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Motivation and
Backgrouna




The emergency response problem

All traffic incidents
occurring in Davidson

County In January

2018, with a sliding _
window of ~12 hours - . e

The problem: Respond Efficiently to all incidents spread over a large geographic area with
limited resources.
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Proactive Emergency Response

Active Learning and Improvement Mechanisms

|

Online Demand Anticipatory _
|
Estimation Stationing of SN  Optima

Models!!! Resources

Dispatchl!1]

[1] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and Yevgeniy Vorobeychik. 2019. An online decision-
theoretic pipeline for responder dispatch. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS "19). Association for Computing Machinery, New York, NY, USA, 185-196. DOI:https://doi.org/10.1145/3302509.3311055
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Prediction Actual Tree Search (MCTS)

[1] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and Yevgeniy Vorobeychik. 2019. An online decision-
theoretic pipeline for responder dispatch. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS "19). Association for Computing Machinery, New York, NY, USA, 185-196. DOI:https://doi.org/10.1145/3302509.3311055
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Proactive Emergency Response

Active Learning and Improvement Mechanisms

Online Demand Anticipatory
Estimation Stationing of
Models(] Resources

Optimal

Dispatchl!1]

Focus of
Paper

A
[ “Rebalancing” ]

Advantages over decision making
at time of dispatch:

T E

e Ample time to make decision
e Avoids legal and moral questions
e Proactive

e Larger decision space => more
room for gains
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System Model
and
Assumptions




System Model — Assumptions

a ) é )
? S 8 Historical A
3 Nésthe data |
» "/’,,.‘ 3 ’_../, \/ \ . . . |
K A { Sl (incidents, |
traffic,
weather, etc.) =
T — https://www.nashville.gov
Region
segmer?ted into “Depots” -
- orid with Incident subset of cells
5 . arrival model where agents
equally sized .
can wait
N cells y DZAN y
Institute for Software Integrated Systems %/ | VANDERBILT UNIVERSITY

World-class, interdisciplinary research with global impact.


https://www.nashville.gov/DesktopModules/SimpleGallery/ImageHandler.ashx?width=600&height=400&HomeDirectory=%2FPortals%2F0%2FGallery%2FAlbum%2F360&fileName=2.jpg&portalid=0&i=6856&q=1

System Model - Multi Agent SMDP

e . Grids waiting for service
* R, Agent states
* E.: Environmental Factors

Current State s,

*SMDP diagram simplified for demonstration

e Continuous state e Directing agents to e Time between e Balance-
space valid cells: incidents o minimizing response
e Discrete states of o Response: pending e Incident Service times
interest: incident locations time o minimizing distance
o Incident occurrence o Rebalancing: depots o Computation time traveled
o Responder
availability * Travel time
o Rebalancing
triggered
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Problem Definition

BERRY NIL)

OAK WILL

Given: System state, predicted spatial-temporal incident distribution

Return: Action recommendation set that maximizes expected
reward Reward can be

fine-tuned
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Approaches to Solving SM

DP

Policy iteration
(Dispatch)!t!

e Will converge to best
dispatch policy eventually

e Slow — must estimate state
transition probabilities

—

U

evaluation K N Y, WO rk

m

Y I
T—>greedy(V)
improvement I
SimTrans!l]

Greedy
Heuristic
Search

Queueing Theory

- Q%

[egeNe}

|v|c:Ts/H | —

(Dispatch) I

e Anytime algorithm

e Not scalable to I
dynamic balancing

VTt Agent

Monte Carlo
Tree Search

[1] Ayan Mukhopadhyay, Zilin Wang, and Yevgeniy Vorobeychik. 2018. A Decision Theoretic Framework for Emergency Responder Dispatch. In Proceedings of the 17th International Conference on Autonomous Agents and |

MultiAgent Systems (AAMAS ’18). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 588—-596.
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K-

waiting Are: Approach 1:
Greedy Search
with
Queue-Heuristic




Approach 1: Queue Theory Heuristic Search

Waiting Area Server

: : Ambulances ‘serve’
Incidents Placed in

Grid Cell incident rate := v incidents with mean

Waiting Queue

rate :=
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Approach 1: Queue Theory Heuristic Search

Waiting Area

M/M/c Queue Multiple Servers I»-—I
Formulation
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Approach 1: Queue Theory Heuristic Search

Queue Response time:
Avg time in system

responseTime(cg, v, i) =

where w(cg,v/p) =

It
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Approach 1: Queue Theory Heuristic Search

e
e

e

“Multi Class,
Multi Server
Queue
Formulation”
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Approach 1: Queue Theory Heuristic Search

How to determine

split of rates?

"
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Approach 1: Queue Theory Heuristic Search

d _
DY =g

deD

dist(cz g)v;7 = dist(d;, g)vgi Vd; € D\J

* For each cell, distribute rate among depots inversely proportional to the
distance from the cell to the depot

* Closer depots => higher portion of rate

 Solve System of Linear equations above for each cell
* u%is the fraction of arrival rate for cell g that is shared by depot d
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Approach 1: Queue Theory Heuristic Search

e To score a particular allocation of agents:
* Must consider travel times => not memoryless, so model explicitly
* Y represents collection of split rates
* Score 1ty => sum across all cells and depots
* Estimated (queue) response times (waiting + service time)
* Travel time from depot to cell

Yy = ;: ;: 1(d, A){responseTime(c, vg, i) + travelTime(d, g)}
deD geG
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Approach 1: Queue Theory Heuristic Search

* Depot selection: Greedy Search
* One by one select depot that
minimizes 1,
* Add to chosen set
* Re-split rates and calculate

new scores with each new
depot placed

e Continue until the number of
depots chosen is the same as
number of agents

* Assign agents to chosen depots
by minimizing distance traveled
(Linear Program)

Algorithm 1: Iterative Greedy Action Selection

1 INPUT: number of agents |A|, depots D, depot capacities C, grid rates

2
3
1
5
6
7
8
9

10

11

12
13

14
15
16
17

vgVg € G;

final_depot_occupancy := Hash {d : 0} Vd € D ;

do

ford €

candidate_depots := Set 0;
candidate_scores := Hash 0;

if final_depot_occupancy[d] < C(d) then

D do

temp_occ := final_depot_occupancy;

temp_occ[d] + = 1;
‘ find Y; by solving system of linear equations {2a, 2b} given h

temp_occ;

ﬂ]’d =
2deD 2gec 1(d, A){responseTime(temp_occ[d], vg, [ +
travelTime(d, g)};

candidate_depots := candidate_depots Ud;

candidate_scores := candidate_scores U{d : my 4 }

best_depot := argmin 7y, VYd € candidate_depots; h

final depot occupancy[best depot] + = 1;

while sum(final_depot_occupancy) < |Al; h

return chosenDepots;
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Approach 1: Overview

Choose depots via greedy search Assign agents to chosen depots

e Repeat until # chosen depots == e Minimize distance traveled
agents: e LP, Greedy Search, etc.
e Split incident rates across depots
> vl =y, (22) 1 v

deD
dist(d, g)vd = dist(d;,gvy’ Vd; € D\d (2b)

e Score allocations

BERRY MLl
Ty = Z Z 1(d, A){responseTime(cg, vg, W) + travelTime(d, g)}
deD geG

OAX WIiLL

e Add depot that minimizes score
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Approach 1: Overview

Advantage:

 Computationally efficient

d
> v
deD

dist(d, g)Ug = dist(d,j.g)ug[ Vd; € D\d (2b)

|~ Disadvantages:

 Doesn’t take internal system state into account

* Ignores dynamic incident rate distribution
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Partially Decentralized Decision Process

Approach 2:
Multi-Agent
Monte Carlo Tree

Search
(MMCTS)

Router Router Router

Filter

Recommen dations
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Approach 2: MMCTS

Decentralised Online Planning for Multi-Robot Warehouse

Commissioning
. . . *
Daniel Claes Frans Oliehoek Hendrik Baier
smARTLab, Department of smARTLab, University of Liverpool Digital Creativity Labs, Department
Computer Science AMLab, University of Amsterdam of Computer Science
University of Liverpool, UK fao@liverpool.ac.uk University of York, UK
daniel.claes@liverpool.ac.uk hendrik.baier@york.ac.uk
Karl Tuyls

smARTLab, Department of
Computer Science
University of Liverpool, UK

K.tuyls@liverpool.ac.uk

Claes, Daniel, et al. "Decentralised online planning for multi-robot warehouse commissioning." AAMAS'17: PROCEEDINGS
OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS. 2017.

Typical Warehouse Model
*Improved on state of the art,

particularly in cases with large
state space
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Approach 2: MMCTS

Partially Decentralized Decision Process

Monolithic State space split for
State Space each agent

Environment

Incident Traffic
Model Model

Router Router Router

Filter

Standard MCTS;
Action space limited to relevant actions for the Agent

Recommendations
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Approach 2: MMCTS

Extensions needed for domain...
* How to approximate behavior of other agents in

ERM Domain?
* How to enforce global constraints?
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Approach 2: MMCTS

Approximate Agent behavior Enforcing Global Constraints

e 1) Naive policy: other agents e Centralized filter
do not rebalance e Ensure that

* 2) Informed policy: use e incidents are responded to
queue-based heuristic e Depots aren’t filled over
formulated in approach 1! capacity

e Uses greedy action
assignment based on
returned rewards
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Approach 2: MMCTS

Partially Decentralized Decision Process

Enforcing Global Constraints

Incident Environment

Incident Traffic

viodel JINl vose e Centralized filter
e Ensure that
e incidents are responded to
e Depots aren’t filled over
capacity
e Uses greedy action

Filter assignment based on
returned rewards

Router

Recommendations
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Approach 2: MMCTS

Partially Decentralized Decision Process

Incident Environment

Incident Traffic
Model Model

Router Router Router

Filter

Recommendations

Reward Structure

e Accounts for -
e Incident dispatch -> response time
e Balancing -> distance traveled

p(s,a) = {

pS—l - ath (tr(S, a))7
Z}Lk EA(¢k(s’ a))

t
ps=1 = @MY=y,

b

if responding to an incident

if balancing at s

(4a)

1§ §

Institute for Software Integrated Systems
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Approach 2: MMCTS

Partially Decentralized Decision Process Rewa rd St r u Ct u re

Incident Environment

ncident T saiic e Accounts for...

Model Model

e Incident dispatch -> response time
e Balancing -> distance traveled

R‘ Discounted Travel Time

t . . o .
Router Router Router 5(5.0) = Ps—1 — & h(trés, a))(, o) if responding to an incident
» W) = A eAPk(s,a ) .
ps_1 — athyy =2k ™ , if balancing at s
Filter (42)
Recommendations
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Approach 2: MMCTS

Partially Decentralized Decision Process Rewa rd St r u Ct u re

Incident Environment

ncident T saiic e Accounts for...

Model Model

e Incident dispatch -> response time
e Balancing -> distance traveled

Router Router Router ps—1 — ah(ty(s, a)). if responding to an incident
pls,a) = by 2agen($i(s@) | .
Ps—1— Al ,| if balancing at s
Filter 2 (4a)
Recommendations \

Average Distance Traveled
For Re-balancing
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Approach 2: MMCTS

Partially Decentralized Decision Process

Incident Environment

Incident Traffic
Model Model

Router Router Router

Filter

Recommendations

Reward Structure

e Accounts for...
e Incident dispatch -> response time
e Balancing -> distance traveled

— gth
p(s, J) = {Ps—l 4 (tr(s’ a)),

TJAk €A(¢k(s’ a))

ps—1—apy

Al

b

if responding to an incident

if balancing at s

(4a)

Average Distance Traveled s
For Re-balancing; [>0]

1§ §
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Experiments
and Discussion




Experimental Configuration

Davidson County: Nashville Fire

Department Administration Area

e 26 Responders (Agents)
e 36 Depots

e Incident model training set: 35858
traffic incidents occurring in 2018

e Entire system evaluated on 2728
incidents occurring in January,

NASHVILLE

BERRY NILL

OAX HILL
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Experimental Configuration

Radius of Influence (Rol)

e Only depots within a cell’s Rol
are considered when splitting
rates in heuristic score

e Encourages even agent
distribution

e Reduces computation time — "

Rol := 3 cells
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Results - Greedy Heuristic Search

Greedy Baseline Without Rebalancing

Queue Based Rebalancing Policy with Rol of 1
Queue Based Rebalancing Policy with Rol of 2 | 1

Queue Based Rebalancing Policy with Rol of 3 O b S e rva t I O n S
Queue Based Rebalancing Policy with Rol of 4
Queue Based Rebalancing Policy with Rol of 5

e Radius of Influence (Rol)
has significant impact

e Best Rol => significant
impact on tail of response
time distribution

* <1 mile moved per
rebalancing step on

| | | | | | daverage
. . 0.0 05 1.0 15 20 25
Response times (Minutes) Distance Moved (Miles)
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Results - MMCTS w/ Incident Model

MMCTS - Baseline
The foundation for the parameter search.
Each parameter varies independently while
other parameters retain these values.

(All M-* experiments use generated incident
chains and a Static Agent Policy)

MCTS Iteration Limit = 250
Lookahead Horizon = 120 min
Reward Distance Weight ¢ = 10
Reward Discount Factor = 0.99995
Rebalance Period = 60 min

*Other hyperparameters same as M-1

M-2 MMCTS - Iteration Limit of 100 MCTS Iteration Limit = 100*
M-3 MMCTS - Iteration Limit of 500 ¥ ign Limit — 800%
M-4 MMCTS - Reward Distance Weight i/ of 0 istance Weight ¢ = 0*
M-5 MMCTS - Reward Distance Weight 1/ of 100 istance Weigh

Mo6 MMCTS - Rebalance Period of 30 minutes; 0 10112011 = 5U

Lookahead Horizon of 30 minutes

<

Observations

* Distance-reward weight ->
large impact on amount
traveled

* Lookahead Horizon and
Rebalance Period -> impact
on response time
distribution

4

M3{—— ]
M-3
M-2{ —— ] |
M1 —{ T | W2
BASE| — | ] L M-1
0O 2 4 6 8 10 12 3

Response times (Minutes)

6 8 10
Distance Moved (Miles)

36 V| VANDERBILT UNIVERSITY




Results - MMCTS w/ Oracle

MR-1 MMCTS - using an ora}cle for future incidents Same as MMCTS Baseline M-1
and a Static Agent Policy
MMCTS - using an oracle for future incidents , | b "
MR-2 and a Queue Rebalancing Policy Same as MMCTS Baseline M-1 O S e rva t I O n S

* Large potential
improvement

* Despite increase in
distance moved, Queue
rebalancing shows little

RN improvement over static
— .
 More distance traveled
0 2 41 6 8 10 1 i 5 3 1 5 than queue heuristic
Response times (Minutes) Distance Moved (Miles)
approach
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M-6
M-5
M-4

M-2

M-1
BASE;

Results - MMCTS vs Heuristic

0 2 4 6 8 10 12
Response times (Minutes)

—{ —— Q5| |
—{ Q4] }
T
LT | ———
— ]
Q-1] |
S , BASE| H— |
0 2 4 6 8 10 12

Response times (Minutes)

Queue Heuristic

Observations

* Similar best-case
performance for each
approach

< 4
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Key Takeaways

EMS Specific Not feasible for real system

e Both approaches improve on baseline
e MMCTS w/ oracle demonstrates entanglement with efficacy of incident model

e MMCTS is more configurable than heuristic, but more sensitive to
hyperparameter choices

General:

e Planning performance dependent on quality of underlying event prediction
models

e Imperative to understand needs and constraints of target domain for it to be
implemented

e Computational capacity of agents has evolved -> should use
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