
CHARIOT: A Domain Specific Language
for Extensible Cyber-Physical Systems

Subhav M. Pradhan, Abhishek Dubey,
Aniruddha Gokhale

Institute of Software Integrated Systems
Department of EECS, Vanderblit University

Nashville, TN, USA
<firstname.lastname>@vanderbilt.edu

Martin Lehofer
Siemens Corporate Technology

Princeton, NJ, USA
<firstname.lastname>@siemens.com

Abstract
Wider adoption, availability and ubiquity of wireless networking
technologies, integrated sensors, actuators, and edge computing
devices is facilitating a paradigm shift by allowing us to transi-
tion from traditional statically configured vertical silos of Cyber-
Physical Systems (CPS) to next generation CPS that are more
open, dynamic and extensible. Fractionated spacecraft, smart cities
computing architectures, Unmanned Aerial Vehicle (UAV) clus-
ters, platoon of vehicles on highways are all examples of exten-
sible CPS wherein extensibility is implied by the dynamic aggrega-
tion of physical resources, affect of physical dynamics on availabil-
ity of computing resources, and various multi-domain applications
hosted on these systems. However, realization of extensible CPS
requires resolving design-time and run-time challenges emanating
from properties specific to these systems. In this paper, we first
describe different properties of extensible CPS - dynamism, exten-
sibility, remote deployment, security, heterogeneity and resilience.
Then we identify different design-time challenges stemming from
heterogeneity and resilience requirements. We particularly focus on
software heterogeneity arising from availability of various commu-
nication middleware. We then present appropriate solutions in the
context of a novel domain specific language, which can be used
to design resilient systems while remaining agnostic to middleware
heterogeneities. We also describe how this language and its features
have evolved from our past work. We use a platform of fractionated
spacecraft to describe our solution.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques

Keywords System description language, Model-driven develop-
ment, Extensible Cyber-Physical Systems

1. Introduction
Cyber-Physical Systems (CPS) consists of sensors, actuators, net-
work resources and computation resources that form cyber compo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DSM ’15, October 27, 2015, Pittsburgh, PA, USA.
Copyright c© 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

nents used to monitor and control the surrounding physical environ-
ment by working closely with human operators at times. Tradition-
ally, CPS have been designed as a single point solution with a focus
on a specific domain. These systems are designed as composition of
sensors, actuators, computation resource and networking technolo-
gies designed for specific purposes with self-contained resources
and mostly closed architectures. This approach results in vertical
silos of capabilities that do not support next generation CPS [13] –
such as Smart Cities, fractionated spacecraft [5] – that require open,
dynamic, extensible and interoperable solutions.

However, wider adoption, availability and ubiquity of wireless
networking technologies, integrated sensors, actuators, and edge
computing devices such as wearables, smart phones, tablets pro-
vides us with a great opportunity to move away from traditional
CPS towards next generation, extensible CPS. The key idea behind
extensible CPS is the notion of open and extensible CPS platforms.
These platforms are built not as a single function system but rather
as potentially loosely connected networked platforms that “virtual-
ize” and share their resources to host multi-domain cyber-physical
applications that provide a variety of objectives to satisfy system
goals. Extensible CPS takes inspiration from existing fields, such
as cloud computing that provide elastic and multi-tenant comput-
ing resources. However, interaction with physical devices is rarely
an issue in cloud computing where everything is virtualized with-
out consideration for management of resources that are not part of
the computation platform.

Dynamism, extensibility, remote deployment, security, hetero-
geneity and resilience are some of the key properties of extensi-
ble CPS. These systems are dynamic because physical entities that
form different platforms can join or leave a group at any time. Sim-
ilarly, these systems are extensible as physical or software resource
can be added to existing platform. Security is also an important
property as these platforms are open and therefore host applications
belonging to different organizations with varying security require-
ments. Extensible CPS are heterogeneous since physical nodes that
form a platform, as well as devices hosted on these nodes can be
of different kinds. In addition to these hardware related hetero-
geneities, there can also be software related heterogeneities such
as communication middleware hosted on each node. Finally, re-
silience is required because anything can go wrong at any time. As
such, the platform must be able to handle both internal faults as
well as environmental changes while ensuring that system proper-
ties and requirements are met.

The aforementioned properties of extensible CPS result in
design-time and run-time challenges that need to be resolved in
order to realize these systems. In this paper, we present our initial
work, which focuses on design-time challenges arising specifically

due to heterogeneity and resilience requirements. Below we de-
scribe each challenge addressed in this paper:

Challenge 1: The first challenge we address in this paper
emanates from heterogeneous property of extensible CPS. Even
though heterogeneity can be related to physical resources, we fo-
cus on software heterogeneity. To be more precise, we particularly
focus on communication middleware because they serve as existing
solutions to overcome hardware and operating system heterogene-
ity since they provide required abstractions to facilitate platform
independent interaction between applications hosted on heteroge-
neous physical resources. However, there currently exists many
different middleware solutions, such as RTI DDS [12], AllJoyn [2],
MQTT [11], AMQP [18], etc. Some of these middleware, such
as RTI DDS are implementation of a standard, while others are
vendor-specific technologies. They all have their own advantages
and disadvantages, therefore, arriving at a common solution is al-
most impossible and maybe undesirable. More importantly, these
middleware do not provide a clean separation between the com-
putation and communication aspects. As such, applications written
using one middleware are tightly coupled with that middleware.

Challenge 2: The second challenge we address in this paper em-
anates from resilience requirements of extensible CPS. An extensi-
ble CPS can host applications providing different objectives to sat-
isfy different system goals. Some of these objectives are critical and
it is of utmost importance to make sure that these objectives are not
affected by failures and anomalies such that requirements for asso-
ciated system goals are always met. This requirement necessitates
a resilient system that supports self-reconfiguration mechanisms to
facilitate autonomous fault tolerance. Autonomy in the resilience
mechanism is importance since extensible CPS can be remotely de-
ployed systems with limited opportunity for human interference. To
support any run-time solution that performs self-reconfiguration,
we require the design-time solution to allow modeling of design-
time related resilience logic – such as configuration space of a sys-
tem – that can be used at run-time.

In order to resolve the above-mentioned challenges, in this pa-
per we present a Domain Specific Language (DSL) that is part of
our application architecture CHARIOT (Cyber-pHysical Applica-
tion aRchItecture with Objective-based reconfiguraTion). CHAR-
IOT DSL is a textual DSL developed using Xtext [6]. It incor-
porates lessons learned from previous experiences with DSLs for
CPS. As such, we show how our approach to implementing DSLs
has evolved and how our current solution can be used to design
resilient systems while remaining agnostic to middleware hetero-
geneities. Following are the key contributions of this paper:

• Contribution 1: We address Challenge 1 by presenting a solu-
tion that enforces clean separation-of-concerns between com-
putation and communication aspects and therefore allows users
to design cyber physical applications while remaining com-
pletely agnostic to the underlying middleware that can be used
by these applications to interact with each other. We also briefly
describe how our design manifests in the run-time system.

• Contribution 2: We address Challenge 2 by presenting a solu-
tion that allows application designers to explicitly model sys-
tems goals, objectives and associated functionalities. These be-
come part of a configuration space that will be used at run-time
to support self-reconfiguration mechanisms.

The rest of this paper is organized as follows: Section 2 presents
related work and compares them to our work presented in this
paper; Section 3 uses fractionated spacecraft as a motivating sce-
nario; Section 4 presents the evolution of our DSL and describes
in detail how it facilitates design-time heterogeneity and resilience
requirements; finally, Section 5 provides concluding remarks, and
describes our on-going and future work.

2. Related Work
Extensible CPS are Distributed Real-time and Embedded (DRE)
systems and these classes of systems are commonly constructed us-
ing component-based approach. Architecture Analysis and Design
Language (AADL) [7] is one such standardized architecture de-
scription language, which has notion of software components and
hardware components that can be used to architect different sys-
tems. An AADL model is essentially a tree of components that can
interact with each other via connections that are modeled as fea-
tures. Our work is similar to AADL since we are also trying to
achieve a generic system description language. However, our solu-
tion includes a well-defined (software) component model that cap-
tures interactions as part of components but with clear distinction
from the computation aspect. In addition, AADL does not provide
support for modeling resilience specific entities.

Currently there exist numerous component models targeted to-
wards specific embedded system domains. For example, the Per-
vasive Component Systems (PECOS) [9]project describes a com-
ponent model for embedded systems that is specifically tailored to
field devices. Field devices are reactive, embedded devices fitted
with sensors and actuators that are developed using the most in-
expensive of hardware. AUTomotive Open System ARchitecture
(AUTOSAR) [8] is an open and standardized automotive software
architecture that supports a component model and is specifically
targeted towards supporting vehicular design. These component
models are specific to certain domain and they are, more often than
not, tied to a specific middleware.

3. Motivating Scenario
Consider a platform of fractionated spacecraft, which is a cluster
of independent satellite modules flying in formation and commu-
nicating with each other via ad-hoc wireless networks. Each in-
dependent satellite that is part of a fractionated spacecraft cluster,
can come from different organization. Together these independent
satellite modules provide an extensible CPS platform that facili-
tates sharing sensors and other computing and communication re-
sources across multiple applications. This architecture can realize
the functions of monolithic satellites at a reduced cost and with
improved adaptability and robustness [4]. Several existing and fu-
ture missions use this type of architecture including NASA’s Edi-
son Demonstration of SmallSat Networks, TANDEM-X, PROBA-
3, and PRISMA from Europe. In each of these missions, the cooper-
ating fractionated satellites are expected to provide the foundations
for applications, used by many, possibly concurrent missions.

Individual satellite modules of a fractionated spacecraft cluster
are present in the Low Earth Orbit (LEO), where one of the basic
requirements is to be able to maintain orbital flight so that they can
overcome the atmospheric drag and orbit the Earth while remaining
in the LEO. Each individual satellite achieves this functionality by
periodically using their thrusters to adjust their position. In addition
to this flight control objective, which is required to be satisfied all
the time by each individual satellite, the platform of fractionated
spacecraft can be used to host different applications and depending
on which application is hosted, more objectives are added and new
system goals are created.

Figure 1, presents a schematic overview of an application that
can be hosted on a platform of fractionated spacecraft to achieve
a system whose goal is ImageSatelliteCluster i.e. to capture im-
ages of various resolutions and process them. As mentioned be-
fore, regardless of what applications are hosted on a fractionated
spacecraft platform, it always needs to satisfy objectives required
to maintain orbital flight of individual satellites. These are repre-
sented by objectives ClusterFlightPlanning and SatelliteFlight in
Figure 1. The ClusterFlightPlanning objective is associated with

Figure 1. Imaging satellite cluster.

the tasks of receiving ground commands, processing each com-
mand and calculating flight plan (new target location) for each
satellite that is part of the cluster. The SatelliteFlight objective is
associated with the tasks of receiving the aforementioned target
locations and controlling satellite thrusters to move towards that
position. The SatelliteFlight objective is a local objective. A lo-
cal objective is a kind of objective that is always associated with a
category of node. A local objective implies that at least one of its
functionality should be present in each node belonging to its asso-
ciated node category. Imaging specific requirements are fulfilled by
the Imaging objective.

Each objective is a collection of one or more functionalities pro-
vided by different components. For example, as shown in Figure 1,
the Imaging objective is a collection of three functionalities pro-
vided by three different components (a) LowResolutionImageCap-
ture to capture low resolution images, (b) HighResolutionImage-
Capture to capture high resolution images, and (c) ImageProcessor
to process images with different resolutions. The components that
capture low and high resolution images, publishes those images for
the image processing component to consume and process.

Generally, the components are based on a component model,
which determines how components are designed, composed, man-
aged as well as how they interact using their ports. Traditional com-
ponent models are tightly coupled with specific middleware solu-
tions, for example, Component Integrated ACE ORB (CIAO) [19]
uses The ACE ORB (TAO) [17]. Furthermore, these component
models do not support clean separation-of-concerns between their
communication and computation aspects. This becomes problem-
atic when we consider the above described fractionated spacecraft
scenario where individual or a group of satellite modules can come
from different organization and therefore support different middle-
ware. This results in communication heterogeneity and thus neces-
sitates resolution of Challenge 1 described in Section 1.

All three objectives of the imaging satellite cluster presented
above are critical to achieving the associated system goal. As such,
when there are failures or anomalies in the system, it is of utmost
importance that the system adapts itself to recover and maintain all
objectives for as long as possible. This necessitates resolution of
Challenge 2 described in Section 1.

4. CHARIOT DSL
This section presents detailed description of our solution and show
how it resolves challenges listed in Section 1. We first present a
brief description explaining how our work has evolved to meet the
requirements of next generation CPS. Then we present detailed
description of relevant aspects of CHARIOT DSL that addresses
the different challenges.

4.1 Evolution of our DSL from prior efforts
Our initial approach [3] towards achieving a DSL for next gener-
ation CPS focused on platforms of fractionated spacecraft, which
had static communication channels declared at design-time in order
to guarantee secure interaction between applications at run-time.
Furthermore, we had static deployment and configuration plans
generated from systems modeled at design-time. These plans con-
tained information about artifacts, parameters, and communication
flows of different application components. They did not capture in-
formation about other aspects of the system such as resource avail-
abilities, constraints, system objectives and goals; these are critical
configuration information required to achieve a resilient system.
Finally, since our initial approach was designed for a specific CPS
domain – fractionated spacecraft – capturing and supporting het-
erogeneity was not a consideration at that time.

Second phase of our effort focused on advancing our initial ap-
proach by supporting resilience. We supported modeling of config-
uration space instead of a specific deployment plan [15]. A config-
uration space represents the state of an entire platform. It includes
information about different resources available, well known faults,
system goals, objectives, application components, where these
components are deployed and how they are configured. A con-
figuration space can contain multiple configuration points, where
each configuration point represents the state of the entire platform
at any given time. Resilience in the run-time was facilitated by
self-reconfiguration mechanisms that used configuration space to
compute and transition to a new configuration point.

Third phase of our effort is our current solution presented in
this paper. In this phase, similar to the last, we allow users to model
the configuration space for different systems. In addition, we also
provide mechanisms to model communication heterogeneity by en-
forcing a strict separation-of-concerns between communication and
computation logic thereby allowing users to model their applica-
tions using generic interaction patterns that can be implemented on
top of any communication middleware.

Figure 2. Modeling concepts in CHARIOT DSL and their inter-
dependencies.

Figure 2 presents different first class modeling concepts and
their interdependencies in CHARIOT DSL. The responsibility of
modeling these concepts are assigned to three different roles (a) ap-
plication developers, who are responsible for modeling Data Types,
Functionalities, Compositions, and Components belonging to their

applications, (b) SDK developers, who are responsible for mod-
eling Platform Interactions corresponding to platform interaction
libraries they develop, and (c) systems architects, who are respon-
sible for modeling Node Categories, Nodes, and Systems. Table 1
presents a brief summary of these modeling concepts.

Table 1. Summary of modeling concepts in CHARIOT DSML.
Modeling concept Description

Data types Most basic modeling construct. It facilitates
modeling of data types used for interaction as
well as computation.

Functionalities Logical concepts used to compose objectives.
Functionalities are provided by components.

Compositions Logical groups of functionalities, where each
functionality can be part of multiple compo-
sitions and functionalities of same composi-
tion can have inter-dependencies. Objectives
are instantiations of compositions.

Components Applications in CHARIOT are composed
of components that communicate with each
other. Components have well defined ports for
interaction and use workflows and tasklets to
describe computational behavior.

Platform interactions Artifacts that can be used to interact with plat-
form specific resources.

Node categories Categories to which different nodes belong to.
Nodes Different nodes that are part of a platform.
Systems A system consists of a goal that is satisfied by

one or more objectives. An objective depends
on functionalities provided by components.

4.2 Addressing Challenge 1: Supporting communication
heterogeneity

In order to facilitate communication heterogeneity, we enforce
strict separation-of-concerns between the communication and com-
putation logic of application components. Having the computation
logic clearly separated from the communication logic results in
more predictability, which is an important real-time property. Sim-
ilarly, having a communication logic clearly separated from com-
putation logic results in highly configurable communication and
therefore support for heterogeneous communication middleware.
Using software components to design distributed application is not
a new concept as significant amount of prior work has been done in
the field of Component-based Software Engineering (CBSE) [10].
However, as mentioned in Section 3, existing component models
are generally tightly coupled to a specific middleware solution.
This is why our approach is different; in essence, we are providing
a universal component model, which does not depend on any spe-
cific communication middleware. This aspect of our work aligns
well with current efforts of the Object Management Group (OMG)
to achieve a Unified Component Model (UCM) [1].

CHARIOT supports different kinds of ports that can be used
by application developers to model common interaction patterns
– such as point-to-point (client/server) interaction and group pub-
lish/subscribe interaction – that are supported by most middleware
solution. Therefore, this allows application developers to focus
on modeling application interaction using different ports without
having to worry about what middleware will be used to support
those interactions at run-time. Different kinds of ports supported
by CHARIOT are - (a) client port, which is used to send request to
one or more server ports, (b) server port, which is responsible for
receiving requests from one or more client ports, (c) buffered re-
ceiver port, which receives messages sent from one or more sender
ports and stores them in a buffer of predefined size, (d) sampling
receiver port, which also receives messages sent from sender ports
but unlike buffered receiver port, it does not use a buffer to store

multiple messages, and (e) sender port, which is used to send mes-
sages to one or more buffered or sampling receiver ports.

Figure 3. Snippet of OrbitController component declaration.

Figure 4. Snippet of SatelliteBus component declaration.

In order to show how interactions are modeled at design-time,
Figures 3 and 4 present snippets of declaration of OrbitController
and SatelliteBus components that are part of the imaging satellite
cluster, previously presented in Section 3. As shown in Figure 3,
the OrbitController component uses thruster control sender port
(line 8) as sender port to send thruster control message, and
state client port (line 5-7) as client port to send sat state request
and receive sat state message. Similarly, the SatelliteBus compo-
nent, shown in Figure 4, uses state server port (line 5-6) as server
port to receive sat state request and send sat state message, and
thruster control receiver port (line 7-8) as buffered receiver port
in order to receive thruster control message.

Figure 5. Snippet of data types declaration.

At the very core of supporting communication middleware het-
erogeneity is the fact that we support generic data types that are
supported, in one form or other, by most existing middleware. This
is what ensures interoperability between different middleware so-
lutions, as component ports are associated with these generic data
types. For example, the thruster control sender port in Figure 3
send data to type thruster control message, whose declaration us-
ing CHARIOT DSL is shown in Figure 5. Table 2 shows how our
data types map to that of Java, as well as data types supported by
different middleware. Table 2 does not include MQTT [11] since
it is totally data-agnostic and virtually every data can be sent in its
binary format; serialization and deserialization must be handled by
application developers.

Table 2. Table showing how CHARIOT DSL data types map to that of Java and different existing middleware.
CHARIOT-ML Java RTI Connext [12] AllJoyn [2] ROS [16] LCM [14] AMQP [18]
float float DDS Float N/A float32 float float
double double DDS Double DOUBLE float64 double float
short short DDS Short INT16 int16 int16 t short
long int DDS Long INT32 int32 int32 t int
long long long DDS LongLong INT64 int64 int64 t long
char char DDS Char N/A N/A N/A char
wchar char DDS WChar N/A N/A N/A N/A
boolean boolean DDS Boolean BOOLEAN bool boolean boolean
octet byte DDS Octet BYTE N/A byte byte
string String String STRING string string string
struct class struct STRUCT structure struct composite type
sequence array sequence ARRAY array array array
enum enum DDS Enum BYTE, INT16, INT32, INT64 constants constants restricted type

Figure 6. Run-time mapping of component communication logic.

Figure 6 shows how the CHARIOT component communication
logic maps to the run-time. As shown in the figure, an applica-
tion container hosts transports, transport proxies, and components.
Transports allow interaction with specific middleware, whereas
transport proxies facilitate interaction between transports and com-
ponent ports. These entities constitute the communication logic and
are strictly separated from the computation logic. Depending upon
availability of appropriate transports and transport proxies, a com-
ponent can use any middleware.

4.3 Addressing Challenge 2: Modeling resilient systems
Maintaining system goals is of utmost importance for extensible
CPS. Therefore, resilience is a very important property of extensi-
ble CPS. In order to be resilient, a system must support run-time
mechanisms to monitor, detect, diagnose, and mitigate failures and
anomalies. In addition, resilience requirements of extensible CPS
also necessitate design-time solutions that allow modeling of ap-
propriate information at design-time such that they can be used to
facilitate run-time resilience mechanisms.

Since our ongoing work on run-time resilience mechanism is
based on self-reconfiguration capabilities, our design-time tool al-
lows an application developer to model (a) a complete configu-
ration space of a system, and (b) an initial configuration point,
as a complete or partial deployment specification. A configura-
tion space represents the state of an entire platform. It includes
information about different resources available, well known faults,
system goals, objectives and corresponding functionalities, com-
ponents that provide different functionalities, where these compo-
nents are deployed, and how they are configured. A configuration
space can contain multiple configuration points and a configuration
point represents state of the associated platform at any given time;

change in state of the platform is represented by transition from one
configuration point to another.

Figure 7. Snippet of imaging satellite cluster system declaration.

Figure 7 presents a declaration of the imaging satellite cluster
system previously presented in Section 3. In order to model a
system in CHARIOT DSL, we need to declare its goal (line 3),
different objectives (line 4-11), deployment constraints (not shown
in Figure 7), and initial deployment specification (line 12-25). As
shown in the figure, the system comprises three objectives where
the SatelliteFlight objective is a local objective that applies to
all nodes of Satellite category. This local objective implies that
OrbitController and SatelliteBus functionalities should be present
in each node of Satellite category.

Above described system declaration is part of the overall con-
figuration space of the imaging satellite cluster. In the run-time
resilience infrastructure, which is part of our ongoing work, we
store configuration space and points in a distributed database such
as MongoDB1. As such, a configuration space becomes a list of
collection, where each collection can contain multiple documents.
Due to space restriction we do not show the entire configuration
space, but Figure 8 shows part of the configuration space of imag-
ing satellite cluster by presenting snippet of the system declaration
presented in Figure 7. Each system declaration stored has - (a) an
associated id, (b) constraints, (c) name of the system, which also
represents system goal, (d) a list of objectives, which themselves

1 http://www.mongodb.org

Figure 8. Snippet of system description that is part of the overall
configuration space of imaging satellite cluster.

contain constraints, list of required functionalities and their depen-
dencies, name, and a node category to represent objective locality.

5. Conclusions
Traditionally CPS have been designed as vertical silos of capabili-
ties. With wider adoption, availability and ubiquity of wireless net-
working technologies, integrated sensors, actuators, and edge com-
puting devices, we are moving towards the paradigm of extensi-
ble CPS wherein the sensors, actuators, and computing resources
of one or more CPS form an open platform whose resources can
be “virtualized” and shared among different applications. How-
ever, practical realization of extensible CPS requires us to resolve
design-time and run-time challenges emanating from system spe-
cific properties such as heterogeneity and resilience.

This paper focuses on resolving design-time challenges related
to communication heterogeneity and resilience. We present our so-
lution for these challenges in the context of CHARIOT DSL, which
is a novel domain specific language that supports - (a) a component
model with clean separation-of-concerns between the communica-
tion and computation aspects to handle communication heterogene-
ity, and (b) configuration space modeling in order to capture infor-
mation required to facilitate run-time self-reconfiguration mecha-
nisms. Our ongoing work focuses on realization of a complete end-
to-end system, which includes a model interpreter, a complete run-
time solution that includes our universal component model, and a
comprehensive resilience infrastructure. In future we plan to extend
our work by using model checkers to perform formal verification of
system models at design-time, and supporting redundancy patterns
to enhance run-time resilience mechanism.

Acknowledgments
This work is sponsored in part by a research grant from Siemens
Corporate Technology. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of Siemens Corpo-
rate Technology.

References
[1] Unified Component Model for Distributed,

Real-Time and Embedded Systems RFP.
http://www.omg.org/cgi-bin/doc?mars/2013-09-10.

[2] A. Alliance. Alljoyn. https://allseenalliance.org/.
[3] D. Balasubramanian, A. Dubey, W. Otte, T. Levendovszky,

A. Gokhale, P. Kumar, W. Emfinger, and G. Karsai. Drems ml: A
wide spectrum architecture design language for distributed computing
platforms. Science of Computer Programming, 2015.

[4] O. Brown and P. Eremenko. The Value Proposition for Fractionated
Space Architectures. AIAA Paper 2006-7506, 2006.

[5] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. Otte, J. Parsons,
C. Szabo, A. Coglio, E. Smith, and P. Bose. A Software Platform
for Fractionated Spacecraft. In Proceedings of the IEEE Aerospace
Conference, 2012, pages 1–20, Big Sky, MT, USA, Mar. 2012. IEEE.

[6] M. Eysholdt and H. Behrens. Xtext: Implement your language faster
than the quick and dirty way. In SPLASH, SPLASH ’10, pages 307–
309, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0240-1. .
URL http://doi.acm.org/10.1145/1869542.1869625.

[7] P. Feiler, B. A. Lewis, and S. Vestal. The SAE Architecture Analysis &
Design Language (AADL) A Standard for Engineering Performance
Critical Systems. In Computer Aided Control System Design, pages
1206–1211, 2006. .

[8] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange. Autosar–a
worldwide standard is on the road. In 14th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden, 2009.

[9] T. Genßler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse,
R. Wuyts, G. Arévalo, B. Schönhage, P. Müller, and C. Stich. Compo-
nents for Embedded Software: the PECOS Approach. In Proceedings
of the 2002 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pages 19–26. ACM, 2002.

[10] G. T. Heineman and W. T. Councill, editors. Component-based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001. ISBN 0-
201-70485-4.

[11] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. Mqtt-s?a pub-
lish/subscribe protocol for wireless sensor networks. In Communi-
cation systems software and middleware and workshops, 2008. com-
sware 2008. 3rd international conference on, pages 791–798. IEEE,
2008.

[12] R.-T. Innovations. RTI Data Distribution Service.
http://www.rti.com/products/dds/index.html.

[13] G. Karsai, D. Balasubramanian, A. Dubey, and W. Otte. Distributed
and managed: Research challenges and opportunities of the next gen-
eration cyber-physical systems. In 17th IEEE International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC 2014, Reno, NV, USA, June 10-12, 2014, pages 1–
8, 2014. . URL http://dx.doi.org/10.1109/ISORC.2014.36.

[14] D. Moore, E. Olson, and A. Huang. Lightweight communications and
marshalling for low-latency interprocess communication. 2009.

[15] S. Pradhan, A. Dubey, W. R. Otte, G. Karsai, and A. Gokhale. Towards
a product line of heterogeneous distributed applications. ISIS, 15:117.

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating sys-
tem. In ICRA workshop on open source software, volume 3, page 5,
2009.

[17] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and C. Gill. TAO:
A Pattern-Oriented Object Request Broker for Distributed Real-time
and Embedded Systems. IEEE Distributed Systems Online, 3(2), Feb.
2002.

[18] S. Vinoski. Advanced message queuing protocol. IEEE Internet
Computing, (6):87–89, 2006.

[19] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan,
J. P. Loyall, R. E. Schantz, and C. D. Gill. QoS-enabled Middleware.
In Q. Mahmoud, editor, Middleware for Communications, pages 131–
162. Wiley and Sons, New York, 2004.

