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ABSTRACT

Evaluation of key performance indicators (KPIs) such as energy consumption is

essential for decision-making during the design and operation of smart

manufacturing systems. The measurements of KPIs are strongly affected by

several uncertainty sources such as input material uncertainty, the inherent

variability in the manufacturing process, model uncertainty, and the

uncertainty in the sensor measurements of operational data. A comprehensive

understanding of the uncertainty sources and their effect on the KPIs is

required to make the manufacturing processes more efficient. Towards this

objective, this paper proposed an automated methodology to generate a

hierarchical Bayesian network (HBN) for a manufacturing system from

semantic system models, physics-based models, and available data in an

automated manner, which can be used to perform uncertainty quantification

(UQ) analysis. The semantic system model, which is a high-level model

describing the system along with its parameters, is assumed to be available in

the generic modeling environment (GME) platform. Apart from semantic

description, physics-based models, if available, are assumed to be available in

model libraries. The proposed methodology was divided into two tasks: (1)

automated hierarchical Bayesian network construction using the semantic

system model, available models and data, and (2) automated uncertainty
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quantification (UQ) analysis. A metamodel of an HBN was developed using the

GME, along with a syntax representation for the associated conditional

probability tables/distributions. The constructed HBN corresponding to a

system was represented as an instance model of the HBN metamodel. On the

metamodel, a model interpreter was written to be able to carry out the UQ

analysis in an automated manner for any HBN instance model conforming to

the HBN metamodel. The proposed methodologies are demonstrated using an

injection molding process.

Keywords

Bayesian network, meta-model, GME, uncertainty, hierarchical, automation, semantic,

injection molding

Introduction

Uncertainty quantification (UQ) involves the estimation of uncertainty in the output

of a system or a model (such as KPIs), and it requires the aggregation of errors and

uncertainty arising from several stages and processes of a manufacturing network.

Bayesian networks (BNs) [1] have been used to perform UQ through aggregation of

several uncertainty sources and information, and are being used in several domains

such as information retrieval, data fusion and decision-making [2], safety assessment

of software-based systems [3], computational biology and bioinformatics [4,5],

epidemiology [6], and civil infrastructure networks [7]. A BN allows the aggregation

of multiple uncertainty sources that combine in different ways [8,9] and offers a sys-

tematic approach for uncertainty integration and management by fusing heteroge-

neous information from multiple sources, and is therefore pursued in this paper,

especially with semantic system models.

Uncertainty quantification in manufacturing process performance prediction

has been previously attempted using fuzzy set theory [10–12], Monte Carlo simula-

tions [13]. Our previous work [14] has developed a Bayesian network framework for

uncertainty aggregation in manufacturing processes. The benefit of using a Bayesian

Nomenclature

ABC ¼Approximate Bayesian Computation
BIC ¼Bayesian Information Criterion
BN¼Bayesian network

CPD ¼Conditional Probability Distribution
GME ¼Generic Modeling Environment
HBN ¼Hierarchical Bayesian network

MCMC ¼Markov Chain Monte Carlo
UML ¼Unified Modeling Language
UQ¼Uncertainty quantification
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network for uncertainty quantification is that it enables both forward uncertainty

propagation and model calibration through Bayesian inference. Bayesian networks

are inherently capable of modeling dependence between several processes of a

manufacturing network through conditional probability distributions and can

handle both discrete as well as continuous variables. Fuzzy sets cannot handle both

discrete and continuous variables together. In addition, inference in fuzzy sets is

generally rule-based, where rules are set by the user whereas inference in Bayesian

networks using Bayes theorem is mathematically well developed.

In this paper, we model the manufacturing systems as multi-level systems,

where several processes occur at different levels of the hierarchy. A simple hierarchi-

cal classification of manufacturing systems can be at unit process level, line level,

and factory level. A factory can be divided into several lines, and each line can be

further divided into several unit-level individual processes. For analysis of such

multi-level system, we use the framework of hierarchical Bayesian networks (HBN),

which are extensions of Bayesian networks for multi-level systems. One advantage of

using a BN is that it encodes the expert domain knowledge into the model. Experts,

in general, may have a wealth of knowledge on a single unit process (such as die-

casting, threading) that they have experience with and therefore can support in

building a BN associated with that unit process. An HBN approach allows the inte-

gration of expert knowledge from multiple domains in modeling the manufacturing

process. HBNs also enable scalability in modeling manufacturing processes. As the

complexity of the manufacturing process increases, the number of lines and unit

processes also increase. HBNs allow modeling up to different resolutions such as up

to line level, or unit process level, or up to lower level unit processes depending

upon the analysis requirements. As a result, HBNs provide better visualization of the

models. More details regarding the benefits of using HBNs for modeling uncertainty

in manufacturing systems are presented in our earlier work [15].

The focus of this paper is the development of an automated tool for performing

UQ analysis of manufacturing processes, since such a tool will greatly benefit the

industry practitioners to incorporate uncertainty in the evaluation of KPIs without

having to rely on experts in data science and statistics. We have two types of models

in manufacturing: (1) descriptive models, i.e., models that qualitatively describe the

manufacturing processes such as semantic system models, and (2) analytics models,

which are used to quantify the manufacturing process performance. Lechevalier

et al. [16] propose the idea of using domain-specific modeling languages and tools to

bridge the gap between the modeling and analytics procedures in the manufacturing

domain. The key idea is to obtain analytical models from the manufacturing system

models, which can be provided by the practitioners.

The generic modeling environment (GME) [17] is a tool for creating high-level

descriptive models of objects in various application domains. A domain is specified

in GME by constructing a unique meta-model, which describes the various objects,

properties, and relationships in that domain. The tool can then be used to build

models of real-world objects in that domain.

Similar to the development of meta-models for describing manufacturing sys-

tems, meta-models can also be developed for representing analytical models. It

should be noted that there are two types of meta-models, one to describe the

manufacturing system and the other to represent an analytical model. The models
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that are constructed conforming to the meta-models are known as instance models.

The industry practitioners can provide a descriptive model of the manufacturing sys-

tem using the first meta-model and the analytical model corresponding to the

manufacturing system under consideration is derived using its meta-model and the

instance model of the manufacturing system.

Related work using domain-specific models for analytics can be found in

Nannapaneni et al. [18], in which domain-specific models are used to extract the

reliability block diagram using the concepts of functional decomposition and

function-component association to carry out reliability analysis. Lechevalier et al.

[19] extracted a neural network model for automated analysis in the manufacturing

domain by developing a neural network meta-model. Aguila and Sagrado [20] devel-

oped a Bayesian network metamodel, which they referred to as BayNet, which has

different modules for representation of the Bayesian network structure (BayNet

structure) and inference (BayNet Reasoning). BayNet allows for modeling of discrete

variables only and this paper seeks to develop a generalized methodology to handle

discrete, continuous, and functional nodes (i.e., nodes that are functions of other

nodes, instead of being statistically correlated). This paper proposes a method to

generate a BN from instance models, physics-based models, and available data on

the system automatically. In our earlier work [21], we developed an automated

framework for extracting a Bayesian network using a system model and data; in this

work, we extend our previous work to hierarchical Bayesian networks.

The overall objective of this paper is to assimilate semantic system models,

physics-based models, and data (both historical and online) to automatically

construct a BN for UQ analysis. While the idea of a BN for UQ analysis is not new,

our first contribution is in developing a hybrid approach that fuses heterogeneous

sources of information and combines both physics-based and data-driven

approaches. Our second contribution is in automating the BN construction through

GME. Our third contribution is building the BN in a hierarchical manner from

component-level to system-level, thus allowing analytics and decision-making at

multiple levels of the system hierarchy.

The remainder of this paper is organized as follows. The next section introduces

BNs, techniques for BN construction, BN learning algorithms, HBN, and meta-

modeling. The third section describes the proposed methodology and algorithms for

HBN construction and UQ analysis. An injection molding example is used to dem-

onstrate the proposed methodologies in the fourth section, followed by conclusions

in the last section.

Background

In this section, we review Bayesian networks, Bayesian network construction techni-

ques, hierarchical Bayesian networks, and modeling of complex systems.

BAYESIAN NETWORKS

Definition

A Bayesian network is a probabilistic and acyclic graphical model consisting of

nodes and directed arcs, where the nodes represent the variables in the system and

arcs represent the dependence relationships between variables quantified through
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conditional probability distributions. Mathematically, a Bayesian network represents

the joint probability distribution of X ¼ ðX1;X2…XnÞ as

PrB Xð Þ ¼
Yn
i¼1

PrBðXijPXiÞ (1)

where:

PXi ¼ the set of parent nodes of Xi, and

PrBðXijPXiÞ¼ the conditional probability distribution of Xi, given its parent

nodes.

If Xi has no parent nodes, then PrBðXijPXiÞ represents the marginal probability

distribution of Xi.

Techniques for Construction

The techniques for constructing a BN can be broadly classified into three types: (1)

physics-based, (2) data-driven, and (3) hybrid approaches. The physics-based

approach relies on mathematical models that represent the relationships between

the system variables. The data-driven approach uses the available data to learn the

BN structure and conditional probabilities using learning algorithms discussed later

in this section. In some cases, mathematical models might be available for some seg-

ments of the system and data is available for other segments. In such a scenario, a

hybrid approach is taken, where physics-based equations are used to model some

dependence relations, whereas the remaining relationships are learned from the

available data. The BN is constructed in two stages: (1) a partial BN is obtained using

the available physics-based models, and (2) the BN constructed in step 1 is used as a

prior for learning the remaining dependence relations using the available data.

Learning Algorithms

The goal of the learning algorithms is to identify a BN that best describes the avail-

able data. The learning process involves two tasks: structure learning and parameter

learning. Structure learning involves finding a graphical structure that best repre-

sents the dependence between nodes based on available data. Parameter learning

involves quantification of dependence among the nodes by estimating the parame-

ters of the conditional probability distributions/tables [22].

The structure learning algorithms can be broadly divided into three categories:

(1) constraint-based, (2) score-based, and (3) hybrid. Constraint-based methods

employ conditional independence tests to learn an optimal BN. A commonly used

conditional independence test is the mutual information test. The expressions for

mutual information (IX;Y ) in the case of discrete variables and continuous variables

are given in Eqs 2 and 3, respectively, as

IX;Y ¼
X
Y

X
X

p x; yð Þ log pðx; yÞ
pðxÞpðyÞ

� �
(2)

IX;Y ¼
ð
Y

ð
X
p x; yð Þ log pðx; yÞ

pðxÞpðyÞ

� �
(3)

where:

pðx; yÞ¼ the joint probability distribution of X and Y , and

pðxÞ and pðyÞ¼ the marginal distributions of X and Y ; respectively.

NANNAPANENI ET AL. ON AUTOMATED UQ IN MANUFACTURING 157

Smart and Sustainable Manufacturing Systems

 

Copyright by ASTM Int'l (all rights reserved); Mon Jan 13 22:21:10 EST 2020
Downloaded/printed by
Vanderbilt University Library (Vanderbilt University Library) pursuant to License Agreement. No further reproductions authorized.



Some other conditional independence tests that are used include linear correla-

tion and conditional correlation for continuous variables, and G-test and Chi-square

test [23] for discrete variables.

In score-based learning, every BN structure is assigned a network score based

on the goodness-of-fit for available data, and a set of heuristic optimization techni-

ques are used to obtain the BN that optimizes the defined score. Some commonly

used metrics that are used for scoring Bayesian networks include log-likelihood,

akaike information criterion (AIC), Bayesian information criterion (BIC), minimum

description length (MDL), and Bayesian Dirichlet equivalence (BDe) [22]. In this

paper, we use the BIC score, defined as

BIC ¼ k� ln nð Þ � 2� lnðLÞ (4)

In Eq 4, L; k, and n represent the likelihood the observing available data given a

BN, number of free parameters that are estimated and the number of available data

samples, respectively.

Hybrid algorithms employ both conditional independence tests and network

scores for learning the BN structure. The conditional independence tests are first

used to reduce the space of possible BN structures and score-based methods are

then used to obtain the optimal BN structure among them. Parameter learning algo-

rithms estimate the parameters of the conditional probability distributions from

available data using the maximum-likelihood approach.

HIERARCHICAL BAYESIAN NETWORKS

As mentioned in the first section, an HBN can be considered as an extension of

Bayesian networks for modeling multi-level systems. An HBN is a BN where a node

can represent another lower-level BN. Any number of levels are possible. A node in

a lower-level BN can further represent a much lower-level BN.

In Fig. 1, the HBN consists of two levels: level 1 and level 2. The root variables in

the level 2 BN (S1,S2) are associated with their lower-level BNs. The results from the

analysis of lower-level BNs are then propagated to the next higher-level for further

analysis.

FIG. 1

A simple two-level hierarchical

Bayesian network.
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MODELING COMPLEX SYSTEMS

Modeling tools have become increasingly essential and useful for the design and

analysis of complex systems. Usage of such tools require the concepts of a process

and a paradigm. The modeling process conforms to a set of rules that minimizes

errors and facilitates the presentation and communication of models. The modeling

paradigm or the modeling language, such as GME, contains all syntactic, semantic,

and presentation information regarding a domain, and represents the rules that gov-

ern the construction of models. In recent years, the notion of meta-modeling has

been added to process and paradigm. The outcome of the meta-modeling task is a

model, called a meta-model that encodes all the concepts and rules of the modeling

paradigm. GME offers a meta-modeling language called MetaGME, which is based

on unified modeling language (UML) class diagrams [24], to create domain-specific

meta-models. The meta-models described in this paper were built using MetaGME.

Note that the meta-modeling described here is different from surrogate modeling or

reduced-order modeling (creation of inexpensive models to replace expensive phys-

ics models) which is also referred to as meta-modeling in the literature.

Methodology

The proposed methodology for UQ analysis of manufacturing processes can be

divided into two steps: (1) automated HBN construction using available models and

data, and (2) UQ analysis using the constructed HBN. We first describe the BN con-

struction techniques using either models or data, and then extend these techniques

for the construction of an HBN in the presence of a combination of models and

data.

AUTOMATED BN CONSTRUCTION USING AVAILABLE MODELS AND DATA

As stated in the second section, a BN can be constructed using mathematical models

or data or a combination of both. Two cases are considered here: one using physics-

based models and one using data. It is straightforward to construct a BN manually

when models are available. This paper, however, focuses on the automated genera-

tion of a BN.

The variables required for construction of a BN can be obtained from the

manufacturing system description. We incorporate this description into a domain-

specific model in GME, which, as noted, is as an instance of the corresponding

meta-model developed using MetaGME. The details of constructing a generic meta-

model for manufacturing systems are not discussed here. This work considered only

meta-modeling of BN and HBN, and not manufacturing systems. Refer to Ref. [25]

for discussion regarding meta-modeling of manufacturing systems. The system vari-

ables in the descriptive system model are used as a basis for identifying the nodes

and their preliminary ordering for the BN that will be generated. Data associated

with the system variables is then used to obtain the BN representing the system.

Automated BN Construction Using Physics-Based Models

Physics-based models are assumed available as equations in a text (.txt) file. The

models can be present in any random order. The algorithm presented below will

order the equations and build a BN from them.
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1 Create two lists xL and xR to store the variables to the left and right of the
equality sign.

2 Create a dictionary object D with the left hand side (LHS) variables of an equa-
tion as the key and the list containing all the right hand side (RHS) variables of
that equation as the value.

3 Since a BN is a layered structure, the variables in the top layer, also called root
variables, are given by xR � ðxR \ xLÞ.

4 The second layer comprises all variables that can be defined by a subset of the
top-level variables. This can be achieved by selecting the keys whose values are
a subset of the first layer variables.

5 Similarly, every other layer consists of variables that can be defined by the vari-
ables in the above layers. The procedure specified in step 4, i.e., looking into
the dictionaryD, is used to select all the variables in the current layer.

6 Step 5 is repeated several times until all the variables in the system are defined.

It should be noted that these physics-based models could be either deterministic

models or stochastic models. In the numerical example, stochastic models with

response following a Gaussian distribution with a known constant variance are

implemented. For illustration, consider a variable y dependent on independent vari-

ables x1 and x2. If the dependence is stochastic with a mean equal to 2� x1þ x2

and standard deviation of 2, then the dependence in a.txt file is represented as

y ¼ Nð2� x1þ x2; 2Þ. The variables associated with deterministic relationships can

be defined as functional nodes whereas the variables with stochastic relationships

can be defined as stochastic nodes.

Automated HBN Construction Using Physics-Based Models

For the construction of an HBN, we assume the availability of multiple.txt files

corresponding to multiple BNs at several levels of the manufacturing network hier-

archy. In addition, we consider the possibility that a similar physical parameter

(such as density) may be denoted using different names (such as d; rho) in differ-

ent.txt files. This might be possible when the models are obtained from several dif-

ferent libraries or experts. Hence, we also have another.txt file that clarifies the

nomenclature for variables across multiple.txt files. A sample line from the nomen-

clature.txt file is q ¼ d; rho;D. With the available information, we implement the

following procedure for building an HBN.

(1) Create another dictionary D1 with a key to identify a given.txt file and a
value, which is a list of three lists. These three lists contain the root variables
(nodes with no parent nodes), intermediate-level variables (nodes with both
parent and child nodes) and end variables (nodes with no child nodes) in a
given.txt file.

(2) Make sure all.txt files with mathematical models follow the same notation for
variables as in the nomenclature.txt file.

(3) Identify the key k of the.txt file for which the end variable(s) are not a root
variable(s) in other.txt files. The BN associated with the.txt file with key k
represents the top-level BN

(4) Construct the BN associated with.txt file of key k using the algorithm pre-
sented in the section “Automated BN Construction Using Physics-Based
Models.” If k is not unique, then all the BNs associated with.txt files with
keys in k are constructed.
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(5) We then build the BNs from the.txt files whose end variables are the root
variables of the last constructed BN. This step is repeated until all the BNs
are constructed from their.txt files.

(6) If there exists a duplication of variables, such that a parameter exists in BNs
from multiple levels or several BNs at the same level, the duplication is
removed by retaining the variable in the lower-level BN and removing the
variable from the higher-level BN. All dependences associated with the
removed variable are added to the same variable in the lower-level BN. Thus,
an HBN can be constructed from physics-based models.

Automated BN Construction Using Available Data

When physics-based models are not available, we propose using the system model

and the data associated with the process variables in the system model to construct

the BN. The benefit of using a system model is that it provides qualitative informa-

tion regarding the ordering of variables (i.e., BN topology). Incorporation of

such prior system model information makes the BN learning accurate and efficient.

We use the scored-based learning method called Hill-Climbing [22] and the BIC

criterion as a scoring metric for illustration. A Gaussian conditional probability dis-

tribution (CPD) with a constant but unknown variance is fit for each continuous

node, and its mean is a linear combination of the values taken by the parent nodes.

(This approximation is referred to as a linear Gaussian CPD in the literature [22]).

The constructed BN can later be validated using model validation techniques

[26] such as model-reliability metric, area-metric, etc. The available dataset can be

divided into training and test data; the BN can be constructed with the training set

and validated with the test set.

Automated HBN Construction Using Available Data

The HBN for a manufacturing network can be constructed in three steps [15]: (1)

BNs for individual processes at multiple levels using available physics models and/or

data as described in the sections “Automated BN Construction Using Physics-Based

Models,” and “Automated HBN Construction Using Physics-Based Models,” (2) a

preliminary HBN following the manufacturing network topology, and (3) learning

the dependences across multiple levels or across multiple BNs at the same level by

using the preliminary HBN constructed in the second step as a prior. The knowledge

regarding the system model is used in obtaining a preliminary HBN. In the third

step, we do not allow any new dependence between variables in a BN within a

particular level as we assume any such dependence should have been captured in the

first step.

UNCERTAINTY QUANTIFICATION USING THE BAYESIAN NETWORK

Uncertainty quantification analysis using a BN (or HBN) can be divided into two

tasks: (1) model calibration using Bayesian Inference, where the unknown model

parameters are estimated using any observation data, and (2) forward uncertainty

propagation, where the posterior distribution of the output quantity of interest is

constructed using posterior distributions of estimated model parameters. The proce-

dure for performing automated UQ analysis using a BN can be divided into three

steps. The first step is to transform the BN (constructed using the section
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“Automated BN Construction Using Available Models and Data”) into an instance

model in GME. The second step is to implement the above UQ methodology for the

BN meta-model on the GME platform. The algorithms written for a BN meta-model

can be used for all instance models associated with the BN meta-model. The third

step is to run the UQ methodology on a BN instance model. Using the instance

model of the BN, the UQ analysis methodology, and any new data, uncertainty

quantification can be carried out for any BN (or HBN) constructed in the section

“Automated BN Construction Using Available Models and Data,” in an automated

manner. In our earlier work [21], we created a BN meta-model and wrote algorithms

for UQ on the BN meta-model. In this paper, we extend the previous work to create

a meta-model for an HBN and write UQ algorithms for it. We first describe the BN

meta-model and the syntax representation of the associated conditional probability

distributions and then move onto the HBN.

Bayesian Network Meta-Model

Fig. 2 shows the BN meta-model created using the MetaGME within the GME

modeling paradigm. In the meta-model, “BayesianNetwork” represents the root

component, and “Node” represents any node in the Bayesian network. There can be

three types of nodes in the Bayesian network: “DiscreteNode,” “ContinuousNode,”

and “FunctionalNode.” A discrete node represents a node with a finite possible num-

ber of states. Similarly, a continuous node represents a variable that is continuous in

nature over a defined range. A functional node represents a variable which can be

known deterministically when the values of its parent nodes are known.

The three possible types of nodes (Discrete, Continuous, and Functional) are

represented by the “Node” component through an inheritance entity (denoted by

the triangle icon). The “Node” component is modeled as an abstract component

since any node in a BN is either continuous or discrete or functional. In a BN, a

node is connected to another node forming an edge; this is represented in the meta-

model by the “Edge” component using the “src” (source) and “dst” (destination)

tags at the “Node” component.

The next step after creating the components is to define the attributes to be

associated with each of them. The “BayesianNetwork” component is associated with

two attributes: “Filelocation” and “Information.” The “Information” attribute is of

“enumeration” type and can take one of the values: “Models” and “Data.” The

location of the file that contains either the models or data is provided in the

“Filelocation” attribute. The attributes that are common to all three types of nodes

such as “Name,” “Parents,” and “Postprocessing” are associated with the “Node”

component. Since the three types of nodes are connected to the “Node” component

via the inheritance property, the attributes associated with “Node” also apply to the

three types of nodes. The parent nodes associated with a node are provided in

“Parents” attribute. “Postprocessing” is a Boolean variable that specifies whether the

variable requires post processing analysis. Apart from the common attributes, each

type of node has a specified set of attributes.

Additional attributes for a discrete node include “RootNode,” “CPT,”

“AllStates,” and “Observations.” A node with no incoming edges (i.e., with no parent

nodes) is called a “root node.” The Boolean attribute “RootNode” is provided to

identify root nodes. Only continuous and discrete nodes in a BN can be root nodes.
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All the possible finite states of the discrete variables are provided in the “AllStates”

attribute. Any new observational data is provided with the “Observations” attribute.

The conditional probability table for the discrete variable or marginal probability

table (for root nodes) is defined in the “CPT” attribute. For illustration, Table 1

defines a discrete parent node “A” with three possible states “A1,” “A2,”’ and “A3”

and marginal probabilities of 0.1, 0.6, and 0.3, respectively. Other attributes such as

“Observations” and “Postprocessing” are not mentioned below because the goal here

is to demonstrate the definition of a CPT.

When defining the marginal probabilities, the order of probabilities should be

the same as the order of states defined in the “AllStates” attribute. Since A is a root

node, it has no associated parent nodes; therefore, the value corresponding to

Parents in Table 1 is empty. Next, consider a discrete node with discrete parents.

Let A and B be the two parent nodes each with two states, A¼ {A1, A2} and

TABLE 1

Representation of a root discrete node.

Attribute Value

Name A

RootNode True

Parents

AllStates A1, A2, A3

CPT 0.1, 0.6, 0.3

FIG. 2 Meta-model of a Bayesian network.
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B¼ {B1, B2}. Let C represent the child node with two states, C¼ {C1, C2}. The condi-

tional probability table is given in Table 2.

The case when the discrete child node has continuous parent nodes or a combi-

nation of continuous and discrete parent nodes is discussed below. The key ideas in

dealing with continuous parent nodes involve discretizing their ranges and defining

a conditional probability for the child node in each of the ranges. Let A, B represent

a discrete and a continuous parent node of a discrete child node C. Assume A has

two states, A¼ {A1, A2} and B follows a uniform distribution between 10 and 20. Let

the range of B be divided into two uniform intervals; therefore, B can be considered

as a discrete variable. The corresponding conditional probability table is given as

shown in Table 3. In Table 3, the squared brackets also include the equality whereas

the parentheses do not. If B¼ [10,15], then 10 <¼ B <¼ 15, whereas B¼ (15, 20]

represents 15<B <¼ 20. The representation of C is shown in Table 4.

Consider the case when B is represented using a Normal distribution and

divided into two disjoint intervals B<¼ 15 and B< 15, represented as (..15] and

(15..), respectively. The same representation can be extended to the case when all the

parent nodes are continuous. Each continuous node is discretized and treated as a

discrete variable; a similar procedure can be followed for the case of a discrete node

with all continuous parents.

The attributes for the continuous node include “RootNode,” “CPD,” and

“Observations.” The definitions for “RootNode” and “Observations” are identical to

their discrete counterparts. “CPD” represents the conditional probability distribu-

tion or marginal probability distribution (for root nodes). For illustration, consider a

normally distributed variable “A” with parameters (mean, standard deviation) 10

and 1. Attributes such as “Postprocessing” and “Observations” are not mentioned

below. Representation of “A” is given in Table 5.

Next, different combinations of parent nodes, A and B, for a continuous child

node, C, are considered and the corresponding representations are given in Table 6.

After discrete and continuous nodes, functional nodes are considered. As stated

earlier, functional nodes are deterministically known when conditioned on all the

parent nodes, either discrete or continuous. Functional nodes have only one addi-

tional attribute called “Equation.” The expression connecting the parent nodes to

the child node is given here. If A and B represent the continuous parent nodes for a

TABLE 2

CPTof a discrete node with discrete parents.

C | A, B A¼A1, B¼B1 A¼A1, B¼B2 A¼A2, B¼B1 A¼A2, B¼B2

C¼C1 0.6 0.7 0.2 0.4

C¼C2 0.4 0.3 0.8 0.6

TABLE 3

CPTof a discrete node with discrete and continuous parents.

C | A, B A¼A1, B¼ [10,15] A¼A1, B¼ (15,20] A¼A2, B¼ [10,15] A¼A2, B¼ (15,20]

C¼C1 0.6 0.7 0.2 0.4

C¼C2 0.4 0.3 0.8 0.6
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functional node C, and if C¼A þ2*B, then the variable is represented as shown in

Table 7.

When a child node has a functional node as a parent node, the functional node

can be treated in the same manner as a continuous node for CPD/CPT representa-

tion. If a functional node has finite states, it can be modeled as a discrete node where

one particular state has a conditional probability of 1 and all the other states have

zero as their conditional probabilities. A functional node may also be modeled as a

continuous node with zero variance. However, some BN packages do not allow

modeling a variable with zero variance. In such cases, a functional node can be

defined as continuous node with a very small variance. To avoid confusion, we have

chosen to model functional nodes explicitly.

Hierarchical Bayesian Network Meta-Model

We now extend the meta-model of a Bayesian network described in the “Bayesian

Network Meta-Model” section to describe a hierarchical Bayesian network. Fig. 3

describes the meta-model of a hierarchical Bayesian network. Similar to a BN meta-

model, “HBN” defines the root component with attributes of “Filelocation” and

“Information.” “Node,” which could be a “DiscreteNode,” “ContinuousNode,” or a

“FunctionalNode” can represent a node at any level in the HBN. The dependence

between nodes is represented using “DependenceEdge” as opposed to just “Edge” in

the BN metamodel. A major difference in a HBN compared to a BN is that a node

can contain other lower-level BNs. This is represented using the “containment” con-

nection, which is a solid line with a diamond shape end, originating from “Node”

and ending in itself (“Node”). To ensure dependence connections within a lower-

level BN, “DependenceEdge” is also contained in “Node.” In some cases of an

HBN, it might be possible that a variable can influence a lower-level BN and also a

higher-level BN. An example of such a case is the shrinkage variable affecting the

TABLE 4

Representation of a child discrete node.

Attribute Both Parents are Discrete One Discrete and One Continuous

Name C C

Root Node False False

Parents A,B A,B

AllStates C1,C2 C1, C2

CPT A1,B1: 0.6,0.4; A1,B2: 0.7,0.3;A2,B1: 0.2,0.8;
A2,B2: 0.4,0.6

A1, [10,15]: 0.6,0.4; A1, (15,20]: 0.7,0.3; A2, [10,15]: 0.2,0.8;
A2, (15,20]: 0.4,0.6

TABLE 5

Representation of a root continuous node.

Attribute Value

Name A

RootNode True

Parents

CPD Normal(10,1)

NANNAPANENI ET AL. ON AUTOMATED UQ IN MANUFACTURING 165

Smart and Sustainable Manufacturing Systems

 

Copyright by ASTM Int'l (all rights reserved); Mon Jan 13 22:21:10 EST 2020
Downloaded/printed by
Vanderbilt University Library (Vanderbilt University Library) pursuant to License Agreement. No further reproductions authorized.



lower-level BN of a melting process and the higher-level BN of total energy con-

sumption as shown in Fig. 5. To denote such dependence across multiple levels, we

will have two different nodes representing the same variable and connect both of

them using an “EqualityEdge.” A “NodeRef” entity is of a “Reference” type, which is

used as a stand-in for a variable in a lower-level BN. For example, consider the

shrinkage variable. “Shrinkage_total” is a node representing shrinkage in the higher-

level BN, which computes total energy. “Shrinkage_melt” is also a node representing

shrinkage in the lower-level BN, which corresponds to energy of melting process. To

make sure they represent the same quantity, we create a reference object by the

name “Shrinkage_melt” and connect the reference object with “Shrinkage_total”

through an “EqualityEdge.” To be able to create reference objects and equality edges

in the lower-level BNs, we contain “EqualityEdge” and “NodeRef” into “Node.”

Regarding the attributes, the “Filelocation” attribute in the physics-based HBN

construction takes a set of.txt files and a nomenclature.txt file. These files are input

to the model separated by “,”. It is also assumed that the last.txt file represents the

nomenclature file.

Algorithms for Automated UQ Analysis

After creating the meta-model for an HBN, two algorithms are implemented to cre-

ate instance models from available data or mathematical models, and to perform

model calibration and uncertainty propagation analyses.

The first algorithm constructs an HBN using available physics-based models or

data. If physics-based models are available, the procedure in the “Automated BN

Construction Using Available Data” section is used to construct the HBN. If data are

available, the HBN is learned using the score-based hill-climbing algorithm available

as part of the bnlearn package in R; the procedure was laid down in the section

“Automated HBN Construction Using Available Data.” The constructed BN is

stored as a JSON representation. The JSON file is then automatically converted into

TABLE 6

Representation of a child continuous node.

Attribute Both Parents are Discrete One Discrete and One Continuous Both Parents are Continuous

Name C C C

RootNode False False False

Parents A(A1,A2), B(B1,B2) A (A1,A2), B(continuous) A,B (Both continuous)

CPD A1,B1: Normal(5,1); A1,B2: Uniform(10,14);
A2,B1: Normal(10,2); A2,B2: Uniform(12,17)

A1:Normal(2*B,1);
A2: Uniform(B-2, Bþ2)

Normal(Aþ2*B, 1)

TABLE 7

Representation of a functional node with continuous parents.

Attribute Value

Name C

Parents A,B

Equation Aþ 2*B
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a GME instance model. The user can make any changes to the HBN instance model

(such as adding observations or selecting variables for post processing, deleting

some nodes), directly using the GME interface. When all the required changes are

made to the HBN instance model, the second algorithm is executed for UQ analysis.

All the algorithms on the HBN meta-model are implemented in C#.

Traditional methods for model calibration and UQ analysis such as Markov

Chain Monte Carlo (MCMC) for large BNs or HBNs can become computationally

expensive. Several approximate methods are available to replace the MCMC meth-

ods such as approximate Bayesian computation (ABC) [27], bootstrap filter [28],

and variational Bayes [29]. In this paper, we use the approximate Bayesian computa-

tion (ABC) technique for calibration and UQ analysis.

The ABC algorithm generates several samples of the calibration parameters

from their prior distributions, and for each sample of the calibration parameters,

several samples of the observation variable (i.e., the variable regarding which data is

available) are generated. The generated data for a given calibration parameter sample

is then compared against the observation data; this comparison is typically done

through a pre-defined distance measure. If the distance between the generated and

observation data is low, then the probability of that sample to be in the posterior dis-

tribution is high; this probability, in this paper, is calculated using the likelihood

function as described below. This process is repeated for several samples of calibra-

tion parameters and likelihood values are calculated for each of those samples. The

posterior distributions are then obtained by sampling the prior samples according to

their likelihood values.

Let h represent a vector of calibration parameters and hi; i ¼ 1; 2; 3…k represent

k samples of h obtained from their prior distributions. Let S represent the variable

on which observations are available given by Sobsj ; j ¼ 1; 2; 3…m. As linear Gaussian

CPDs are fit as part of the HBN learning process (from section “Automated BN

FIG. 3 Meta-model of a hierarchical Bayesian network.
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Construction Using Available Data”), let rS represent the standard deviation associ-

ated with the linear Gaussian CPD of S. Since an HBN is a probabilistic model, the

prediction of Si for a given realization of hi is not a single value, but a PDF. Let Smi
represent the expected value of Si. Given this information, the likelihood of observ-

ing the data (Sobsj ; j ¼ 1; 2; 3…m) for a sample hi can be computed as

Li ¼
Qm

j¼1 PrðSobsj jSmi ;rSÞ. This likelihood value is computed for all values of

hi; i ¼ 1; 2; 3…k. Given all the likelihood values, the weights for each

hi; i ¼ 1; 2; 3…k can be computed by normalizing the likelihood values, given as

wi ¼ LiPk

i¼1 Li
. The prior samples (hi; i ¼ 1; 2; 3…k) and their updated weights

(wi; i ¼ 1; 2; 3…k are used to construct their posterior distributions.

The HBN instance model is read and a JSON file is created, which represents

the data corresponding to all nodes in a BN. The JSON file is read into R and used

for calibration analysis. Since data might be available at multiple levels in an HBN, a

multi-level calibration approach, as detailed in Ref. [15], is used for calibration

analysis. For illustration, assume data is available at two levels of an HBN. The

lower-level data is first used to obtain a posterior distribution and this posterior is

used as a prior for calibration with the higher-level data. In the current implementa-

tion, we have considered only continuous and functional nodes; discrete variables

will be considered in future work.

Summary of the Proposed Methodology

In this work, we created a meta-model for the representation of a hierarchical Bayes-

ian network (HBN) using the Generic Modeling Environment (GME). In addition,

algorithms for learning and UQ analysis of an HBN were developed. The HBN for a

manufacturing network is constructed through a combination of system model

(semantic, conceptual), physics models (mathematical, numerical), and observation

data (numerical), and represented as an instance model of the HBN meta-model.

The user can then make any changes to the instance model (such as adding observa-

tion data); this modified instance model is used to perform model calibration and

UQ analysis using the ABC algorithm.

Illustrative Example

INJECTIONMOLDING PROCESS: UQ ANALYSIS USING COMBINED

PHYSICS AND DATA

An injection molding process is used to demonstrate automated HBN construction

and UQ analysis. The injection molding process can be considered as a combination

of three sub-processes: melting of the polymer, injection into the mold, and cooling

to form the part. Each sub-process is associated with a set of parameters. The goal is

to estimate the uncertainty in energy consumption per part in the overall injection

molding process, which is the sum of the energy consumed in the three individual

sub-processes. Using either physics-based models or available data, one could con-

struct a lower-level BN for the computation of energy consumption in each of the

three individual sub-processes, and computation of the overall energy consumption

forms the higher-level BN, thus forming a two-level HBN. To demonstrate BN

learning, the BN for injection process is directly constructed from a physics-based
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model whereas the BNs for the melting and cooling processes are learnt from syn-

thetic data generated using physics models. Physics models associated with various

stages of injection molding process are given below.

Melting Process

In this stage, the polymer dye, which initially is in the solid state, is converted into

the liquid state. The power consumption equation in melting the polymer is given as

Pmelt ¼ 0:5� q� Q� CP � Tinj � Tpol
� �

þ 0:5� q� Q� Hf (5)

where:

Pmelt ¼ power consumption in melting process,

q;Q;Cp;Hf ¼ the density, flow rate, heat capacity, and heat of fusion of the

polymer, respectively, and

Tinj and Tpol ¼ the injection temperature and temperature of polymer,

respectively.

If Vpart represents the volume of a part, then the volume of a shot (Vshot) consid-

ering the shrinkage (�), buffer (D), number of cavities (n) is given as

Vshot ¼ Vpart � 1þ �

100
þ D
100

� �
� n (6)

Using the power consumption for melting and volume of a shot, the energy con-

sumption for melting process (Emelt) is given as

Emelt ¼
Pmelt � Vshot

Q
(7)

Injection Process

In this stage, the molten polymer is injected into the mold. The energy consumed in

the injection process (Einj) is given as

Einj ¼ pinj � Vpart (8)

where pinj refers to the injection pressure.

Cooling Process

The molten polymer is cooled to form the final product. The energy consumption in

cooling process (Ecool) is given as

Ecool ¼
q� Vpart � Cp � Tinj � Tej

� �� �
COP

(9)

where Tejand COP represent the ejection temperature and coefficient of performance

of the cooling equipment, respectively.

Overall Energy Consumption

Given the energy consumption for each of the three stages, the overall energy con-

sumption of a part (Epart) is given as
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Epart ¼
1
n
�
�

0:75� Emelt þ Einj
ginj

þ Ereset
greset

þ Ecool
gcool
þ 0:25� Emelt

gheater

 !

� n� 1þ �þ Dð Þ
gmachine

þ Pb � tcycle

	
(10)

where:

ginj; greset ; gcool; gheater ; gmachine¼ the efficiencies of injection, reset, cooling, heat-

ing, and machine power, respectively,

tcycle¼ total cycle time,

Pb¼ the power required for basic energy consumption when the machine is in

stand-by mode, and

Ereset ¼ the energy required for resetting the process, and is given as

Ereset ¼ 0:25ðEinj þ Ecool þ EmeltÞ (11)

The power consumption when machine is in stand-by model (Pb) is not considered

here because it depends on the type of machines used in the process. Refer to Ref.

[30] for more details. The Bayesian networks corresponding to the energy consump-

tion in three stages and for the overall process, built using the physics-based models,

are provided in Fig. 3.

Note that the models for melting, cooling, and overall energy consumption are

used to generate synthetic dataset to demonstrate BN learning. They are not directly

used for UQ analysis. In reality, such data comes from observations of the actual

process.

LEARNING THE HBN FOR THE INJECTIONMOLDING PROCESS

The HBN for the injection molding process is learned using a synthetic dataset

generated using physics-based models augmented with measurement uncertainty.

The parameters for the synthetic dataset used for the learning process are given in

Table 8. The sensor measurement errors of energy, volume, and temperature are

assumed Gaussian with zero mean and a standard deviation of 5e4, 1e-6, and 1,

respectively. A dataset with 5000 samples is used for the learning process. Learning

is carried out using the “bnlearn” package in R and with “hill-climbing” score-based

algorithm.

The individual BNs for the melting, cooling, and overall energy consumption

are learnt and the results are shown in Fig. 4. The variables for learning each of the

individual BNs depend on the variables that arise in the actual physical process or

on the expert opinion. The individual BNs are used to construct a preliminary HBN

following the hierarchy of the injection molding process. This preliminary HBN is

then used as a prior to learn any additional dependences across multiple levels. The

prior and posterior HBNs for the injection molding process are given in Fig. 5.

From Fig. 5, an additional dependence between shrinkage (�) and overall energy

consumption (EtotalÞ can be observed in the posterior HBN, which is not present in

the prior HBN. This learned dependence is in fact consistent with the physics equa-

tion for overall energy in Eq 12. The learned HBN is then represented as an instance

model of the HBN meta-model. The instance model is shown in Fig. 6. When the

GME instance model for the above HBN is opened, the higher-level BN is seen. To
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see the lower-level BNs, we go inside the corresponding components by “double-

clicking” it. Thus, Fig. 6b can be seen by double-clicking on “Einj” component in

Fig. 6a. Similarly, Fig. 6c and 6d can be obtained by double-clicking on “Emelt” and

“Ecool,” respectively. In the BN learning process using hill-climbing algorithm, the

conditional probability distributions are assumed to be linear Gaussian distributions

with the mean defined as a linear combination of parent nodes and with a constant

standard deviation. The learnt CPDs are provided in Table 9.

MODEL CALIBRATION

The constructed HBN can now be used for model calibration. Assume the parame-

ters to be calibrated include injection temperature(Tinj), polymer temperature(Tpol),

and polymer density(q). The data available for calibration include the sensor tem-

perature measurements of Tinj;Tpol , and Etotal . Thus, data are assumed available at

two levels of the HBN. The observation data is generated using the true values of the

calibration parameters added with Gaussian measurement errors. For this calibra-

tion process, the shrinkage of the material, heat capacity, injection pressure, and

ejection temperature are assumed known at 0.0185, 2260 (J/(kgK), 93e6 Pa, and

58�C, respectively. The true and assumed unknown values of the calibration parame-

ters are 215�C, 49�C, and 985 kg/m3, respectively. Since data is available at multiple

FIG. 4 Learning individual BNs of (a) melting, (b) cooling, and (c) overall energy consumption.

TABLE 8

Parameters for generating synthetic dataset used in HBN learning.

Parameter Value

Shrinkage (�) Uniform(0.018, 0.021)

Volume of a part (m3) 0.002048

Buffer (D) 0.01

Polymer temperature (Tpol) Normal(50, 2)

Injection temperature (Tinj) Uniform (205,220)

Density (q) (kg=m3) Uniform (960, 990)

Heat of fusion (Hf ) (kJ=kg) 240

Heat capacity (Cp) (J=ðkgKÞ) Uniform(2250, 2290)

Pressure ðPaÞ Uniform(90e6, 95e6)

Flow rate (m3=s) 1.6e-5

Ejection temperature (ðoC) Uniform (54, 60)

All Efficiency coefficients (g;COP) 0.7
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levels, the multi-level calibration process as described in the section “Uncertainty

Quantification Using the Bayesian Network” is carried out. The sensor measurement

data regarding Tinj and Tpol are used to calibrate the true but unknown values of Tinj

and Tpol . The posterior distributions are used as prior for calibration using higher-

level data (Etotal).

As mentioned in the “Algorithms for Automated UQ Analysis” section, the

ABC technique [26] is used for calibration. The prior distributions for the calibra-

tion parameters are given in Table 10. 10,000 samples of the calibration parameters

are obtained from their prior distributions for model calibration using ABC, and

FIG. 5 HBN for the injection molding process, (a) prior, and (b) posterior.

FIG. 6 HBN for the injection molding represented using the HBN meta-model.
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100 observation data were assumed to be available; the data was generated using the

true values of calibration parameters given above. The prior and posterior distribu-

tions of the calibration parameters are provided in Fig. 7.

Conclusion

This paper proposed an automated uncertainty quantification analysis methodology

using a hierarchical Bayesian network. The HBN is constructed by fusing the infor-

mation from available system models, physics-based models, and data. The system

model is assumed available in a domain-specific modeling framework such as the

GME platform. Physics-based mathematical models regarding multiple individual

processes in a manufacturing network are assumed to be available in multiple.txt

files.

A meta-model for the HBN is developed along with a syntactic representation

of the conditional probability distribution/tables in GME. The meta-model is created

such that the HBN can have discrete, continuous, and functional nodes. Two model

interpreters (also called model translators) are written on the HBN meta-model to

construct an HBN and to perform UQ analysis. An algorithm is presented to gener-

ate the HBN from a set of available physics-based models. If physics models are

not available to construct the entire HBN, data is used to learn the HBN through

learning algorithms.

The constructed HBN is then represented as an instance model of the HBN

meta-model. The user has the capability to modify the instance model and include

any further information, such as observation data and post-processing information.

The HBN instance model is then used to perform model calibration and UQ

analysis. The ABC technique is used to perform model calibration as the traditional

Markov Chain Monte Carlo (MCMC) methods can become expensive for large

TABLE 9

Learned conditional probability distributions for the injection molding process.

CPD Value

EinjjPinj Nð80541:8þ 1:175� 10�3 � Pinj; 49648:7Þ
Vshot j� Nð0:002069þ 0:0020166� �; 9:91� 10�7Þ
Emelt jVshot ; q;Tpol ;Tinj;Cp Nð1:6933� 105 � 5:277� 108 � Vshot þ 268:6� q

� 2462:2� Tpol þ 2447:6� Tinj þ 292:23� Cp; 49742:85Þ
Ecool jq;Tinj;Cp;Tej Nð�2104628:2þ 1088:49� qþ 6458:11� Tinj þ 441:91� Cp � 5711:55� Tej; 49375:03Þ
Epart jEinj; Ecool ; Emelt ; � Nð�71911:4þ 2:6369� Einj þ 3:34� 106 � �þ 2:617� Emelt þ 2:6346� Ecool ; 50456:21Þ

TABLE 10

Calibration parameters and their prior distributions.

Calibration Parameter Distribution Range

Injection temperature (Tinj) Beta (5, 3) [212, 220]

Polymer temperature (Tpol) Beta (4, 3) [47, 53]

Polymer density (q) Beta (3, 4) [970.990]
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networks. The proposed method is illustrated using an injection molding process

example.

The goal of this work is to assist manufacturers in performing uncertainty

analysis using automated tools, without requiring expertise in UQ methods and UQ-

specific tools. This will help manufacturers make better use of their data analytics

capabilities by allowing them to consider uncertainty. Future work is needed to

develop algorithms for the automation of analyses such as sensitivity analysis (for

dimension reduction), model verification, and model validation. In addition, algo-

rithms for the automated construction of dynamic Bayesian networks (for tracking

manufacturing systems over time), and diagnostic and prognostic analysis need to

be investigated.
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