
Towards a Resilient Deployment and Configuration
Infrastructure for Fractionated Spacecraft

Subhav Pradhan, William R. Otte, Abhishek Dubey, Aniruddha Gokhale, and Gabor Karsai∗
∗ Institute for Software-Integrated Systems, Vanderbilt University,

Nashville, TN 37235, USA
Email:{pradhasm,wotte,dabhishe,gokhale,gabor}@isis.vanderbilt.edu

Abstract—Fractionated spacecraft are clusters of small, inde-
pendent modules that interact wirelessly to realize the function-
ality of a traditional monolithic spacecraft. System F6 (F6 stands
for Future, Fast, Flexible, Fractionated, Free-Flying spacecraft) is
a DARPA program for fractionated spacecraft. Software applica-
tions in F6 are implemented in the context of the F6 Information
Architecture Platform (IAP), which provides component-based
abstractions for composing distributed applications. The lifecycle
of these distributed applications must be managed autonomously
by a deployment and configuration (D&C) infrastructure, which
can redeploy and reconfigure the running applications in response
to faults and other anomalies that may occur during system
operation. Addressing these D&C requirements is hard due to
the significant fluctuation in resource availabilities, constraints on
resources, and safety and security concerns. This paper presents
the key architectural ideas that are required in realizing such a
D&C infrastructure.

Index Terms—D&C for CPS, reconfiguration, failures.

I. INTRODUCTION

System F6 [1] (F6 stands for Future, Fast, Flexible,
Fractionated, Free-Flying spacecraft) is a highly resource-
constrained, dynamic system which consists of a cluster of
satellites forming the ’fractionated spacecraft’, which provides
a distributed computing platform in space. Each satellite mod-
ule communicates wirelessly with others in the same cluster
and with resources located on the ground. F6 clusters may
host multiple applications, which share available resources
to accomplish their mission objectives through collaboration.
It is a distributed cyber-physical system (CPS) because the
cyber infrastructure that is responsible to support mission
critical applications must be aware of all physical constraints
and physical dynamics when operating a computing cluster
platform in space.

The F6 Information Architecture Platform (IAP) provides
infrastructure to build and manage applications that are created
using software components with well-defined interfaces. These
components conform to a novel component model called
F6COM [2], which allows developers to design various soft-
ware components that can operate in the real-time embedded
environment of a fractionated spacecraft.

Managing the lifecycle of an application on the F6 Platform
is the responsibility of the deployment and configuration
(D&C) infrastructure. The F6 D&C infrastructure is based
on the OMG Deployment and Configuration for Component-
based Application specification [3], [4]. A typical F6 ap-
plication will consist of several interconnected components.

Deployment and configuration of these applications in F6 is
specified in an XML document called a deployment plan
that captures component configuration and interconnection.
This plan is generated from a modeling tool. The D&C
infrastructure consists of a set of privileged system processes
called Deployment Managers (DM); one per F6 satellite node.

One of the key features required for creating a resilient
platform is the ability to provide redeployment and recon-
figuration for F6 applications to bring the system back to
stability in the event of one or more failures in any part of the
system. Moreover, since F6 is a highly resource-constrained
and dynamic system, all these additional requirements are
expected to provide efficient and predictable performance [5].

Therefore, the primary contribution of this paper is to
present an ongoing research activity which extends our current
D&C infrastructure for F6 system to support reconfiguration of
deployed software elements in response to various faults that
can occur in a highly resource-constrained dynamic system,
such as F6. The rest of the paper is organized as follows:
Section II describes related research; Section III describes the
current D&C infrastructure (F6DM); Section IV describes our
current work to extend the F6 DM to provide component
reconfiguration capabilities; and finally Section V provides
concluding remarks alluding to future work.

II. RELATED WORK

Due to the growing complexity of embedded systems,
adaptive D&C infrastructures are becoming increasingly im-
portant. In [6], [7], the authors present a novel middleware
that supports reconfiguration of Distributed Real-Time and
Embedded (DRE) systems, and a way for using Model-Driven
Engineering (MDE) to create multiple possible configurations
at design time such that the system can be reconfigured from
one configuration to another based on events depicted using
state diagrams. The actual transition from one configuration to
another is performed via model to model (M2M) transforma-
tions. While this work shares our vision, a major limitation of
this work is that it supports only a finite number of predefined
reconfigurations. For this approach to be effective, a user
needs to pre-define all possible failure scenarios and their
reconfigurations during design-time, which is hard and tedious.

Other MDE-based approaches devoted to embedded system
designs such as Ocarina [8], ModES [9], and [10] allow devel-
opment of real-time embedded systems but these approaches



Fig. 1. Simplified F6 D&C Architecture

do not support reconfiguration. Ocarina is a framework that
allows users to create AADL (Architecture Analysis and
Design Language) models based on which it can perform
validation and generate application code. Similarly, ModES
defines a set of meta-models allowing users to create models of
application, platform to indicate available hardware/software
resources and mappings between the two. Finally, [10]
allows users to specify generic transformation rules to generate
platform-specific models from application model and target
platform model. Once a platform-specific model is generated,
the framework generates executable code. Thus, based on
transformation rules, a user can generate different platform-
specific models for a given application.

III. F6DM ARCHITECTURE AND DESIGN

The F6IAP consists of a specific operating system, the F6
Operating System (F6OS), which provides all necessary ab-
stractions to manage the resources available to all applications.
A thread is the smallest unit of execution in F6OS and an
actor (equivalent to a process in typical operating systems)
is a collection of threads that share a common address space.
F6OS supports two kinds of actors - (1) Application actors,
and (2) Platform actors. Application actors are user-defined
actors that represent applications. These application actors
consists of various user-defined components which can be
dynamically installed and removed. Unlike application actors,
platform actors extend F6OS by providing long running and
privileged services that are essential for management of the
F6 cluster and regular application actors. The F6 Deployment
Manager (F6DM) is one of the platform actors that resides on
every node.

The F6DM is an important part of the F6 D&C infrastruc-
ture and is implemented as a platform actor that is responsible
for deployment and configuration of applications throughout
the F6 system. The F6DM achieves its functionality by per-
forming the following three roles as shown in Figure 1:

• Cluster Deployment Manager: At this level the F6DM
operates to coordinate deployment activities amongst
node-level F6DM instances.

• Node Deployment Manager: At this level the F6DM
operates as a creator and manager of one or more actors
on a single node.

• Actor Home: This is the lowest level at which the F6DM
operates as a component server responsible for managing
lifecycles of various components. It is responsible for - (a)
creating and configuring components, and (b) managing
the lifecycle of the components based on the commands
received from the Node Deployment Manager.

The deployment and configuration in System F6 is a four-
phase process that is initiated by the Operations Manager
(another platform actor that manages spacecraft system op-
erations), typically coordinating with the Cluster Deployment
Manager, but may be initiated by communicating with any
reachable Deployment Manager instance. Following are the
four phases of application deployment:

• Prepare Plan: This phase is the initial part of the de-
ployment process during which all nodes involved in a
deployment are provided with actor binaries and their
deployment plan.

• Start Launch: This is the second phase of application
deployment. In this phase all components that are part
of the deployment plan provided in the first phase will
be deployed into their respected physical nodes, but are
not yet connected or running.

• Finish Launch: In this phase of application deployment,
all connections between components instantiated in the
second phase are created and made ready for activation.

• Start: During this phase, all components and actors are
placed into active status and the application begins exe-
cution.

IV. RECONFIGURATION CAPABILITIES IN THE D&C
INFRASTRUCTURE

Reconfiguration is of utmost importance in systems such as
F6 since it is required to maintain system functionality which
might be affected by various failures. To add reconfiguration
capability to our existing D&C framework we are taking
inspiration from our previous work [11] in the field of Software
Health Management. software health management (SHM) is
an extension of classical software fault tolerance that borrows
ideas from system health management [12]. SHM works by
detecting, isolating and adaptively mitigating the effects of
faults, and is an active area of research [13], [14], [15].

There are two different approaches to specify the mitigation
scenarios: explicit encoding of mitigation scenarios [15], or
implicit encoding of mitigation scenarios.1 Explicitly defining
all possible sequences of fault events and the corresponding
reconfiguration actions is both cumbersome and error-prone,
especially for large systems. Implicit encoding [16], [11],
is centered around a functional model, created at design-
time, that describes the required functionality of the system
in terms of the component configurations required to provide
that functionality. The functional requirements of a system are
expressed by describing a collection of trees, where the root
of each tree is a system goal and the children are the basic

1Detection and isolation of faults is out of scope of Deployment Manager
and hence this paper.



functions that are required to achieve that goal. A functional
requirement in this tree can be completely dependent on
another functional requirement or can be separately mapped to
a set of components that are required to achieve that function.
This mapping is called functional allocation. This approach
encodes the possible design space of valid configurations
succinctly, which can then be searched at runtime — subject
to state and other specified constraints — to determine a new
valid configuration.

A function at any level of the functional requirements’
directed acyclic graph can depend on other child functions
and can depend upon the availability of a set of components
at that level. The set of components related to a function can
be hierarchically organized into groups. These are:

1) ALT Group: Exactly 1 out of N components
from a given group are required to achieve
the X function. We write this as X →
EXACTLY(1, Comp1, Comp2, ...CompN), where
compi is the ith component of the group.

2) M-of-N group: At least M out of N
components from a given group are required
to achieve the X function. We write it as
X → ATLEAST(M)(Comp1, Comp2, ...CompN)

3) AND Group: All components from a given group are
required to achieve the X function. We write it as X →
ALL(Comp1, Comp2, ...CompN).

In [16], we showed that the set of expressions based on the
functional requirements tree, the function allocations and the
explicit and implicit component operational requirements de-
scribe a Boolean search space, where the state of each compo-
nent and group is described by a Boolean literal. Additionally,
all function allocation requirements can be encoded as boolean
expressions. For example EXACTLY(1, Comp1, Comp2) can
be encoded as (Comp1 ∧ ¬Comp2) ∨ (Comp2 ∧ ¬Comp1).

Thereafter, we could possibly use a Boolean satisfiabil-
ity (SAT) solver as follows: (a) Translating the functional
requirement, function allocation and component operational
requirements into a set of clauses in Conjunctive Normal Form
(CNF), (b) Setting constraints on the states of components that
are known to be faulty (determination of a fault component is
the task of a fault diagnoser); (c) Encoding the currents state
of active components as assumptions, (d) and finally, invoking
the SAT solver to search for a satisfying solution.

Even though the constraint problem can be very large
depending on the states of all the components in the system,
there is a good reason to believe that this approach of creating
boolean satisfiability problem and solving it using SAT solver
is efficient since modern off-the-shelf SAT solvers are capable
of solving problems containing thousands of variables and tens
of thousands of clauses.

Currently, we consider the following kinds of failures in the
system (collection of nodes):

• Component failure: Actors are composed of components.
In this system, we consider components to be units of
fault containment, which can be replaced as a whole.

Fig. 2. Reconfiguration Process Involving F6FM, F6DM and a SAT Solver

• Actor failure: Represents a failure of an actor which can
also be an Actor Home. By default, failure of an actor
means that all components that reside in that actor also
fail.

• Node failure: Represents failure of the entire physical
computing host. This results in failure of all actors and
therefore all components hosted on the faulty node.

Detection of all three failures in the F6 software layer
is the responsibility of the Fault Manager (F6FM) which is
another platform actor that runs on every node to provide
fault detection and diagnosis services. Since fault detection and
diagnosis is not part of this paper, we will not be discussing
F6FM in more detail. Figure 2 shows the targeted architecture
to achieve resilient D&C infrastructure in F6.

Once the F6FM detects a fault, it sends this information to
the SAT solver with the current system state. The SAT solver,
in turn, will provide F6FM with a solution which is used to
deduce the changes in state of different reconfigurable enti-
ties (components, actors) in the system. These configuration
changes deduced from the solution provided by the SAT solver
will be translated to appropriate reconfiguration commands
(listed below) and sent to related F6DMs (which can be a
Cluster Deployment Manager in case of physical node failures,
Node Deployment Manager in case of Actor Home failures
or Actor Home in case of component and application actor
failure). Upon receiving reconfiguration commands from the
F6FM, the F6DM will invoke those commands on different
entities that needs to be reconfigured. Following is the list
of fault mitigation commands/actions that can be issues for a
faulty component:

• RESET: If there is a component failure, the F6DM can
issue this command to the associated Actor Home which
will re-initialize the affected component.

• FAILOVER: This command instructs the Actor Home to
failover to one of the replicas of affected component. The
replica component can be in a different node in which
case the Actor Home needs to communicate with the
corresponding Actor Home via F6DM. During replication
we should also be cautious of a component’s state. It
is not in the scope of this paper to discuss replication
in detail but our previous work [17] describes existing
work on active and passive component replication. These
techniques will be used in the F6 system.

• MOVE2: This command instructs the Actor Home to
migrate a particular component to another location. Com-
ponents could be relocated to a different partition in the
same node or it can be relocated to a completely different

2the mapping of move command to the SAT problem is yet to be defined



physical node. During migration we have to be aware of
component connections. A component in F6 system can
have two kinds of connections:(1) Pub/Sub connection,
and (2) facet/receptacle connection. In case of Pub/Sub
connection, we do not need to worry about maintaining
existing connection as the participating components are
not physically connected; communication happens via
the underlying middleware. However, components that
are connected via facet-receptacle connection we need
to make sure that this connection still exists once the
components have been relocated.

• STOP: This command instructs the Actor Home to stop
a component changing its state from active to passive.

• START: This command instructs the Actor Home to start
a component changing its state from passive to active.

• REWIRE: This command instructs the Actor Home to
rewire the existing facet-receptacle connection that a
component has.

In our case, the component model we use (F6COM),
supports four different component states - initial state, active
state, passive state, and inactive state [2]. However, as part
of reconfiguration, the only component states that we are
concerned with are (a) active state, and (b) inactive state.
The goal of the satisfiability problem is to find a set of
components that can be turned to ACTIVE (set to 1) or turned
to INACTIVE (set to 0), given the current set of assumptions
for active and faulty components. If no solution is found, the
assumptions on the known state of components is removed.
If this still does help then we issue the RESET command.
However, there might be cases where the component cannot
be reset. In these cases, the appropriate solution would be
to issue the FAILOVER command which makes sure that a
replica of the affected component is activated. In this way,
the provided solution is translated to a set of reconfiguration
commands.

In case of physical node failure, the Cluster Deployment
Manager will need to invoke separate action to determine
elements affected by the node failure, based on existing
deployment plan information, and make sure each element
fails over to one of the its existing replicas.

V. CONCLUSIONS AND FUTURE WORK

This paper discussed our approach towards achieving a
resilient Deployment and Configuration (D&C) infrastructure
for a highly resource-constrained and dynamic system. The
solution proposed in this paper is to extend our existing D&C
infrastructure and provide it with reconfiguration capabilities.
This allows for redeployment and reconfiguration of software
elements in response to faults and other anomalies that may
occur during system operation. In future we would like to
further extend our D&C infrastructure to itself become fault
tolerant as in the current system it can be a single point of
failure.

Acknowledgments: This work was supported by the
DARPA System F6 Program under contract NNA11AC08C.
Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not
necessarily reflect the views of DARPA. The authors thank
Graham O’Neil and Olin Sibert of Oxford Systems and all
the team members of our project for their invaluable input
and contributions to this effort.

REFERENCES

[1] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, and W. O. et al., “A
Software Platform for Fractionated Spacecraft,” in Proceedings of the
IEEE Aerospace Conference, 2012. Big Sky, MT, USA: IEEE, Mar.
2012, pp. 1–20.

[2] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale, G. Karsai, and
J. Willemsen, “F6COM: A Component Model for Resource-Constrained
and Dynamic Space-Based Computing Environment,” in To Appear
in the Proceedings of the IEEE International Symposium on Object-
oriented Real-time Distributed Computing (ISORC ’13), Paderborn,
Germany, Jun. 2013.

[3] Deployment and Configuration of Component-based Distributed Appli-
cations, v4.0, Document formal/2006-04-02 ed., OMG, Apr. 2006.

[4] W. R. Otte, D. C. Schmidt, and A. Gokhale, “Towards an Adaptive
Deployment and Configuration Framework for Component-based Dis-
tributed Systems,” in Proceedings of the 9th Workshop on Adaptive and
Reflective Middleware (ARM ’10), Bengarulu, India, Nov. 2010.

[5] S. Pradhan, A. Gokhale, W. Otte, and G. Karsai, “Real-time Fault-
tolerant Deployment and Configuration Framework for Cyber Physical
Systems,” in Proceedings of the Work-in-Progress Session at the 33rd
IEEE Real-time Systems Symposium (RTSS ’12). San Juan, Puerto Rico,
USA: IEEE, Dec. 2012.

[6] F. Krichen, B. Zalila, M. Jmaiel, and B. Hamid, “A middleware
for reconfigurable distributed real-time embedded systems,” Software
Engineering Research, Management and Applications 2012, pp. 81–96,
2012.

[7] F. Krichen, A. Ghorbel, B. Hamid, and B. Zalila, “An mde-based
approach for reconfigurable dre systems,” in Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2012 IEEE 21st
International Workshop on. IEEE, 2012, pp. 78–83.

[8] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the prototype
to the final embedded system using the ocarina aadl tool suite,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 4,
p. 42, 2008.

[9] F. do Nascimento, M. Oliveira, and F. Wagner, “Modes: Embedded
systems design methodology and tools based on mde,” in Model-
Based Methodologies for Pervasive and Embedded Software, 2007.
MOMPES’07. Fourth International Workshop on. IEEE, 2007, pp.
67–76.

[10] W. Chehade, A. Radermacher, F. Terrier, B. Selic, and S. Gérard,
“A model-driven framework for the development of portable real-time
embedded systems,” in Engineering of Complex Computer Systems
(ICECCS), 2011 16th IEEE International Conference on. IEEE, 2011,
pp. 45–54.

[11] N. Mahadevan, A. Dubey, D. Balasubramanian, and G. Karsai, “Model-
based deliberative failure mitigation in software component assemblies,”
in SEAMS, 2013, in review.

[12] A. Srivastava and J. Schumann, “The Case for Software Health Man-
agement,” in Fourth IEEE International Conference on Space Mission
Challenges for Information Technology, 2011. SMC-IT 2011., August
2011, pp. 3–9.

[13] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: A hard real-
time runtime monitor,” in Runtime Verification. Springer, 2010, pp.
345–359.

[14] J. Schumann, A. Srivastava, and O. Mengshoel, “Who guards the
guardians??toward v&v of health management software,” in Runtime
Verification. Springer, 2010, pp. 399–404.

[15] N. Mahadevan, A. Dubey, and G. Karsai, “Application of software health
management techniques,” in SEAMS, 2011, pp. 1–10.

[16] A. Dubey, N. Mahadevan, and G. Karsai, “A deliberative reasoner for
model-based software health management,” in The Eighth International
Conference on Autonomic and Autonomous Systems, 2012, pp. 86–92.

[17] F. Wolf, J. Balasubramanian, S. Tambe, A. Gokhale, and D. Schmidt,
“Supporting component-based failover units in middleware for dis-
tributed real-time and embedded systems,” Journal of Systems Archi-
tecture, vol. 57, no. 6, pp. 597–613, 2011.


