On Algorithmic Decision Procedures in Emergency Response Systems in Smart and Connected Communities

> Geoffrey Pettet¹, Ayan Mukhopadhay², Mykel Kochenderfer², Yevgeniy Voroybeychik³, Abhishek Dubey¹

¹Vanderbilt University, ²Stanford University, ³Washington University in St Louis

Sponsored by National Science Foundation, Center for Automotive Research at Stanford (CARS), and Tennessee Department of Transportation

Motivation and Background

grated Systems earch with global impact.

The emergency response problem

All traffic incidents occurring in Davidson County In January 2018, with a sliding window of ~12 hours

The problem: Respond Efficiently to all incidents spread over a large geographic area with limited resources.

Proactive Emergency Response

[1] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and Yevgeniy Vorobeychik. 2019. An online decisiontheoretic pipeline for responder dispatch. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS '19). Association for Computing Machinery, New York, NY, USA, 185–196. DOI:https://doi.org/10.1145/3302509.3311055

Proactive Emergency Response

[1] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and Yevgeniy Vorobeychik. 2019. An online decisiontheoretic pipeline for responder dispatch. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS '19). Association for Computing Machinery, New York, NY, USA, 185–196. DOI:https://doi.org/10.1145/3302509.3311055

Institute for Software Integrated Systems World-class, interdisciplinary research with global impact.

4

Proactive Emergency Response

Institute for Software Integrated Systems World-class, interdisciplinary research with global impact.

ļ

System Model and Assumptions

System Model – Assumptions

Region segmented into a grid with equally sized cells

System Model - Multi Agent SMDP

Institute for Software Integrated Systems World-class, interdisciplinary research with global impact.

V

Problem Definition

Given: System state, predicted spatial-temporal incident distribution Return: Action recommendation set that maximizes expected reward Institute for Software Integrated Systems

World-class, interdisciplinary research with global impact.

Approaches to Solving SMDP

[1] Ayan Mukhopadhyay, Zilin Wang, and Yevgeniy Vorobeychik. 2018. A Decision Theoretic Framework for Emergency Responder Dispatch. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS '18). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 588–596.

Institute for Software Integrated Systems World-class, interdisciplinary research with global impact.

VANDERBILT UNIVERSITY

Approach 1: Greedy Search with Queue-Heuristic

11 💽

M/M/c Queue Formulation

Multiple Servers

$$\sum_{d \in D} v_g^d = v_g$$
(2a)
$$\operatorname{dist}(\widetilde{d}, g) v_g^{\widetilde{d}} = \operatorname{dist}(d_i, g) v_g^{d_i} \quad \forall d_i \in D \setminus \widetilde{d}$$
(2b)

- For each cell, distribute rate among depots inversely proportional to the distance from the cell to the depot
 - Closer depots => higher portion of rate
- Solve System of Linear equations above for each cell
 - u_g^d is the fraction of arrival rate for cell g that is shared by depot d

- To score a particular allocation of agents:
 - Must consider travel times => not memoryless, so model explicitly
 - Y represents collection of split rates
 - Score π_{γ} => sum across all cells and depots
 - Estimated (queue) response times (waiting + service time)
 - Travel time from depot to cell

$$\pi_{\Upsilon} = \sum_{d \in D} \sum_{g \in G} \mathbb{1}(d, \Lambda) \{ \text{responseTime}(c_d, v_g^d, \mu) + \text{travelTime}(d, g) \}$$

- <u>Depot selection</u>: Greedy Search
 - One by one select depot that minimizes π_{γ}
 - Add to chosen set
 - Re-split rates and calculate new scores with each new depot placed
 - Continue until the number of depots chosen is the same as number of agents
- Assign agents to chosen depots by minimizing distance traveled (Linear Program)

Approach 1: Overview

Choose depots via greedy search

- Repeat until # chosen depots == # agents:
 - Split incident rates across depots

 $\sum_{d \in D} v_g^d = v_g$ (2a) $\operatorname{dist}(\widetilde{d}, g) v_g^{\widetilde{d}} = \operatorname{dist}(d_i, g) v_g^{d_i} \quad \forall d_i \in D \backslash \widetilde{d}$ (2b)

• Score allocations

 $\pi_{\Upsilon} = \sum_{d \in D} \sum_{g \in G} \mathbb{1}(d, \Lambda) \{ \text{responseTime}(c_d, v_g^d, \mu) + \text{travelTime}(d, g) \}$

• Add depot that minimizes score

Assign agents to chosen depots

- Minimize distance traveled
- LP, Greedy Search, etc.

Institute for Software Integrated Systems World-class, interdisciplinary research with global impact.

V

Approach 1: Overview

Partially Decentralized Decision Process

Approach 2: Multi-Agent Monte Carlo Tree Search (MMCTS)

Typical Warehouse Model

Decentralised Online Planning for Multi-Robot Warehouse Commissioning

Daniel Claes smARTLab, Department of Computer Science University of Liverpool, UK daniel.claes@liverpool.ac.uk Frans Oliehoek smARTLab, University of Liverpool AMLab, University of Amsterdam fao@liverpool.ac.uk

Karl Tuyls smARTLab, Department of Computer Science University of Liverpool, UK k.tuyls@liverpool.ac.uk Hendrik Baier Digital Creativity Labs, Department of Computer Science University of York, UK hendrik.baier@york.ac.uk

Claes, Daniel, et al. "Decentralised online planning for multi-robot warehouse commissioning." AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS. 2017.

*Improved on state of the art, particularly in cases with <u>large</u> state space

Approach 2: MMCTS

Partially Decentralized Decision Process

Approximate Agent behavior

- 1) *Naïve policy:* other agents do not rebalance
- 2) *Informed policy:* use queue-based heuristic formulated in approach 1!

Enforcing Global Constraints

- Centralized filter
- Ensure that
 - incidents are responded to
 - Depots aren't filled over capacity
- Uses greedy action assignment based on returned rewards

Enforcing Global Constraints

- Centralized filter
- Ensure that
 - incidents are responded to
 - Depots aren't filled over capacity
- Uses greedy action assignment based on returned rewards

Partially Decentralized Decision Process

Reward Structure

• Accounts for -

- Incident dispatch -> response time
- Balancing -> distance traveled

$$\rho(s,a) = \begin{cases}
\rho_{s-1} - \alpha^{t_h}(t_r(s,a)), & \text{if responding to an incident} \\
\rho_{s-1} - \alpha^{t_h}\psi \frac{\sum_{\lambda_k \in \Lambda}(\phi_k(s,a))}{|\Lambda|}, & \text{if balancing at } s
\end{cases}$$
(4a)

Partially Decentralized Decision Process

Reward Structure

- Accounts for...
 - Incident dispatch -> response time
 - Balancing -> distance traveled

Partially Decentralized Decision Process

Reward Structure

• Accounts for...

- Incident dispatch -> response time
- Balancing -> distance traveled

Institute for Software Integrated Systems World-class, interdisciplinary research with global impact.

V

Partially Decentralized Decision Process

Reward Structure

• Accounts for...

- Incident dispatch -> response time
- Balancing -> distance traveled

Experiments and Discussion

arated Systems

Experimental Configuration

Davidson County: Nashville Fire Department Administration Area

- 26 Responders (Agents)
- 36 Depots
- Incident model training set: 35858 traffic incidents occurring in 2018
- Entire system evaluated on 2728 incidents occurring in January, 2019

Experimental Configuration

Radius of Influence (RoI)

- Only depots within a cell's Rol are considered when splitting rates in heuristic score
- Encourages even agent distribution
- Reduces computation time

Results - Greedy Heuristic Search

BASE	Greedy Baseline Without Rebalancing	N/A
Q-1	Queue Based Rebalancing Policy with RoI of 1	RoI = 1
Q-2	Queue Based Rebalancing Policy with RoI of 2	RoI = 2
Q-3	Queue Based Rebalancing Policy with RoI of 3	RoI = 3
Q-4	Queue Based Rebalancing Policy with RoI of 4	RoI = 4
Q-5	Queue Based Rebalancing Policy with RoI of 5	RoI = 5

Observations

- Radius of Influence (RoI) has significant impact
- Best Rol => significant impact on tail of response time distribution
- <1 mile moved per rebalancing step on average

Institute for Software Integrated Systems *World-class, interdisciplinary research with global impact.*

V

Results - MMCTS w/ Incident Model

M-1	MMCTS - Baseline	MCTS Iteration Limit - 250
	The foundation for the parameter search.	Lookahood Horizon = 120 min
	Each parameter varies independently while	Lookaneau Horizon = 120 him
	other parameters retain these values.	Reward Distance weight $\psi = 10$
	(All M-* experiments use generated incident	Reward Discount Factor = 0.99995 Rebalance Period = 60 min
	chains and a Static Agent Policy)	
M-2	MMCTS - Iteration Limit of 100	MCTS Iteration Limit = 100*
M-3	MMCTS - Iteration Limit of 500	MCTS Iteration Limit - 500*
M-4	MMCTS - Reward Distance Weight ψ of 0	Reward Distance Weight $\psi = 0^*$
M-5	MMCTS - Reward Distance Weight ψ of 100	Reward Distance Weight $\psi = 100^*$
M-6	MMCTS - Rebalance Period of 30 minutes;	Lookanead Horizon = 50 mm
	Lookahead Horizon of 30 minutes	Rebalance Period = 30min*

*Other hyperparameters same as M-1

Observations

- Distance-reward weight -> large impact on amount traveled
- Lookahead Horizon and Rebalance Period -> impact on response time distribution

V

Results - MMCTS w/ Oracle

MR-1	MMCTS - using an oracle for future incidents and a Static Agent Policy	Same as MMCTS Baseline M-1
MR-2	MMCTS - using an oracle for future incidents and a Queue Rebalancing Policy	Same as MMCTS Baseline M-1
	•	•

Observations

- Large *potential* improvement
- Despite increase in distance moved, Queue rebalancing shows little improvement over static
- More distance traveled than queue heuristic approach

Results - MMCTS vs Heuristic

V

Key Takeaways

EMS Specific

Not feasible for real system

- Both approaches improve on baseline
- MMCTS w/ oracle demonstrates entanglement with efficacy of incident model
- MMCTS is more configurable than heuristic, but more sensitive to hyperparameter choices

General:

- Planning performance dependent on quality of underlying event prediction models
- Imperative to understand needs and constraints of target domain for it to be implemented
- Computational capacity of agents has evolved -> should use

Contact Info

- Presenter Geoffrey Pettet:
 - <u>Geoffrey.a.pettet@Vanderbilt.edu</u>
- Collaborators:
 - Ayan Mukhopadhay
 - Mykel Kochenderfer,
 - Yevgeniy Voroybeychik,
 - Abhishek Dubey