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Abstract—The problem of dispatching emergency responders
to service traffic accidents, fire, distress calls and crimes plagues
urban areas across the globe. While such problems have been
extensively looked at, most approaches are offline. Such method-
ologies fail to capture the dynamically changing environments
under which critical emergency response occurs, and therefore,
fail to be implemented in practice. Any holistic approach towards
creating a pipeline for effective emergency response must also
look at other challenges that it subsumes - predicting when
and where incidents happen and understanding the changing
environmental dynamics. We describe a system that collectively
deals with all these problems in an online manner, meaning that
the models get updated with streaming data sources. We highlight
why such an approach is crucial to the effectiveness of emergency
response, and present an algorithmic framework that can com-
pute promising actions for a given decision-theoretic model for
responder dispatch. We argue that carefully crafted heuristic
measures can balance the trade-off between computational time
and the quality of solutions achieved and highlight why such
an approach is more scalable and tractable than traditional
approaches. We also present an online mechanism for incident
prediction, as well as an approach based on recurrent neural
networks for learning and predicting environmental features that
affect responder dispatch. We compare our methodology with
prior state-of-the-art and existing dispatch strategies in the field,
which show that our approach results in a reduction in response
time with a drastic reduction in computational time.

ACRONYMS

AFT Accelerated Failure Model
ALT A* Search with Landmarks
DTMDP Discrete Time Markov Decision Process
EMS Emergency Medical Services
HCPS Human-in-the-Loop Cyber-Physical Systems
LSTM Long Short-Term Memory Neural Network
MDP Markov Decision Process
MLE Maximum Likelihood Estimation
MCTS Monte Carlo Tree Search
SMDP Semi-Markov Decision Process

I. INTRODUCTION

Emerging Trends and Challenges: Smart and connected
communities are Human-in-the-Loop Cyber-Physical systems
(H-CPS), with interactions between humans, the outside en-
vironment, and computational tools that assist in decision-
making processes [1]. Analysis and optimization of H-CPS’s
is challenging primarily due to the inherent complexity and the

* These authors had equal contribution in this work

sheer number of agents involved. Making accurate models is
difficult, and simple rule based strategies often fail to capture
the dynamics of the problem space.

Consider the classical problem of emergency response.
The goal of responders is to minimize the variance in the
operational delay between the time incidents are reported
and when responders arrive on the scene. However, solving
this problem requires not just sending the nearest emergency
responder, but sometimes being proactive placing emergency
vehicles in regions with higher incident likelihood. Sending the
nearest available responder by euclidean distance ignores road
networks and their congestion, as well as where the resources
are stationed. Greedily assigning resources to incidents can
lead to resources being pulled away from their stations,
increasing response times if an incident occurs in the future
in the area where responder should be positioned.

Data-driven approaches have been shown to produce more
informed solutions to such problems [2] – examples include
predicting crime and traffic accidents in urban areas [3], [4],
and building architectures for smart city ecosystems [5]. In
this paper, we leverage the potential of data-driven approaches
and utilize real-world incident data for making informed
decisions about effective stationing and dispatch of Emergency
Medical Services (EMS) resources in a large urban community
(Nashville, TN).

Contributions: We break down the problem of responder
dispatch into three atomic sub-components: incident predic-
tion, environment simulation, and the dispatching approach.
Our contributions are as follows:
• Incident Prediction: Online Survival Analysis - We de-

fine a novel online approach to incident prediction that
predicts incidents in time and space. Previous work in this
domain has treated this as a batch learning problem [6],
[4], [3], in which incident prediction models are learned
once, and are subsequently used to aid response decisions.
This fails to capture the changing dynamics of urban
systems in which emergency responders operate, and we
bridge this gap by creating an online incident prediction
algorithm.

• Dispatch Algorithm - We formulate the problem of dis-
patching responders to incidents as a Semi Markov De-
cision Process (SMDP). Such an approach has recently
been shown to work exceptionally well in this domain
[7]. However, such systems have enormous computational
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TABLE I: Notation Table

Symbol Meaning
G Set of equally sized grids
R Set of Responders
t Arrival-time between incidents
w Features that affect incident arrival
f A distribution over t, conditional on w
Ms Responder Dispatch SMDP
Md Responder Dispatch Discrete-Time MDP (DTMDP)
h Horizon of the Monte-Carlo Search Tree
D Historical Dataset of incidents
D
′

Stream Dataset of incidents
L Log-Likelihood of Incidents
Θ A Generative Model of the Urban Area

load that limit their deployment in practice. We highlight
this issue through the course of the paper and design an
efficient solution that is fast, scalable and can work in a
dynamic environment.

• Decision Theoretic Framework - We compose the Inci-
dent Prediction, Environment Simulation, and Dispatch-
ing components into a framework that makes real time
dispatching decisions based on traffic congestion and pre-
dicted incident distributions. Each component is modular,
so improvements are easy to integrate into the framework.

Outline: We present and evaluate each of the components
separately, as well as the entire system that combines them
into an online pipeline and show that it results in better
performance, and a remarkable decrease in computational run-
time. We begin by presenting a high-level system model and
problem description in Section II, and present our solution in
Section III. We show our empirical evaluation in Section IV,
go over a summary of prior work in the field in Section V
and summarize the paper in Section VI. Table I describes the
symbols used.

II. PROBLEM DESCRIPTION

The problem deals with an urban area, in which incidents
like traffic accidents, fires, distress calls and crimes happen
in space and time. Such incidents are reported to a central
emergency response system, which then dispatches responders
like police vehicles and ambulances. This system governs
the entire pipeline of incident response, including detecting
and reporting incidents, monitoring and placing a fleet of
response vehicles, and finally dispatching responders when
incidents occur. Such responders are equipped with devices
that facilitate communication to and from central control
stations. They are then dispatched by a human (guided by
some algorithmic approach), a process which typically takes
seconds, but can be longer if dispatchers are busy [8].

For simplicity we discuss our approach with a single respon-
der type and a single type of incident, but such homogeneity
is not required for this approach.

Formally, we consider that the entire urban area is divided
into as set of grids G. Incidents happen in these grids with
an inter-arrival temporal distribution f , conditional on a set
of features w. Such incidents need to be responded to by a
set of responders R. Each responder is allocated to a specific

depot, which are immobile stations located in a particular
grid. Once a responder has finished servicing an incident,
it is directed back to its depot and becomes available to be
re-dispatched while in route. We also assume that if there
are any free responders when an incident is reported, then
some responder must be dispatched to attend to the incident.
This is a direct consequence of the legal bounds within which
emergency responders operate, as well as of the critical nature
of the incidents. If an incident happens and there are no free
responders available, then the incident enters a non-priority
waiting queue and is attended to when responders become
free.

Dispatch Systems in use today by major metropolitan areas
such as Nashville work as follows: when an incident is
reported, the system dispatches the closest available responder
using the euclidean distance (i.e. ”as the crow flies”) between
the incident and the responder’s current position [8]. This
method has several disadvantages: 1) The euclidean distance
between two locations is not necessarily representative of the
actual time to travel between them since travel time depends
on the road network and its current congestion. 2) By using
the responder’s current location, it ignores where the responder
should be stationed. Nashville‘s incident response data shows
that this can lead to responders being pulled away from their
depots, causing future incidents around those depots to have
longer response times. 3) This method ignores the likely
future incident distribution. Although dispatching the closest
responder is greedily optimal, it may not be the best choice
given the distribution of future incidents.

This motivates us to model responder dispatch formally. We
begin by introducing the problem formulation of the online
dispatch system in this section. We denote by τ ∼ f , a random
variable that represents time between incidents in the urban
area.

Given such a model of incident arrival, we now look at the
model for responder dispatch. We formally model the problem
of dynamic incident response as a semi-Markov decision
process (SMDP) [9], [7], and refer to this process as Ms.
An SMDP is described by the following tuple,

{S,A, pij(a), t(i, j, a), ρ(i, a), α} (1)

where S is a finite state space, A is the set of actions, pij(a)
is the probability with which the process transitions from state
i to state j when action a is taken, t(i, j, a) is a distribution
over the time spent during the transition from state i to state
j under action a, ρ(i, a) is the reward received when action
a is taken in state si, and α is the discount factor for future
rewards.

States: At any point in time t, the state of the problem
consists of the a tuple {It, Rt, Et}, where It is a collection of
grid indices that are waiting to be serviced, ordered according
their times of occurrence. Rt represents a collection of vectors,
where rti ∈ Rt captures all relevant information about the ith

responder such as it’s current position and status. The state
variable Et captures relevant environmental factors that affect
dynamic dispatch of responders at time t. Such factors are
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problem specific, so we leave the choice of such features to
the designer of the responder system, but describe the specific
features used in our system later.

Actions: Actions in our world correspond to directing
responders either to incidents or back to their depots, when the
process encounters a decision-making state. We denote the set
of all actions by A and refer to a generic action by a. We use
A(si) to denote the set of actions that are available in state
si ∈ S, and impose a constraint that whenever at least one
responder is available and an incident occurs, we immediately
dispatch some responder. Since the entire process evolves in
continuous time, one can consider the existence of a single
decision-making state at any instant, which leads to a single
action being needed.

Transitions: The SMDP model evolves as a result of
incidents that happen in space and time, and actions that are
taken. The state transition probabilities are represented by the
random variable pij(a), which for any state si, represents
the probability over the system transitioning to state sj when
action a is taken. Also, the time taken for the transition is
represented by the random variable t(i, j, a). We collectively
refer to the state transition probabilities and time transition
probabilities as transition probabilities throughout the rest of
the paper.

Rewards: Since the broader goal of this problem is to
minimize response times for emergency responders, we choose
to look at costs instead of rewards. For each action a that is
taken in state si, the system incurs a cost ρ(si, a), and we
seek to find actions for each state that minimizes the expected
sum of costs.

Policy: A policy for a decision-making problem specifies
an action for each state of the system. The goal of solving
the SMDP is to find a policy that maximizes the sum of
expected rewards that the decision process generates as a result
of following the said policy. Our goal is to approximate the
optimal policy π∗ which, starting from for an arbitrary state
si, minimizes the sum of expected discounted costs.

III. OUR SOLUTION

Before introducing the technical details of our solution
approach, we provide a broad overview of the algorithmic
approach we take and the associated technical challenges.
We point out that two characteristics are fundamental to the
operation of an emergency response system - first, it must be
equipped with the ability to perform real-time computing in
order to process the continuous stream of data received from
responders and calls, and secondly, it must be equipped with
principled algorithmic approaches to dispatch responders as
and when incidents happen. We clarify that real-time com-
putation essentially refers to a soft real-time problem - once
incidents happen, the entire pipeline can afford a short latency
to update existing models and calculate dispatch decisions.
With these characteristics in mind, we start by looking at
incident prediction algorithms. The canonical way to predict
incidents in space and time is using historical data to learn
a predictive model and then simulate incidents [10], [11].

Online Prediction Model
(Sec 3.1)

Responder-Dispatch
Decision Process

(Sec 3.2)

Environment Model
(Sec 3.3)

Real-Time Router
(Sec 3.3)

Dispatch Decision

Generator
Incident Data

Speed Estimation

Routing 
Requests

Fig. 1: System Overview

However, since accidents often cascade, it is imperative that
the model is updated as and when incidents happen. The
primary technical challenge here is that re-training the entire
model each time an incident happens (or periodically after
some pre-defined number of incidents) is computationally slow
and puts a heavy toll on the responder-dispatch framework that
can only afford a low latency. This calls for the need to design
an online mechanism to predict incidents that can be updated
as incidents happen. We introduce such a model and explain
the algorithmic details involved in section III-A.

Having looked at the problem of incident prediction, we
now look at dispatching responders given an incident predic-
tion model. The SMDP formulation introduced in section II
is difficult to solve since the state transition probabilities are
unknown and cannot be computed in closed-form. One way to
tackle this problem is to access a generative model to learn the
state-transition probabilities while learning a policy. This has
recently been shown to work well on the responder-dispatch
problem [7]. However, we point out that such an approach
has two major limitations. First, for any urban system, the
state space is practically intractable even without environment
variables. Even on fairly powerful computing systems, it
would take weeks to train the policy [7]. The inclusion of
environment variables would be computationally infeasible.
Secondly, and partly as a consequence of the first issue, prior
approaches are simply not suited for dynamic environments: if
a single responder breaks down, traffic conditions change, or
incident models evolve, existing approaches [7], [12] prescribe
re-learning from scratch, which takes time that is incompatible
with the latency constraints on the system. In order to alleviate
this concern, we take the SMDP formulation and design an
algorithmic approach that bypasses the need to learn the
transition probabilities. This saves vital computation time and
lets us design an online algorithm that is updated in real-time
as the environment evolves (see Section III-B).

In order to consider the effect of environmental factors on
responder dispatch, it is essential to understand how such
factors evolve. This motivates us to create predictive models
for the environment. One factor of interest in the context of
emergency responder-dispatch is traffic conditions in urban
areas, since they directly affect travel times of responders. We
take this into account by describing a model that enables us
to learn the evolution of traffic in an urban area from prior
data, and predict traffic conditions on the fly while attempting
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to solve the MDP (see section III-C).
The high-level process flow that ties the three problems into

one complete pipeline of responder dispatch is shown in figure
1. The online prediction model consumes actual incident data
and at any point in time, provides a simulator that captures the
latest trends in incident arrival. Also, the model to learn the
evolution of environmental variables is used to find optimal
vehicular routes between any two points in the urban area.
These two atomic pieces are fed into the decision process for
responder-dispatch, that given any state of the SMDP, outputs
a decision that governs which responder should be sent to
respond to an incident.

A. Real Time Incident Prediction

We now present the technical details and formalize our
methodology, and begin by looking at a principled incident
prediction algorithm. Formally, we want to learn a probability
distribution over incident arrival in space and time. In order
to do so, we leverage our prior work in which we have
shown how survival models prove to be extremely effective
in predicting incidents like crimes and traffic accidents [10],
[4], [7]. Survival Analysis is a class of methods used to
analyze data comprising of time between incidents of interest
[13]. Survival models can be parametric or non-parametric in
nature, with parametric models assuming that survival time
follows a known distribution. Based on our prior work, we
choose a parametric model over incident arrival, and represent
the survival model as f(τ |γ(w)), where f is the probability
distribution for a continuous random variable τ representing
the inter-arrival time, which typically depends on covariates w
via the function γ. The model parameters can be estimated by
the principled procedure of Maximum Likelihood Estimation
(MLE). The spatial granularity at which such models are
learned can be specified exogenously - a system designer can
choose to learn a separate f for each discretized spatial entity
(grids in our case), learn one single model for all the grids
or learn the spatial granularity from data itself. This choice
is orthogonal to the approach described in this paper and we
refer interested readers to our prior work [4] for a discussion
about such models.

We shift our focus directly to survival models that are
used to learn f(τ |γ(w)). Intuitively, given an incident and a
set of features, we want to predict when the next incident
might happen. Before proceeding, we introduce an added
piece of notation - we assume the availability of a dataset D
= {(x1, w1), (x2, w2), .., (xn, wn)}, where xi represents the
time of occurrence of the ith incident and wi represents a
vector of arbitrary features associated with the said incident.
A realization of the random variable τ , used to measure the
inter-arrival time between incidents, can be represented as
τi = xi+1 − xi. The function γ is usually logarithmic and
the relationship of the random variable τ with the covariates
can be captured by a log-linear model. Formally, for a time-
interval τi and associated feature vector wi, this relationship
is represented as

log(τi) = β1wi1 + β2wi2 + ...+ βmwim + y (2)

where, β ∈ Rm represents the regression coefficients and y
is the error term, distributed according to the distribution h.
The specific distribution of f is decided by how the error y is
modeled. We choose to model τ by an exponential distribution
(for the sake of brevity, we refer interested readers to prior
work [7] for more details on why an exponential distribution
is particularly useful in such models). It turns out that when y
follows the extreme value distribution, then τ is distributed
exponentially. Thus, in our incident prediction model, we
assume that h takes the following form

hY (y) = ey−e
y

Using equation 2, for a given set of incidents, the log-
likelihood of the observed data under the specific model can
be expressed as

L =

n∑
i=1

log h(τi − wTi β) (3)

The standard way to estimate the parameters of the model
is to use a gradient-based iterative approach like the Newton-
Raphson algorithm, yielding a set of coefficients β∗ that
maximize the likelihood expression. Now, the model over
inter-arrival times is generative, it can be used to simulate
chains of incidents, which is particularly helpful in building a
simulator, the purpose of which we explain in the next section.

As pointed out before, such an approach is offline. However,
it is imperative to capture the latest trends in incident arrival
to accurately predict future incidents, which motivates us
to design an online approach for learning and predicting
incidents. We introduce some added notation before describ-
ing the algorithmic approach. First, we reiterate that β∗ is
used to refer to coefficients already learned from dataset
D. Further, we assume that a new set of incidents D

′
=

{(x′1, w1), (x
′

2, w2), .., (x
′

k, wk)} is available that consists of
incidents that have happened after (in time) the original set
of incidents. We aim to update the regression coefficients β
using D

′
, assuming that the model already has access to β∗.

In order to address this problem, we use stochastic gradient
descent to update the distribution f in an online fashion.
Formally, we start with the known coefficients β∗ and, at any
iteration p of the process, we use the following update rule

βp+1 = βp + α∇L(βp, D
′
)

where ∇(L(β∗, D
′
) is the gradient of the log-likelihood

function calculated using D
′

at βp and α is the standard step-
size parameter for gradient based algorithms. Using equation
3, likelihood of the incidents in the dataset D

′
can be repre-

sented by

L =

k∑
i=1

log e(logτi−β∗w)−e(logτi−β
∗w)
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Algorithm 1: Streaming Survival Analysis

1 INPUT: Regression Coefficients β∗, Dataset D
′
, Tolerance α,

Likelihood Function L, Maximum Iterations MAX ITER ;
2 for p = 1..MAX ITER do
3 βp+1 = βp + α∇L(βp, D

′
) ;

4 if L(βp+1, D
′
) < L(βp, D

′
) then

5 Return βp;

6 Return βp

and subsequently,

∂L

∂βj
=

k∑
i=1

−wij + wij{e(logτi−β∗wi)}

The update step is repeated until improvements in the
likelihood of the available data. Having already summarized
the important steps in the algorithm in this section, we present
it formally in Algorithm 1.

This mechanism enables us to update the incident prediction
model in an online manner, saving vital computation time for
the responder dispatch system. Also, this implicitly betters the
dispatch algorithm by generating incident chains that capture
the latest trend in incident occurrence.

B. Dispatch Algorithm

We begin the discussion on our dispatch algorithm by first
explaining how the SMDP problem in formulation 1 can be
solved by canonical policy iteration. A principled algorithmic
approach [7] to solve the responder-dispatch SMDP is to first
convert the SMDP to a discrete-time MDP Md, which can be
represented as

{S,A, p̄ij , ρ, Vβ , βα}
where p̄ij(a) = β−1α βα(i, a, j)pij(a) is the scaled probabil-

ity state transition function and βα is the updated discount
factor. The transformed MDP is equivalent to the original
MDP according to the total rewards criterion [7], [9], and
hence it suffices to learn a policy for Md. Given such a con-
version, the approach to solving the MDP involves accessing
a simulator to learn the state transition probabilities for Md

[7]. The algorithm, SimTrans, an acronym for Simulate and
Transform, uses canonical Policy Iteration on the transformed
MDP Md, with an added computation. It tracks the states
and actions encountered by the simulator and gradually builds
statistically confident estimates of the transition probabilities.

This process, however, is extremely slow and fails to work
in dynamic environments since any change in the problem
definition (the number of responders, or the position of a
depot) renders the learned policy stale. In order to tackle this
problem, we first highlight an important observation - one
need not find an optimal action for each state as part of the
solution approach since at any point in time, only one decision-
making state might arise that requires an optimal action. This
difference is crucial, as it lets us bypass the need to learn

Algorithm 2: Real-Time SMDP Approximation Main
Procedure

1 INPUT: State s, Current Environment E, Horizon h, Stochastic
Horizon hs, Simulation Budget b, Generative Model Θ ;

2 Set current depth d← 0;
3 C ← b incident chains generated by Θ(E) ;
4 Set Scores U ← ∅ ;
5 Ā = SelectCandidateActions (s, d, hs) ;
6 foreach incident chain c ∈ C do
7 u← ChainEvaluation (c, s, d, Ā, hs, h) ;
8 foreach candidate action a ∈ Ā do
9 U [a]← U [a] + u[a] ;

10 Return argmina∈Ā(U [a]) ;

Algorithm 3: Select Candidate Actions for Given State

1 Function SelectCandidateActions (State s, Depth d,
Stochastic Horizon hs)

2 As ← set of available actions in state s ;
3 a∗ = argmina∈As(ρ(s, a)) ;
4 if depth d ≥ hs then
5 Return a∗ ;

6 else
7 Ās = {a|a ∈ As and ρ(s, a) ≤ ε ∗ ρ(s, a∗)} ;
8 Return Ās ;

an optimal policy for the entire MDP. Instead, we describe a
principled approach that evaluates different actions at a given
state, and selects one that is sufficiently close to the optimal
action. We do this using sparse sampling, which creates a sub-
MDP around the neighborhood of the given state and then
searches that neighborhood for an action. In order to actualize
this, we use Monte-Carlo Tree Search (MCTS).

Another important observation is that the incident prediction
model discussed in section III-A is generative and indepen-
dent of dispatch decisions, which lets us simulate incidents
independently. Note that since models of travel (discussed
in section III-C) as well as service times for responders can
also be learned from data, the entire urban area can therefore
be simulated. We denote such a simulator by Θ, which
can generate samples of how the urban area evolves, even
though the exact state-transition probabilities are unknown.
This observation lets us simulate future states from a given
state, leading to the creation of a state-action tree as shown in
Fig. 2. We use this to design an algorithmic approach called
Real-Time SMDP Approximation, and explain it next. Through
the course of this discussion, we assume that the simulator can
access a modular (and possibly exogenously specified) model
to predict the environment at any point in time.

Algorithms 2, 3, 4, and 5 describe the various functions of
our MCTS approach. We start our discussion with Algorithm
2, which is the highest level procedure that is invoked when
presented with a decision-making state. First, b incident chains
are sampled using the generative model Θ (refer to step 3
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Algorithm 4: Evaluate a Chain of Incidents
1 Function ChainEvaluation (Incident Chain c, State s, Depth d,

Candidate Actions Ā, Stochastic Horizon hs, Horizon h)
2 Set scores u← ∅ ;
3 d← d+ 1 ;
4 foreach action a ∈ Ā do
5 Next state s′ ← UpdateState(s, a, c) ;
6 Utility util = s′.responseTime ;
7 Root ← new Node(State = s‘, util = util) ;
8 Update u[a]← CreateStateTree(Root, c, d, hs, h) ;

9 Return u

in Algorithm 2), where each chain is a time ordered list
of sampled incidents. We create multiple chains in order to
limit the impact of variance in the generative model. Next,
the algorithm starts building the MCTS tree. We use the
function node(s, η, d, t) to refer to the creation of a node
in the tree, which tracks the current state of the system (s),
the cost of the path from the root to the node (η), the depth
of the tree (d) and the total time elapsed (t). Also, we use
UpdateState(s,a,c) to retrieve the next state of the system,
given the current state s, action a and chain c. For any state,
we start by finding a set of candidate actions for the given
incident (refer to step 5 in Algorithm 2), which takes the
algorithmic flow to Algorithm 3. The candidate actions are
chosen according to the current depth of the MCTS tree - if the
tree is within the stochastic horizon hs, the candidate actions
include all actions with a cost that is at most ε times the cost
of the myopically optimal action a∗. The parameter ε can be
varied to control the trade off between the computational load
of the algorithm and performance. Once the tree is deeper
than hs, the algorithm picks the best myopic action as a
heuristic to construct the tree’s nodes until depth h, since
rewards are sufficiently discounted. After candidate actions
are found for the sampled incidents of the chain, Algorithm
4 is used to evaluate possible decision-making courses - each
available action is tried and the MDP is simulated to generate
future decision-making states, from which the entire process
is repeated. This gradually builds a tree, where each edge is an
action and each node is a decision-making state. We explain
this procedure in Algorithm 5.

The key steps of the procedure are as follows. First, costs are
tracked for every branch as the tree is built (refer to steps 10
and 14 in Algorithm 5), which is based on the response time in
seconds for the assigned responder to the current incident. A
lower cost is better, as it corresponds to lower response times.
For any given node that was generated by action a from parent
node p, the cost is

cost = up + (γt)((t− up)/(d+ 1)) (4)

where up is the parent node‘s cost, γ is the discount factor
for future decisions, and t is the time elapsed between taking
action a at the parent node and the occurrence of the current
node. This is essentially an updated weighted average of the
response times to incidents given the dispatch actions.

Algorithm 5: Generate State Tree
1 Function CreateStateTree (Parent Node n, Incident Chain c,

Depth d, Stochastic Horizon hs, Horizon h)
2 if d ¿ horizon h then
3 Return n.util ;

4 else
5 A = SelectCandidateActions(n.state, d, hs) ;
6 d← d+ 1 ;
7 Let ChildUtils ← ∅ ;
8 foreach candidate action ai ∈ A do
9 Next state s′ ← UpdateState(n.state, a, c) ;

10 Let costi ← UtilityUpdate(s′, n.cost, d) ;
11 Let x← Node(s′, costi, d, t) ;
12 ChildUtils ← ChildUtils ∪

CreateStateTree(x, c, d, hs, h)

13 Return min (ChildUtils)

14 Function UtilityUpdate (State s, Parent Utility up, Depth d,
time t)

15 Return up + (γt)(t− up)/(d+ 1)) ;
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Fig. 2: State-Action Tree

Once the tree is completed, the cost for each candidate
action for the dispatch incident is determined by the cost of
the best leaf node in it’s sub-tree, as this represents the result
of the best sequence of future actions that could be taken given
the dispatch action. Finally, the algorithm averages the costs
for each dispatch action across the b generated incident chains,
and selects the candidate action with the minimum overall cost
as the best action in the current state (refer to step 10).

If all the responders are busy when an incident occurs, the
incident is placed in a waiting queue. As soon as a responder
becomes available, it is assigned to the incident at the front
of the queue. This continues until the queue is emptied, after
which the algorithm returns to using the heuristic policy above.

C. Predicting Environmental Factors

We now look at the final component of the proposed pipeline
- in order to capture the effect of environment, we must learn
how the environment evolves. We specifically focus our atten-
tion to traffic conditions, that directly affect the movement of
responders. While information about current traffic conditions
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TABLE II: Final Hyper-Parameter Choices
Number of Stations
(Fraction of Nashville Count)

26
(full)

13
(1/2)

6
(1/4)

3
(1/8)

Simulation Budget b 10 10 10 10
Candidate Action Factor ε 1.5 1.5 2.5 1.5
Stochastic Horizon hs 1 1 2 1
Discount Factor γ 0.9 0.9 0.99999 0.99999

can be collected while making decisions, it does not suffice for
long-term planning. As the dispatch algorithm builds the state-
action tree into the future, estimates of environmental variables
are needed ahead of time, thereby making it imperative to learn
predictive models for such variables. We therefore, design an
algorithmic approach to predict future traffic conditions, and
highlight how it can be used with an appropriate route-finding
algorithm to predict travel times for emergency responders.

Traffic Prediction Model: We model the urban area as
a set of road segments. For each segment, we assume that
the dataset contains an associated set of features, which
include data about the number of lanes, length of a segment,
vehicular speed at different times and so on. Using this data
set and features we learn a function over vehicular speed on
a segment, conditional on the set of features using a Long
Short-Term Memory Neural Network (LSTM) [14] model. The
primary capability of such a framework is to model long-
term dependencies and determine the optimal time lag for
time series problems, which is especially desirable for traffic
prediction in the transportation domain.

Route Finding Algorithm: Armed with a model that can
predict vehicular speed on road segments, we now look for an
approach to find the optimal route between two given points
in the urban area. Specifically, given a source, destination
and departure time, we seek to find the route with minimum
expected travel time. To this end, we design a router based on
A∗ search with landmarks (ALT) [15]. ALT improves upon
euclidean-based A∗ search [16] by introducing landmarks
to compute feasible potential functions using the triangle
inequality, thereby improving the computational cost involved
with such a procedure.

IV. PERFORMANCE

A. Data and Methodology

Our evaluation uses traffic accident data obtained from
the fire and police departments of Nashville, TN, which
has a population of approximately 700,000. We trained the
generative survival model on 9345 incidents occurring between
1-1-2016 and 2-1-2017, and evaluated the algorithm on 1386
incidents occurring between 2-1-2017 and 4-1-2017. We gath-
ered information about road segments and their geographical
locations using real-time traffic data collected from HERE
Traffic API [17] for Nashville area. The granularity of this
dataset lets us access real-time vehicular speed for all segments
in Nashville, which is sampled every minute throughout the
day.

Caching the Router Results: While we recommend using
a router in real-time using the exact locations of responders
and incidents to make decisions, it is not feasible for our
experiments. Our preliminary analysis showed that each router

request takes approximately 0.2 seconds on average. In order
to reduce the query time needed to find vehicular speed
between arbitrary locations, we cached travel times between
locations for different times of the day, with time discretized
every 30 minutes. Our experiments showed that travel times in
Nashville do not change significantly at this interval (ranging
from 2-7 mph). In order to actualize caching, we used the
same grid system described in section II for locations, with
any location in the city discretized to the centroid of it’s grid.

B. Experimental Setup

We begin by evaluating the streaming survival model sepa-
rately by comparing it to a batch-learning approach [7]. Then,
we evaluate the performance of the optimizers that are used
for the router, and finally evaluate the dispatch algorithm.
There are two considerations that need to be made during the
evaluation -
1) Decreased Responder Availability: It is reasonable to

assume that the base policy of dispatching the closest
responder is correct most of the time and it is only rarely
that non-greedy actions are needed. We hypothesize that
such situations occur more frequently in practice as the
strain on the system is greater: i.e. the incident to responder
ratio is higher. This happens since responders attend not
only to traffic accidents, but to a variety of other incidents
(crimes for example). To take this into account, we ran
several experiments with different number of responders:
The full Nashville responder count of 26, and then cutting
it by a factor of half three times to simulate test-beds with
13, 6, and 3 responders. The locations of the stations in
each of these test-beds compared to Nashville’s incident
density heatmap is shown in figure 3.

2) Hyper-Parameters: We performed a hyper-parameter
search (refer to the appendix for a concise summary of
the hyper-parameters) for each of the test-beds based on
the number of stations. The parameters that gave the best
response time savings were chosen for each set, shown
in table II. We note that each hyper-parameter is important
and strongly prescribe that each should be tested and tuned
carefully for a new environment and hardware the system is
deployed on, as these values may not be optimal for more
constrained hardware, different responder distributions, or
different cities with other incident arrival models.

C. Results and Discussion

1) Streaming Survival Analysis: We learned the batch
model using the entire training data set and then, in the
evaluation set, we considered each week as a stream, and
further split 80% of the stream into a training set and 20%
as the test set. We evaluated the batch model as well as
the streaming model on the test set of each of the streams.
Note that the batch model has access to all the data in the
streams in the form of features; the stream model, on the
other hand, gets updated after each data stream is received
according to Algorithm 1. We use the de-facto standard of
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(c) (d)

Fig. 3: Distribution of the stations in each experiment overlaid on an incident occurrence heatmap (the background shows the
map of Nashville, TN): (a) Actual (26) stations; (b) 13 stations; (c) 6 stations; and, (d) 3 stations.
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comparing likelihoods for evaluation, and present the results
in in Figure 4. The streaming model results in a significant
increase in likelihood (we plot the negative log likelihoods,
hence lower is better) and convincingly outperforms the batch
model. We point out a minor caveat - the updates can be used
in practice only if the time taken to update the model is small
as compared to the latency that emergency responders can
afford. To illustrate this, we present the computational run-
times of the stream model (for each stream) in Figure 5, and
observe that it usually takes less than 2 seconds for an update
to run, which justifies the usage of such models in practice.

In order to visually illustrate the benefit of a streaming
model, we look at a fabricated example, where we feed the
incident prediction models with data that is deviant from
standard accident patterns. We show these results as heatmaps
in Figure 6. Note that a brighter color corresponds to higher
density of incidents. We see that the batch model weakly learns
the pattern since it has access to the updated dataset only
in the form of features; the streaming model on the other
hand, identifies the current trend and predicts higher density
of incidents in the concerned region, thereby highlighting the
importance of such models in dynamic environments.

2) Predicting Travel Times: We briefly show results of our
traffic router before moving to the dispatch algorithm. We
compared the LSTM using three different optimizers (Adam
[18], SGD [19], and Adagrad [20]), and model performance

was evaluated using five-fold shuffled cross validation. Adam,
SGD and Adagrad showed Mean Absolute Errors of 5.47, 4.27
and 6.16 miles/hours respectively. Therefore, we chose SGD
for our router described in Section III-C. While evaluating the
router on unseen data, the model with SGD optimizer showed
MAE of only 6.419 miles/hour.

3) Responder Dispatch: In table III we present the results
of comparing the tuned algorithms for each stations config-
uration. We compare our solution against the base policy
(sending the nearest responder) using the average response
time reduction for incidents impacted by the algorithm (i.e. in-
cidents with different response times than the base policy), the
number of incidents impacted, and the average computation
time. The first observation is that the computation times are
all well within acceptable limits, as they are near the human
decision maker’s visual reaction times [21]. This demonstrates
that the system overcomes the technical challenge of running
and updating in real-time, and can integrate into emergency
response systems described in section I.

We observe that when there is high responder coverage,
demonstrated by the experiment with 26 stations, the baseline
policy is nearly always used, with only 5 of the 1386 incidents
serviced being impacted by the policy. But as the number of
responders decreases, the baseline policy is sub-optimal for an
increasing number of incidents, capping at 150 with 3 stations.
This shows that the system can respond to changing responder
availability, and that it is most useful when the system is
strained by high incident demand.

Last, the average time saved for impacted incidents is
significant, particularly for the experiments with 26 and 3
stations, as 30 seconds can be the difference between mor-
tality and survival in response situations [22]. However, these
represent average savings, and to dissect the performance of
our approach, we plot the distributions of the response time
savings for incidents that benefited from our solution, and
response time increases for negatively impacted incidents in
figure 7.

Comparing the box plots, the negatively impacted response
times are more dense near zero compared to the savings.
This shows that in general, the algorithm is not making large
sacrifices for individual incidents in comparison to the savings
generated, which is reinforced by the overall distribution of
response times shown in figure 8. The response times for the
positively impacted incidents are generally much improved;
the median improvement is over 200 seconds for the exper-
iment with 13 stations, for example. Unfortunately, however,
there are some outliers with unacceptably large sacrifices. For
example, there is an incident in the experiment with 13 stations
that took over 200 additional seconds to respond to compared
to the base policy, which significantly increases the potential
mortality of that incident if it is severe. This raises the question
of integrating severity of incidents into the SMDP model, and
we plan to consider the integration of prioritization of incidents
in future work.
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Fig. 6: Batch Model (a) vs Streaming Model (b): These predicted heatmaps demonstrate that the streaming model adjusts more
quickly to new incident distributions. Starting with a survival model learned from the training set, we fed the models synthetic
incident data with incidents only occurring in the yellow boxed area, which means that the model should learn that there is
now a higher incident likelihood in this area. The batch model picks up the new pattern weakly, whereas the streaming model
shows higher likelihood in marked box.

TABLE III: Performance of System Compared to Base Policy

Number of Stations
(Fraction of Nashville Count)

26
(full)

13
(1/2)

6
(1/4)

3
(1/8)

Average Response Time Sav-
ings for Incidents Impacted by
Policy (seconds)

38.705 2.231 15.917 34.871

Number of Incidents Impacted
by Policy

5 14 99 150

Average Computation Time
per Incident (seconds)

0.384 0.198 0.350 0.0343

V. RELATED WORK

A Traffic Incident Management Decision Support System is
an information system that supports the process of preparing
for, responding to, and managing the effects of traffic inci-
dents. It must support functions such as stationing emergency
response resources, dispatching to incidents in real time, and
routing resources [23]. Most of these sub-problems have been
studied in an orthogonal manner. We look at prior work
for each of the sub-problems. First, we look at the problem
of dispatching responders given a model of incident arrival.
Traditionally, problem has been looked at as a part of the
responder allocation problem [24], [4], in which an allocation
of responders to depots naturally creates an algorithm for
dispatch. The problem has also been studied as part of a joint
optimization problem that balances distribution of resources
and response times [25]. Finally, principled decision-theoretic
models have also been used to study the problem [7], [12], that
look at learning a policy of actions for all states the urban area

can be in.
The second sub-problem is that of predicting incidents like

traffic accidents, crimes, fires and others, that need emergency
response. The availability of such a mechanism is crucial
to the first sub-problem as decision-theoretic approaches can
be aided by mechanisms that can simulate the world in
which such responders operate. This specific problem has been
widely studied in the past. One of the most widely studied
types of incidents is crime, and a variety of approaches [26],
[27] have been taken to tackle this problem. The problem
of predicting traffic accidents has also received significant
attention [28], [29]. Recently, freeway accidents have been
predicted using panel data analysis approach that predicts
incidents based on both time-varying and site-specific factors
[30]. A survey of the literature on crash prediction models
is presented in [31], which highlights the prevalence of Pois-
son distribution based models, and multiple linear regression
approaches. There are also approaches that use clustering
techniques to differentiate between incident types [32]. Finally,
there are generic approaches that can work with multiple
incident types [4], [3].

VI. CONCLUSION

We designed a complete pipeline for the responder dispatch
problem. We created an online incident prediction model that
can consume streaming data and efficiently update existing
incident arrival models. Then, we designed a framework for
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Fig. 7: Incident response time difference between the base
policy and our solution. The left chart shows the distribution
of response time decreases for positively impacted incidents,
while the right chart shows increases for negatively impacted
incidents. The distribution of time difference in minutes (x
axis) is compared across each experiment involving the various
station counts (y axis).

finding near-optimal decisions of an SMDP by using Monte-
Carlo Tree Search, that bridges an important gap in literature
by making such models computationally tractable. To aid the
decision-making algorithm, we designed a Recurrent Neural
Network architecture to learn and predict traffic conditions
in urban areas. Our experiments showed significant improve-
ments over prior work and existing strategies in both incident
prediction and responder dispatch. We would like to highlight
that while we treated incidents with equal severity, an inter-
esting direction of future work involves designing the SMDP
reward structure based on priorities, and directing responders
based on incident prediction models that take severity into
effect.
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APPENDIX

In order to ensure brevity in the main body of the paper, we
move some areas of discussion to the appendix. We extend the
discussion on all three components of the responder dispatch
pipeline here, and start with our algorithm for predicting
incidents.
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Fig. 8: Response time distributions of the base policy com-
pared to our solution for each station experiment. The two
are very similar on average since most incidents have the
same responder, demonstrating that our solution is not worse
than the base policy. The benefits of our solution are clear
when looking at the response times for incidents with different
dispatching decisions, as shown in figure 7.

A. Data Sources

TABLE IV: Data Sources

Type Source Format Frequency Range
Traffic HERE Traffic

Message
Channel

One Minute 10/16 -
Present

Accident Nashville
Fire
Department

JSON Manually 02/14 -
06/17

Weather Dark Sky JSON Five Minutes 03/16 -
Present

We collect static and real-time data from multiple data
sources in the city of Nashville, TN. Table IV shows the
different data used in this work.

B. Real-Time Incident Prediction

While most of our approach towards learning a probability
distribution over inter-arrival time between incidents is de-
scribed in the main paper, we describe the features used to
learn the survival model here. Our primary choice of features
is governed by prior work and expert opinions, and we list the
features used in our model in Table V.
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TABLE V: Features used in the incident prediction model.

Feature Description

Time of day Each day was divided into 6
equal time zones with binary
features for each.

Weekend Binary features to consider
whether crime took place on a
weekend or not.

Season Binary features for winter,
spring, summer and fall sea-
sons.

Mean
Temperature

Mean Temperature in a day

Rainfall Rainfall in a day

Past Incidents Separate variables considered
for each discrete crime grid
representing the number of in-
cidents in the last two days,
past week and past month. We
also looked at same incident
measures for neighbors of a
grid.

C. Dispatch Algorithm

The original problem Ms, as formulated in section III-B is
a Markov-Decision Process which can be defined as

{S,A, pij(a), t(i, j, a), ρ(i, a), α}

For any state si and policy π, we define expected discounted
total reward over an infinite horizon as

V π(si) =

∞∑
n=0

E{e−αTnρ(sn, π(sn))} (5)

where sn is the state at nth decision epoch, and Tn its
duration. The broad goal of solving a general MDP is to learn
a policy that maximizes the sum of expected rewards for any
given state. We look at costs instead of rewards, and seek
to find actions for a given state that minimizes the sum of
expected costs.

The evolution of this system can be described by the
following four steps:

1) Given a decision-making state si, an action a ∈ A is
taken.

2) This action results in the system receiving an instanta-
neous reward (or incurring a cost) which is defined by
the function ρ(si, a).

3) Upon taking this action, the system transitions to state sj

according to the probability distribution pij(a)
4) The transitions are however, not instantaneous. The sys-

tem takes time t to make the transition, where t ∼ tij .
The first step (and the most general approach) in solv-

ing such a problem is to convert this into a Discrete-Time

TABLE VI: Algorithm Hyper-parameter Description

Candidate
Action Factor ε:

ε controls the number of responders consid-
ered for each incident: any responder with
response time within ε times the greedy
action’s response time is considered. There-
fore ε directly controls the branching factor
of the MCTS tree, and has the most signif-
icant impact on computation time.

Simulation
Budget b:

b is the number of incident chains that are
generated and evaluated from the incident
model Θ. Increasing b decreases the vari-
ance inherent when sampling. Each chain
of incidents can be processed in parallel, so
increasing b does not directly increase com-
putation time, assuming enough computing
resources are available.

Stochastic
Horizon hs:

hs is the number of predicted incidents
to explore in the future before defaulting
to the greedy action. Increasing hs also
has a pronounced affect on computation
time. Each level of the search tree that is
expanded increases the number of states to
simulate.

Discount �Factor
γ:

γ is the discount applied to future predicted
incident rewards, and is in the range (0,1).
High values of γ weight far future incidents
more similarly to those about to happen,
while low values give much more weight to
incidents that are happening soon. Unlike
the other hyper-parameters, varying γ has
no effect on computation time, a value that
minimizes response times for each environ-
ment should be chosen.

Markovian process. However, even after discretization, it is
particularly challenging to solve this problem since - a) the
state-space is practically intractable, and b) the state transition
probabilities pij(a) are unknown. In order to alleviate these
issues, SimTrans uses canonical policy iteration with an added
computational step. At each step of policy iteration, it uses
a simulator to estimate values of states it encounters; this
provides crucial data about how state transitions occur in the
system, which is then used to learn the distribution pij(a).

While policy iteration is guaranteed to converge to the
optimal policy, this approach has major drawbacks. First,
due to the size of the state-space, even on fairly powerful
computing systems, it takes weeks to learn the optimal policy.
Finding such a policy with the inclusion of environment
variables would be computationally infeasible. Secondly, and
partly as a consequence of the first issue, SimTrans is simply
not suited for for dynamic environments: if a single responder
breaks down, traffic conditions change, or incident models
evolve, the policy must be relearned from scratch, which takes
time that is incomparable to the latency that such emergency
responder systems can afford.

In order to alleviate these concerns, the paper described
an algorithm based on Monte-Carlo Tree Search, that looks
to learn a near-optimal action for a given state only, instead
of focussing on learning a policy over the entire state space.
We describe the algorithm in the main paper, but present a
summary of the exogenous parameters here in the appendix,
for easy reference.
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TABLE VIII: LSTM Hyperparameter tuning table

Optimizer MAE

Adam 5.47

SGD 4.27

Adagrad 6.16
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Response Time (Minutes)

Real Response Time Distribution

Fig. 9: Response time distribution for EMS response for the
Nashville Fire Department from 01-02-2016 to 01-02-2017.

TABLE VII: Summary and dimension of implemented features
for traffic prediction model.

Feature Dim. Description

Hour of day,
Day of week

2 Hour of the day and Day of
week used to sample speed
data

Length 1 Length of the street segment,
collected from OpenStreetMap

Freeflow speed 1 Freeflow speed on the street
segment, collected from HERE
API. This dataset is private and
is collected by our research
group

Number of
lanes

1 Number of lanes on the street
segment, collected from Open-
StreetMap

TAZ 741 Binary indication of Traffic
Analysis Zone (TAZ) corre-
sponding to this feature vector,
collected from US Census Bu-
reau. A TAZ can contain mul-
tiple network segments.

Realtime speed 1 The realtime speed value col-
lected from HERE API. This
dataset is private and is col-
lected by our research group

D. Traffic and Congestion Prediction
As mentioned in the main paper, we assume that the entire

urban area under consideration is divided into a set of road
segments V and every vi ∈ V has a set of features associated
with it.

For building the search tree for the dispatching approach
described in the section III-B, we need to accurately estimate
the time it takes for a responder to get to an incident. In
order to facilitate this, we developed a predictive model to
estimate speed on each road segment for a given time interval.
The model needs to be contextualized with features that affect
speed, and from our experience and prior work, we chose hour
of day, day of week, number of lanes on the road, and the
traffic analysis zone as our principal features. These features
are described in Table VII.

To find the best optimizer for our LSTM model, we trained
it with three different optimizers– Adam [18], SGD [19], Ada-
grad [20] and model performance was evaluated using five-
fold shuffled cross validation. Table VIII shows Mean absolute
error (MAE) in miles/hour units for different optimizers. The
result shows that SGD performs better with our LSTM model
than other optimizers, hence it is chosen for our route finding
algorithm. In test dataset, LSTM model with SGD optimizer
has MAE of 6.419 miles/hour. There are other state-of-the-art
models for estimating traffic speeds [33], [34], however, we
have not explored them in this paper. Our system design is
modular and other algorithms can easily fit in.

E. Real Incident Response Times

Figure 9 shows the Nashville Fire Department’s actual
response times to incidents for one year of data from February
2016 to February 2017.
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