
F6COM: A Component Model for
Resource-constrained and Dynamic Space-based

Computing Environments

William R. Otte, Abhishek Dubey, Subhav Pradhan, Prithviraj Patil,
Aniruddha Gokhale, and Gabor Karsai∗
∗ ISIS, Dept of EECS, Vanderbilt University,

Nashville, TN 37235, USA

Email:{wotte,dabhishe,pradhasm,prithviraj6116,gokhale,gabor}@isis.vanderbilt.edu

Johnny Willemsen†
† Remedy IT

2650 AC Berkel en Rodenrijs

The Netherlands

Email: jwillemsen@remedy.nl

Abstract—Component-based programming models are well-
suited to the design of large-scale, distributed applications be-
cause of the ease with which distributed functionality can be
developed, deployed, and validated using the models’ composi-
tional properties. Existing component models supported by stan-
dardized technologies, such as the OMG’s CORBA Component
Model (CCM), however, incur a number of limitations in the
context of cyber physical systems (CPS) that operate in highly
dynamic, resource-constrained, and uncertain environments, such
as space environments, yet require multiple quality of service
(QoS) assurances, such as timeliness, reliability, and security.
To overcome these limitations, this paper presents the design of
a novel component model called F6COM that is developed for
applications operating in the context of a cluster of fractionated
spacecraft. Although F6COM leverages the compositional capa-
bilities and port abstractions of existing component models, it
provides several new features. Specifically, F6COM abstracts the
component operations as tasks, which are scheduled sequentially
based on a specified scheduling policy. The infrastructure ensures
that at any time at most one task of a component can be active
— eliminating race conditions and deadlocks without requiring
complicated and error-prone synchronization logic to be written
by the component developer. These tasks can be initiated due to
(a) interactions with other components, (b) expiration of timers,
both sporadic and periodic, and (c) interactions with input/output
devices. Interactions with other components are facilitated by
ports. To ensure secure information flows, every port of an
F6COM component is associated with a security label such that
all interactions are executed within a security context. Thus, all
component interactions can be subjected to Mandatory Access
Control checks by a Trusted Computing Base that facilitates the
interactions. Finally, F6COM provides capabilities to monitor
task execution deadlines and to configure component-specific
fault mitigation actions.

Index Terms—component models, cyber physical systems, clus-
ter and cloud, wireless networking, mobility.

I. INTRODUCTION

Component-based software engineering (CBSE) [1] is based

on the notion that software should be assembled from pre-

fabricated and pre-tested components, which encapsulate parts

of a software system that implement a specific service or a

set of services. Several software component models have been

developed in the past, including COM and .NET by Microsoft,

the CORBA Component Model (CCM) defined by OMG and

implemented by many vendors, and the Enterprise Java Beans

(EJB) from Sun/Oracle, just to name the three major ones.

The component models define what a component is, how it

can be customized, assembled to form applications, deployed,

executed, and how the components interact with each other.

Each component model also defines a component platform: a

middleware software layer that implements common services

needed by applications. With increasing time-to-market pres-

sures that force significant reuse and the increasing scale and

complexity of applications, CBSE is generally the preferred

approach to developing and deploying large-scale distributed

applications.

Although CBSE has traditionally been used to develop

enterprise applications, a number of prior efforts [2], [3], [4],

[5] have also used CBSE for real-time and embedded appli-

cations. These component models for real-time and embedded

applications focus on assuring one or more of the different

domain requirements, such as meeting the different non-

functional properties (e.g., timeliness, reliability and security),

satisfying limitations on resources, and handling uncertainties

in operating environments.

The work presented in this paper describes a component

model called F6COM that we have developed to operate in a

real-time embedded environment of fractionated spacecraft [6]

(F6 stands for Future, Fast, Flexible, Fractionated, Free-Flying

[7] spacecraft). The fractionated spacecraft concept helps

increase mission reliability by virtue of using smaller form

factor and relatively inexpensive spacecraft that form a cluster

with potentially redundant capabilities. Space missions are

supported by distributed software applications whose function-

ality is spread across the different spacecraft in the cluster. The

cluster of fractionated spacecraft essentially provides a cloud

computing platform [8] in space where different, potentially

concurrent, missions can lease resources on the spacecraft

cluster for their needs.

Although computing on fractionated spacecraft shares many

of the same stringent requirements as other distributed real-

time embedded systems, it also presents a unique set of

challenges distinct from other such systems. For example,

it is important to assure robust and reliable operations since

runtime debugging and firmware upgrades are often difficult,

and physical access to the hardware is practically impossible.

This requirement imposes the need for highly robust software

(e.g., free of race conditions and deadlocks). Second, space

computing presents with numerous additional dimensions of

uncertainties arising from faults in the hardware caused by,

for instance, radiation effects. This requirement imposes the

need for real-time anomaly detection and fault mitigation

capabilities. Third, communication links in the cluster can

exhibit a wide range of fluctuations in latency, reliability, and

speed, depending on the position and attitude of the satellite

and other environmental factors, which imposes the need for

dynamic resource management.

An already formidable set of challenges manifested in space

computing are further amplified by the fractionated spacecraft

computing model, which implies that multiple missions can

be simultaneously hosted on the platform. This necessitates

the requirement for strict isolation between different yet con-

current missions, including strong security assurances. Since

multiple space missions can be hosted on a fractionated space-

craft cluster simultaneously, the system must support different

interaction semantics, such as synchronous remote method

invocations, asynchronous messaging, and publish/subscribe

— all subject to security constraints.

This paper therefore presents the design rationale and

evaluation of a new component model called F6COM for

fractionated spacecraft. The rest of the paper is organized

as follows: Section II describes related research comparing it

with F6COM; Section III describes the F6COM component

model in detail explaining how it resolves the challenges

described in this section and how it overcomes the limitations

in prior work; Section IV provides results of empirically

evaluating the F6COM capabilities; and finally Section V

provides concluding remarks and alludes to future work.

II. RELATED WORK

In [9], authors provide a detailed comparison of different

component frameworks that are tailored towards real-time and

embedded systems. For example, the Pervasive Component

Systems (PECOS) [2], [10] project describes a component

model for embedded systems and is specifically tailored to

field devices. Field devices are reactive, embedded devices

fitted with sensors and actuators, and are developed using the

most inexpensive of hardware. They are severely constrained

in the amount of RAM, CPU capacity and other resources. The

key contributions of PECOS are its support for non-functional

properties, such as maintaining hard real-time properties, and

lifecycle activities, such as specification, composition, deploy-

ment and configuration. Moreover, components in PECOS

could be active (which have their own thread of control

and support long lived activities), passive (which do not

own a thread of control and are scheduled by another active

component), and event components (which are triggered by

some events). PECOS also supplies the CoCo language used

to specify components and their composition.

In many respects F6COM shares the same goals as PECOS:

it is tailored to support multiple nonfunctional properties

in resource-constrained and highly uncertain environments.

F6COM also comes with model-driven engineering tools (not

discussed in this paper) to specify, compose, deploy and

configure F6 applications. However, there are key differences

between F6COM and PECOS. F6COM does not make a

distinction among component types; rather components can

exist in different states that dictate their behavior. In addi-

tion to event-triggered behavior, F6COM also supports time-

triggered actions. Moreover, F6COM provides finer granularity

of control and communication semantics by providing a variety

of port types that support both synchronous remote method

invocations and publish/subscribe forms of communication.

Additionally, F6COM support secure communications with ap-

propriate support at the level of ports. Finally, unlike PECOS,

which is tailored to support field devices that perform a limited

set of functions, F6COM are developed as reusable units of

functionality for a wide range of applications that can be

executed in distributed, space computing environments.

The PROGRESS component model [4], [11] is a recent ef-

fort to develop a component model for real-time and embedded

systems, most notably tailored towards supporting vehicular

and telecommunications-based embedded environments. For

applications based on PROGRESS, the component-based soft-

ware development philosophy is used in all stages of applica-

tion development. Support is provided for a variety of anal-

ysis including functional compliance, timing properties, and

resource usage to realize extremely robust applications. The

PROGRESS model supports two kinds of communications:

the first for messages within the same physical host, which is

supported through one subsystem of PROGRESS, while the

second supports messages sent over the bus. PROGRESS also

supports a two-level component model. The top level deals

with the distribution, concurrency, and synchronization aspects

and is used by components that are active and communicate

through ports using asynchronous messaging. At the bottom

layer is a low-level component model comprising components

that are passive and are activated by events at the higher level.

F6COM shares many of the same goals of PROGRESS,

i.e., they both seek to realize robust, secure, and reli-

able distributed, real-time and embedded systems. Unlike

PROGRESS, F6COM supports a single-layer component

model design that supports various kinds of communication

semantics. Security is also a key distinguishing characteris-

tic. With respect to concurrency, although F6COM supports

concurrent application threads, only one operation is allowed

to execute at any given time in a particular component to

eliminate any race conditions and the need for synchronization

at the application level. Moreover, although currently we are

developing F6COM for space-based computation, F6COM can

easily be used in a variety of other domains.

The Component Integrated ACE ORB (CIAO) [3], [12]

project is our own related effort on component middleware for

distributed, real-time and embedded systems. CIAO is an im-

plementation of the OMG’s Lightweight CORBA Component

Model (LwCCM) specification [13]. CIAO uses the TAO [14]

CORBA object request broker (ORB) as its default underlying

communication middleware. With the recent standardization

of connector mechanisms [15], CIAO is also able to support

asynchronous messaging and the OMG Data Distribution

Service (DDS) through its ports.

Although F6COM has been designed based on our expe-

riences with CIAO, there are key differences. First, unlike

CIAO, F6COM is not tightly coupled to the CORBA transport

mechanism. All communications in F6COM are through the

ports and use the connector technology [16] that enables

F6COM to use a variety of communication mechanisms.

Second, unlike CIAO, support for security is built into the port-

based communication of F6COM. Third, unlike CIAO which

borrows the threads of control from the underlying ORB to

execute application logic and can potentially have multiple

concurrent threads of execution, F6COM has its own thread

of control. Moreover, for safety and deadlock free behavior,

F6COM allows only one thread of control to be active at any

given instant in time.

The ARINC-653 Component Model (ACM) [5] is another

of our prior efforts in building component models for hard

real-time systems. ACM implements a component model for

the ARINC-653 standard [17] for avionics computing. The

F6COM design also incorporates our experiences from ACM.

In particular, we leverage the scheduling mechanism supported

in ACM, the component states, ports and port types as well

as the anomaly detection and fault mitigation capabilities

that include deadline monitoring. However, as noted earlier,

security in F6COM is not an afterthought but rather a first

class entity in its design. Similarly, focus on robustness and

deadlock/race condition-free behavior is a key design goal for

F6COM.

In summary, F6COM represents a hybrid between ACM and

CIAO leveraging the best features from these, and enhancing

them to suit the highly dynamic and uncertain but resource-

constrained space computing environment.

III. F6 COMPONENT MODEL

This section presents the F6COM component model by

describing its salient features that distinguishes it from other

component models and how they address key requirements of

distributed, real-time applications that execute on a fraction-

ated spacecraft. To better understand the F6COM model we

first briefly describe the overall architecture of the fractionated

spacecraft computing environment called the F6 Information

Architecture Platform (F6 IAP).

A. Overview of the F6 Information Architecture Platform
The F6 IAP is a layered architecture [18] shown in Fig-

ure 1 that comprises a novel operating system, a middle-

ware layer, and component-based applications. The operating

system provides primitives for concurrency, synchronization,

and secure information flows; it also enforces application

separation and resource management policies. The middleware

provides higher-level services supporting request/response and

publish/subscribe interactions for distributed software. The

Fig. 1. F6 Information Architecture Platform

component model facilitates the creation of software applica-

tions from modular and reusable components that are deployed

in the distributed system and interact only through well-

defined mechanisms. Redundant copies of components can

also be deployed to facilitate active fault management.

Components are grouped into actors: uniquely identifiable

and restartable processes that are (1) temporally and spatially

isolated from each other, and (2) that may be distributed and

replicated across nodes. Application actors form applications

and one application may be split across multiple application

actors, potentially on different nodes and satellites. Platform
actors provide system-level services, such as component de-

ployment and fault management.

One of the platform actors is called the Deployment Man-
ager. It provides the deployment and configuration capabilities

to the system and is responsible for instantiating the compo-

nents and configuring them [19]. A detailed discussion of the

deployment manager is out of scope of this paper.

Two cross-cutting aspects: multi-level security and multi-
layered fault management are addressed at all levels of the

architecture. The complexity of creating applications and per-

forming system integration is mitigated through the use of

a domain-specific model-driven development process called

Model Integrated Computing [20] that relies on a dedicated

modeling language and its accompanying graphical modeling

tools, software generators for synthesizing infrastructure code,

and the extensive use of model-based analysis for verification

and validation.

B. Design of the F6COM Component Model
We now present the F6COM component model and the

rationale behind the several different design decisions we

made. Figure 2 provides an overview of the various features

of a F6 component. We will discuss them later in this section.

The rest of this section is organized according to the decisions

we made and how they relate to supporting the mission-critical

applications that share the spacecraft cluster.

1) Component Lifecycle: Since components are reusable

units of functionality that can be composed to create appli-

cations and subject to active fault management, individual

F6COM components require a number of execution states.

For example, a component that is currently being configured

cannot be ready to execute the business logic - the non-

Fig. 2. F6 Component

infrastructure software provided by component developers that

implements the component functionality. To address these

requirements, the F6COM supports four different component

execution (or lifecycle) states:

• Initial: This is the state in which the component starts

after being instantiated. In this state the deployment

infrastructure can configure the component parameters.

Component parameters may only be altered in this or the

inactive state, described below.

• Passive: In this state the component is semi-activated.

It can only execute operations that can update its own

state, but cannot affect the state of other components.

That is, it can change the value of its own state vari-

ables, can perform consumer operations, and can execute

facet operations with only in arguments and receptacle

operations with only out arguments. This state can be

used to support the primary-backup replication scheme

used for fault tolerance.

• Inactive: This is a more strict version of the passive

state described above. In this state, components may not

generate or respond to any events. Any incoming events

from other components will not be handled; only the

deployment infrastructure is allowed to alter the state of

the component by changing its component parameters.

• Active: In this state the component is fully activated and

is performing its operations when triggered.

State transitions are managed by the F6IAP deployment

infrastructure. Figure 3 illustrates the lifecycle of a F6COM

component and its interactions with this deployment infras-

tructure, called the F6 Deployment Manager (shown as DM)

and the Component Fault Manager shown as (FM).

2) Component Interactions: Fractionated spacecraft are in-

tended to provide a cluster computing environment where

space mission applications can lease resources on the cluster to

support their mission operations. Since these applications are

likely to require heterogeneity in their interaction semantics

and since they are all developed using components, it was im-

portant for F6COM to support different interaction semantics.

To support different interaction semantics, a F6 component

in F6COM can have four different kinds of ports: consumer

port, publisher port, facet port, and receptacle port. A publisher

port is a point of data emission and distribution; a consumer

port is a point of data reception. All data published or

consumed are strongly typed. These interactions are specified

in the OMG Data Distribution Services standard [15].

Initial

Parameters and
connections can be

configured

Inactive

Parameters and
connections can be

configured

Passive

Component State can
be updated

Active

Fully Functional

Restore (FM)

Configured(DM)

Passivate(DM/FM)

Activate(DM)

Passivate(DM/FM)

Checkpoint

Fig. 3. F6 Component Lifecycle

A facet (of a server) is attached to the implementation of the

methods defined in the provided interface and it services the

requests issued through a receptacle on another component

(a client) for these interface methods. Through these ports,

three basic kinds of interactions can be realized: (a) anony-

mous, asynchronous, and non-blocking publish/subscribe, (b)

synchronous call/return type point-to-point interactions, and

(c) asynchronous method invocations by virtue of using facets

and receptacles interacting asynchronously using call backs.

3) Timers and State Variables: F6COM also provides peri-

odic and aperiodic time-based triggers that initiate component

operations. Additionally, it supports state variables: component

attributes with (limited) history, which are often needed in

software interacting with physical phenomena. Their values

represent a complete state of the component and they are often

used by mathematical algorithms, e.g. Kalman filters for state

tracking.

4) Extensible and Loosely Coupled Design using Connec-
tors: The use of typed ports in F6COM dictates the interaction

styles applications may use. However, ports alone do not

decide the communication transport mechanism that will be

used to implement these interaction styles. A number of

choices are available. For example, synchronous call/return

and asynchronous messaging can be supported using OMG’s

CORBA transport while the publish/subscribe mechanism can

be supported using OMG DDS. A long term goal of the F6

program is to enable new transport mechanisms. Consequently,

we had to decouple the transport mechanism from the struc-

tural artifacts of a F6 component, such as the ports.

Figure 4 illustrates the use of connectors [16], which

decouple the transport and event handling mechanisms from

the business logic of the ports. As shown in the figure, the

component is clearly divided into two regions, the component

executor region and the connector region. Typically, the com-

ponent executor code is provided by the component developer

and uses a local function call to interact with the connectors.

The connector code is provided by the middleware vendor

and together with the component business logic can be used

to provide the different interaction semantics.

In our current implementation, the connectors are used

Component
Executor (Business
Logic)

Component
State Variables

Calls (Uses)

Connector
Executor

Component
message
Queue

Inserts
Operations

Publish

Required

Subscribe

Provided

Resource needsState
Observations

DDS

CORBA

Timer

Connector
Executor

AMI

Launch

Calls (U

Compo

Launc

Fig. 4. F6 Connectors

to implement the interface/request-reply style messaging

(CORBA) as well as data-centric publish/subscribe style mes-

saging (DDS). They are also used for client (using asyn-

chronous message invocation, i.e., AMI) and for servant (using

asynchronous message handling, i.e., AMH) are handled using

an AMI connector. Timer-based events are handled through

timer connectors. Components manage their state variables

using the state variable connector.

The connectors are able to interact with the component

executor region via the component message queue (CMQ),

explained later in Section III-B5.

5) Component Operations — Promoting Race Condition-
free and Deadlock-free Behavior: Robustness of mission-

critical applications can be enhanced if the behavior is free

of race conditions and deadlocks. Multiple threads with con-

current access to the internal state variables of the component

will necessitate appropriate synchronization to be used. Such

synchronization primitives often lead to unanalyzable code and

can cause run-time deadlocks and race conditions.

The F6COM avoids such situations by breaking the different

component activities into tasks or operations and ensuring

that operations are scheduled one at a time and run to

completion before another is scheduled. The component state

can be updated only within the context of an operation. To

implement the operation-based abstraction, the F6COM uses a

dispatch queue that holds the ready operations, one of which

is selected as next to run. The benefits of this decision are

manifold: (a) application logic remains very simple, (b) there

is no requirement for any synchronization primitives in the

component code, and (c) the entire system is easier analyze

for other properties of interest.

Figure 5 illustrates the Component Message Queue ap-

proach used by F6COM. Any incoming interaction request on

a port (shown as middleware connectors in the figure), or an

internal task generated due to timer expiration (shown as timer

connectors in the figure) is placed into the message queue.

All operations are quantified with two parameters, priority and

deadline. The deadlines are expressed in absolute time and are

judged from when the operation was inserted into the message

queue. Scheduling of requests for execution is done based on a

configurable scheduling discipline; currently, Earliest Deadline

First (EDF), First In First Out (FIFO), and Priority FIFO are

supported.

Queuing the activation record of an operation involves

an admittance check, set by the component configuration.

For example, the admittance check can ensure whether the

Fig. 5. F6 Component Message Queue

deadline of the newly queued operation is beyond an estimated

deadline given all the pending activations in the queue. A

separate thread in the component framework: the fault manager

thread is notified if a task is rejected. Once put into the

queue, the tasks are sorted based on the queuing discipline.

The component’s main thread (component executor) picks the

activation record from the queue based on the configured

scheduling policy and runs the operation to completion. Op-

erations must terminate in a finite amount of time and cannot

be preempted by another operation of the same component.

6) Contract-based Programming for Robust Behavior:
F6COM supports contract-based programming, which is nec-

essary to realize robustness properties that are key objectives.

To enable these capabilities, F6COM allows a component

developer to specify pre-conditions and post-conditions that

can be injected into the call path of the associated operation,

such as publish and subscribe operations, as well as method

invocations. These capabilities are as follows:

• Pre-conditions: This is a function with a Boolean return

value, supplied by the component developer. It specifies

a condition that must be satisfied before the operation

is performed. This is typically used to build software

anomaly detectors that can evaluate guard conditions over

the current and historical values of input parameters of

the operation, as well as current and historical values of

the state variables of the component.

• Post-conditions: This is similar to a pre-condition, with

the difference that a post-condition is checked after the

operation completes.

• Invariants: F6COM supports the concept of state vari-

ables with history as it is common to store and process

historical values in software components implementing

mathematical algorithms that are likely to exist in the

software interacting with physical phenomena. This his-

tory can be used to describe temporal properties over

the component’s state that must always be satisfied. Such

conditions are expressed as invariants, and provide a way

to detect anomalous conditions that violate the safety

assumptions and are always evaluated when the state

variables are updated.

Pre- and post-conditions, as well as invariants can be supplied

by the developer as hand-crafted code, or auto-generated from

models. In summary, together with invariants, pre-conditions

and post-conditions specify the contracts that must be valid

for components during runtime. Although these concepts are

not new, their inclusion in the context of all other capabilities

that F6COM supports makes this component model attractive.

Note that the total time taken by a component operation will

be the time needed to complete the operation’s business logic

plus the time taken to evaluate the pre- and post-conditions.

7) First Class Support for Non-Functional Properties:
Supporting nonfunctional properties, such as timeliness, fault

tolerance and security are not an afterthought but rather

an integral part of the F6COM design. For instance, every

operation on a component can be associated with a deadline

that the developer can specify. A developer can also specify

time-based triggers that determine when selected component

operations will be scheduled.

Section III-B4 described how the connector mechanism

decouples the trigger type from the trigger port in a F6COM

component. A special mechanism described below tracks

whether the operation will meet its deadline or not. It also de-

scribes what happens when the deadline is not met. Timeliness

assurances in F6COM are provided through two mechanisms:

deadline checks and deadline monitoring. A deadline check is a

mechanism that is performed before the operation is actually

executed and is invoked at the following stages: (a) Before

the activation record is queued, the system checks the current

state of the queue, the queuing discipline used, and determine

if this operation can finish before its deadline, and (b) Before

the activation record is processed and the operation is actually

executed, the system will determine if this operation can finish

by its deadline. In either case, if the check fails, the fault

manager (discussed next) is notified.

Deadline monitoring is invoked when the operation is al-

lowed to execute and is accomplished as follows: the compo-

nent container that releases the thread running the business

logic of the component monitors the deadline. If a hard

deadline is reached but the current operation is still active,

then the framework notifies the fault manager. The fault

management mechanism, in brief, is described below; detailed

description, however, is not in the scope of this paper.

Fault management in F6COM is supported through a local

fault manager, which is an integral part of the component.

The fault management logic maps incoming anomaly events

(precondition violations, post condition violations, deadline

violations, admittance rejections) and maps them to pre-

configured mitigation actions. In the past, we have shown how

such fault management logic can be generated from timed state

machine models [21], [22].

As part of the component implementation, the developers

have to implement two interface operations onCheckpoint
(out OctetSequence) and onResume (in
OctetSequence) to serialize and de-serialize the state of

the component, respectively, for use by the fault manager

before checkpointing and after restarting. Checkpoint requests

can be queued like any other operation. Resume can only be

called if the component is in the Inactive state. In the Inactive

state, the ready queue is empty. The “resume” operation

will be pushed to this queue and immediately executed.

Subsequently, the component can be brought out of the

inactive state. These states are described in Section III-B1.

The underlying implementation to support the deadline

monitoring and fault management involves three types of

threads for a given F6COM component: a Pusher thread

queues activation records into the ready queue as described

in Section III-B5. It also monitors the currently executing

operation for deadline violations, which can be caused by dif-

ferent factors such as high priority preemption or incomplete

out-bound calls. The Component Executor thread runs the

component implementation code, i.e., picks the next operation

to be activated (described in Section III-B5), and the Fault
manager thread, whose operations were described above.

Security is handled using the concept of a security label

(or a collection of labels) that are associated with the ports.

Security labels determine the security classification(s) of the

information propagated through the port, and they are assigned

by some appropriate authority. These labels play a role in im-

plementing support for Multi-Level Security (MLS). Although

the security architecture in F6IAP is outside the scope of

this paper, the core security mechanism works as follows. In

F6IAP, the basic form of network communication (call/return

or publish/subscribe) is through an operating system feature

called Secure Transport. The basic communication unit in

secure transport is endpoints (functionally similar to sockets)

and flows.

A flow (configured by a suitably privileged actor) connects

one source endpoint to one or more destination endpoints.

When the business logic of an actor sends a message with a

label through a port of one of its components, the underlying

operating system (also developed in this project) checks the

label of the message against the labels of the endpoint, which

are securely stored inside the kernel and are known to be a

subset of the labels of the actor. If the message label is not

among the labels of the endpoint, the message is not sent (in

the case of a writing-side endpoint) or delivered (in the case

of a reading-side endpoint), but instead it is discarded. These

checks are performed by the operating system and cannot be

bypassed. Similar checks are also performed on the receiving

end. See [18] for more details on secure transport.

8) Supporting Long Running and I/O-bound Operations:
Space missions often may involve long running operations and

multiple I/O bound operations (e.g., sensor I/O). Since F6COM

allows only one active operation to execute at a time within

a component, it is possible that when an operation is waiting

on I/O, a compute-ready operation may unnecessarily remain

blocked. There are three options available to the component

developer: (1) use blocking I/O, (2) use polling, and (3) use

asynchronous I/O.

In the case of blocking I/O (every operation blocks until

the transfer is complete) the component is unavailable while

the operation is running. Other components may be running

in the system, but the one waiting for the I/O is completely

blocked. Through component-to-component interactions this

blocking could propagate and introduce significant delays

in the system. If polling is used, some activity has to be

periodically scheduled that checks the completion of the I/O.

Obviously this leads to a waste of resources and can lead

to decreased performance. Hence, the only viable alternative

is to use asynchronous I/O, where a component activity can

launch an I/O operation, not wait for its result, and when the

result arrives, another activity — within the component —

shall finish the operation.

Such asynchronous operations can be broken down into

three activities as follows: (a) The starter activity that prepares

an I/O operation and then informs the framework that the

I/O operation can be scheduled, optionally passing data to the

operation. (b) The I/O activity that actually launches the I/O

operation and waits for its results. When the I/O completes

the operation hands over the data (if any) resulting from

the I/O operation to the framework and returns. This I/O

activity is handled outside the context of the component and

hence cannot impact the component state directly. (c) The

handler activity that receives the result of the I/O operation

and processes it, possibly forwarding it to another component.

Note that only the starter and handler activities are handled

within the context of the component and interact with the

component state and message queue. The I/O activity is

handled by a connector that executes outside the context of

the component and hence cannot impact the component state

directly. When the operation returns, the I/O connector queues

the request for activation of the handler activity.

This approach is needed to allow maximum concurrency in

the component on one hand, and to ensure safety on the other

hand. The activity starts and executes an I/O operation that

can block. This blocking is acceptable because the component

can still be used by other threads and all other components can

be active. The physical I/O operation finishes and the rest of

activity retrieves the data and hands it over to the framework

for passing that to the handler. At this point the framework

is free to release the handler activity that will be handed the

data produced in the I/O activity. The handler will lock the

component and can modify the component state, and can also

propagate the data from the component to other components.

9) Resource-aware Allocation: Recall that F6 mission ap-

plications can span multiple compute nodes, spread across a

potentially unreliable distributed network. These applications

are realized as a workflow of F6 actors. Since the F6 cluster of

fractionated spacecraft illustrates a highly resource-constrained

environment, applications are not allowed to consume arbitrary

amount of resources. Therefore, F6COM is supported by

a platform and deployment infrastructure that follows fixed

resource allocation scheme where the component’s resource

needs are declared at development time, verified at system

integration time, and enforced at run-time.

IV. ILLUSTRATING F6COM FEATURES ON A CASE STUDY

This section describes an example software assembly that

illustrates some of the features of the F6COM component

model. In order to show that the components always execute

one operation at a time, we designed our experimental testbed

to have three different components as shown in Figure 6. All

three components run in their own actor and are co-located

in a single physical node (for simplicity). The following is a

brief description of functionality of each component:

DDS Sender

Receiver
Component

(DDS Receiver
and

AMI Receiver)

AMISender
Component

Trigger
=20 HZ

Trigger
=20 HZ

Component A Component B Component C
Fig. 6. An example Component Assembly

TABLE I
SOURCE CODE EVALUATION (SLOC)

Component Generated Written Total
AMI Sender 2121 289 2410
DDS Sender 2604 249 2853

Receiver 3230 242 3472

Component A: A DDS Sender that publishes a data

instance every 50 milliseconds. Component C: An AMI

(sender) client that sends Asynchronous Method Invocation

requests every 50 milliseconds. The reply from the server is

handled using the AMI callback operation. Component B: The

receiver component with two ports: (a) DDS receiver port and

(b) a server port that is used to handle the incoming AMI

requests.

Table I shows the number of lines of code generated by the

development tools such as IDL compiler and the number of

lines of code written to implement the business logic of all

three components. Approximately, 91% of the total code was

generated.

Deployment and execution of all components results in a

time sequence graph shown in Figure 7, which shows the

activation periods of five different component operations — (a)

DDS Send (DDS_S), (b) AMI Send (AMI_S), (c) AMI Sender

Callback (AMI_SC), (d) DDS Receive (DDS_R), and (e) AMI

Receive (AMI_R). It can be seen that AMI_R and DDS_R op-

erations do not execute simultaneously. Both of these operation

are executed in the same component (Receiver), however, we

see that these operations do not overlap each other. This shows

that the Receiver component always runs a single thread of

operation. The AMI Sender component receives callback from

the Receiver component when the AMI_R operation ends. The

Receiver component receives DDS samples when the DDS_S

operation starts but before the operation ends. This is because,

the DDS Sender component performs some book keeping after

publishing the data sample in the same operation.

V. CONCLUSIONS

Component-based Software Engineering (CBSE) is gener-

ally the preferred approach to develop large-scale, distributed

systems. When CBSE is applied to develop distributed, real-

time and embedded systems, the component model must sup-

port a number of features including robust application behavior

that is free of race conditions and deadlocks while simplifying

application development; first class support for multiple non-

functional properties like timeliness, fault tolerance and secu-

rity; dynamic resource management; full component lifecycle

management. The F6COM component model presented in

this paper supports all these capabilities. In addition, F6COM

0 50 100 150 200 250

DDS_S

AMI_S

AMI_SC

DDS_R

AMI_R

Relative Time in Millesecond

Component Operation

Component A

Component C

Component B

Fig. 7. A time sequence showing the activation of different operations in the assembly shown in 6. (DDS_S: DDS Sender, AMI_S: AMI Sender, AMI_SC:AMI
Sender Callback, DDS_R: DDS Receiver, and AMI_R: AMI Receiver) .

also supports effective resource sharing and isolation among

applications, as well as allows applications to use different

communication semantics. A qualitative evaluation of the

capabilities of F6COM validates our claims about its design.

Although F6COM has been designed for the fractionated

spacecraft operating environment, it is suitable for many other

kinds of distributed and embedded environments. In future,

we intend to demonstrate its capabilities in a variety of cyber-

physical environments.

Acknowledgments: This work was supported by the

DARPA System F6 Program under contract NNA11AC08C.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

reflect the views of DARPA. The authors thank Olin Sibert of

Oxford Systems and all the team members of our project for

their invaluable input and contributions to this effort.

REFERENCES

[1] G. T. Heineman and W. T. Councill, Eds., Component-based Software
Engineering: Putting the Pieces Together. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2001.

[2] T. Genßler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse,
R. Wuyts, G. Arévalo, B. Schönhage, P. Müller, and C. Stich, “Compo-
nents for Embedded Software: the PECOS Approach,” in Proceedings
of the 2002 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems. ACM, 2002, pp. 19–26.

[3] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian, “Configuring
Real-time Aspects in Component Middleware,” in Proc. of the Interna-
tional Symposium on Distributed Objects and Applications (DOA), vol.
3291. Agia Napa, Cyprus: Springer-Verlag, Oct. 2004, pp. 1520–1537.

[4] T. Bures, J. Carlson, S. Sentilles, and A. Vulgarakis, “A Component
Model Family for Vehicular Embedded Systems,” in Software Engineer-
ing Advances, 2008. ICSEA’08. The Third International Conference on.
IEEE, 2008, pp. 437–444.

[5] A. Dubey, G. Karsai, and N. Mahadevan, “A Component Model for
Hard Real-time Systems: CCM with ARINC-653,” Software: Practice
and Experience, vol. 41, no. 12, pp. 1517–1550, 2011. [Online].
Available: http://dx.doi.org/10.1002/spe.1083

[6] O. Brown and P. Eremenko, “The value proposition for fractionated
space architectures,” in Space 2006, San Jose, CA, Sep 2006, pp. AIAA
2006–7506.

[7] “System F6.” [Online]. Available: http://www.darpa.mil/Our_Work/tto/
Programs/System_F6.aspx

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View
of Cloud Computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, 2010.

[9] P. Hošek, T. Pop, T. Bureš, P. Hnětynka, and M. Malohlava, “Com-
parison of Component Frameworks for Real-Time Embedded Systems,”
in Component-Based Software Engineering, ser. Lecture Notes in Com-
puter Science, L. Grunske, R. Reussner, and F. Plasil, Eds. Springer
Berlin / Heidelberg, 2010, vol. 6092, pp. 21–36.

[10] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. Van Den Born, “A Component Model
for Field Devices,” Component Deployment, pp. 1–13, 2002.

[11] J. Kim, O. Rogalla, S. Kramer, and A. Hamann, “Extracting, Speci-
fying and Predicting Software System Properties in Component based
Real-time Embedded Software Development,” in Software Engineering-
Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on. IEEE, 2009, pp. 28–38.

[12] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P.
Loyall, R. E. Schantz, and C. D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications, Q. Mahmoud, Ed. New York: Wiley
and Sons, 2004, pp. 131–162.

[13] Light Weight CORBA Component Model Revised Submission, OMG
Document realtime/03-05-05 ed., Object Management Group, May
2003.

[14] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and C. Gill, “TAO: A
Pattern-Oriented Object Request Broker for Distributed Real-time and
Embedded Systems,” IEEE Distributed Systems Online, vol. 3, no. 2,
Feb. 2002.

[15] Object Management Group, DDS for Lightweight CCM Version 1.0 Beta
2, OMG Document ptc/2009-10-25 ed., Object Management Group, Oct.
2009.

[16] W. R. Otte, A. Gokhale, D. C. Schmidt, and J. Willemsen,
“Infrastructure for Component-based DDS Application Development,”
in Proceedings of the 10th ACM international conference on Generative
programming and component engineering, ser. GPCE ’11. New
York, NY, USA: ACM, 2011, pp. 53–62. [Online]. Available:
http://doi.acm.org/10.1145/2047862.2047872

[17] Document No. 653: Avionics Application Software Standard Inteface
(Draft 15), ARINC Incorporated, Annapolis, Maryland, USA, Jan. 1997.

[18] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, and W. O. et al., “A
Software Platform for Fractionated Spacecraft,” in Proceedings of the
IEEE Aerospace Conference, 2012. Big Sky, MT, USA: IEEE, Mar.
2012, pp. 1–20.

[19] OMG, “Deployment and Configuration Final Adopted Specification.”
[Online]. Available: http://www.omg.org/members/cgi-bin/doc?ptc/
03-07-08.pdf

[20] J. Sztipanovits and G. Karsai, “Model-integrated computing,” Computer,
vol. 30, no. 4, pp. 110 –111, apr 1997.

[21] N. Mahadevan, A. Dubey, and G. Karsai, “Application of software health
management techniques,” in SEAMS, 2011, pp. 1–10.

[22] ——, “Architecting Health Management into Software Component As-
semblies: Lessons Learned from the ARINC-653 Component Model,”
in ISORC, 2012, pp. 79–86.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

