
prototype presented by implementing additional platform-
specific management plugins to handle management actions
for different middleware and component models, (b) de-
velop mechanisms to facilitate communication interoperabil-
ity amongst heterogeneous applications, and (c) deploy and
manage large-scale heterogeneous applications simultane-
ously using a fully functional AMF. All of these problems
are challenging, interesting and necessary to make progress
towards next generation of large-scale distributed systems.
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