
RFDMon: A Real-time and Fault-tolerant Distributed System Monitoring Approach

Rajat Mehrotra
Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS, USA
Email: rm651@msstate.edu

Abhishek Dubey
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

Email: dabhishe@isis.vanderbilt.edu

Sherif Abdelwahed
Electrical and Computer Engineering

Mississippi State University
Mississippi State, MS, USA

Email: sheirf@ece.msstate.edu

Krisa W. Rowland
US Army Engineer Research and Development Center

Vicksburg, MS, USA
Email: Krisa.W.Rowland@usace.army.mil

Abstract—One of the main requirements for building an
autonomic system is to have a robust monitoring frame-
work. In this paper, a systematic distributed event based
(DEB) system monitoring framework “RFDMon” is presented
for measuring system variables (CPU utilization, memory
utilization, disk utilization, network utilization, etc.), system
health (temperature and voltage of Motherboard and CPU)
application performance variables (application response time,
queue size, and throughput), and scientific application data
structures (PBS information and MPI variables) accurately
with minimum latency at a specified rate and with controllable
resource utilization. This framework is designed to be tolerant
to faults in monitoring framework, self-configuring (can start
and stop monitoring the nodes and configure monitors for
threshold values/changes for publishing the measurements),
aware of execution of the framework on multiple nodes
through HEARTBEAT messages, extensive (monitors multiple
parameters through periodic and aperiodic sensors), resource
constrainable (computational resources can be limited for
monitors), and expandable for adding extra monitors on the
fly. Since RFDMon uses a Data Distribution Services (DDS)
middleware, it can be used for deploying in systems with
heterogeneous nodes. Additionally, it provides a functionality to
limit the maximum cap on resources consumed by monitoring
processes such that it reduces the effect on the availability of
resources for the applications.

Keywords- Distributed Monitoring; ARINC-653; and Data
Distribution Services.

I. INTRODUCTION
Autonomic distributed computing infrastructure imposes

requirements of consistency, synchronization, and security
over multiple nodes. Additionally, in enterprise domain,
there is a tremendous pressure to achieve quality of service
(QoS) objectives in all possible scenarios of the system
operation. To this end, an aggregate picture of the distributed
infrastructure should always be available to analyze and
to provide feedback for computing control commands if
needed. The desired aggregate picture can be achieved
through an infrastructure monitoring system that is exten-
sive enough to accommodate system parameters, application
performance, and application data structures.

The desired monitoring technique should also be cus-
tomizable for various types of applications and their wide
range of parameters. Autonomic management of distributed
systems requires an effective monitoring technique, which
can work in a distributed manner similar to the underlying
system and reports each event to the system administrator
with maximum accuracy and minimum latency. Further-
more, the monitoring system should not be a performance
burden or interfere with the applications executing in the
system. Also, the monitoring system should be robust and
should be able to identify the internal faults to isolate
the faulty component and correct it immediately. However,
typical distributed monitoring techniques suffer from syn-
chronization issues among the nodes, communication delay,
non deterministic nature of events, large amount and asyn-
chronous nature of measurements, and limited bandwidth.
All of these issues may result into inconsistent global view
of the infrastructure.

This paper describes a distributed monitoring approach
“RFDMon” that utilizes the concepts of OMG Data Dis-
tribution Services [1] for an efficient exchange of mea-
surements among the computing nodes. This monitoring
framework is built upon the ACM: ARINC-653 Component
Framework [2] and an open source DDS implementation,
Open splice [3]. The primary principles in design of the
proposed approach are static memory allocation for deter-
minism, spatial isolation between monitoring framework and
real applications for fault containment, specification, and
adherence to real time properties such as periodicity and
deadlines in monitoring framework.

Experimental results show that “RFDMon” has small
overhead on the computational resources of the system. It
also identifies the faults in infrastructure and in itself with
minimum delay, and reconfigures itself to resume the mon-
itoring of infrastructure without further delay. “RFDMon”
can be combined easily with a fault diagnosis module due
to its standard interfaces.



Currently, “RFDMon” is installed at Fermi Lab, Batavia,
IL for monitoring scientific clusters, which consist of 100 to
800 computing nodes [4]. This approach is utilized in data
processing within the Large Quantum Chromo Dynamics
(LQCD) project at Fermi Lab [4]. This data processing
is carried as analysis campaigns (scientific workflows) that
consists of an input dataset and a set of interdependent pro-
cessing steps (named as jobs). These jobs are executed over
large commodity computer clusters. These large clusters can
result in systematic failure if operated over a long continuous
period of time executing these analysis campaigns. Typical
execution time of a campaign may span several months and
it executes hundreds of data and computational intensive
parallel MPI Jobs that require several computational nodes
during its lifetime. A campaign can fail even by failure of a
single job. “RFDMon” is used by administrators to diagnose
job problems and failures in this complex environment and
quickly respond to the intermittent faults.

This paper is organized as follows. Preliminary concepts
of the proposed approach are presented in Section II. Related
distributed monitoring products are described in Section III
and detailed description of the proposed approach is given in
Section IV. Details of each sensor is presented in Section V
and a set of system monitoring experiments is described in
Section VI. The major benefits of the approach is highlighted
in Section VII and applications of the approach is described
in Section VIII. Conclusions are presented in Section IX.

II. PRELIMINARIES

The proposed monitoring approach “RFDMon” consists
of two major modules: Distributed Sensors Framework
and Infrastructure Monitoring Database. Distributed Sen-
sors Framework utilizes Data distribution services (DDS)
middle-ware standard for communication among the nodes
of distributed infrastructure. It uses Opensplice Community
Edition [3]. It executes DDS sensor framework on top of
ARINC Component Framework [5]. Infrastructure Monitor-
ing Database uses Ruby on Rails [6] to implement a web
service that is used to update the database with monitoring
data and to display the data on administrator web browser.
In this section, the primary concepts of DDS, ARINC-653,
and Ruby on Rails are briefly presented.

Data Distribution Services: Data Distribution Service
(DDS) specifications are defined by Object Management
Group [7] for communication in distributed real-time sys-
tems through publish-subscribe mechanism. This mechanism
overcomes the typical shortcomings of client-server model,
where client and servers are tightly coupled. Each message is
associated with a topic. In DDS, publishers and subscribers
are not coupled to each other. Publishers or subscribers
need only the name and definition of the data in order to
communicate. Publishers do not need any information about
the location or identity of the subscribers, and vice versa.

ARINC-653: ARINC-653 software specification has been
utilized in safety-critical real time operating systems (RTOS)
that are used in avionic systems and recommended for space
missions [8]. The specification specifies the OS interfaces

and its associated services to ensure spatial and temporal
separation among various applications for fault-containment
in integrated modular avionics [9]. Spatial partitioning en-
sures exclusive use of a memory region by an application. It
guarantees that a faulty process in a partition cannot corrupt
or destroy the data structures of other processes that are exe-
cuting in other partitions. This space partitioning is useful to
separate the low-criticality vehicle management components
from safety-critical flight control components in avionics
systems [2]. Temporal partitioning ensures sharing of com-
putational resources through fixed periodic schedule among
multiple applications. ARINC-653 Emulation Library [2]
(available to download from [10]) provides a UNIX based
implementation of ARINC-653 interface specifications. This
scheduling scheme guarantees that a partition will relinquish
the CPU after its execution duration has expired.

Ruby on Rails: Rails [6] is a web application develop-
ment framework that uses Ruby programming language [11].
Rails uses Model View Controller (MVC) architecture for
application development [12]. In “RFDMon”, a web service
is developed to display the monitoring data collected from
the distributed infrastructure. These monitoring data includes
the information related to clusters, nodes in a cluster, node
states, measurements from various sensors on each node,
MPI and PBS related data for scientific applications, web
application performance, and process accounting. Currently,
“RFDMon” is using MYSQL open source database. Other
databases (e.g., Sqlite, PostgreSQL, etc) can also be used as
per the support in Ruby on Rails. Schema information of
the database is shown in [13].

III. OTHER DISTRIBUTED MONITORING SYSTEMS
Various distributed monitoring systems have been devel-

oped by industry and research groups in past many years.
Ganglia [14], Nagios [15], Zenoss [16], and Nimsoft [17]
are a few most popular enterprise products developed for
monitoring distributed systems.

Ganglia [14] is developed upon the concept of hierarchi-
cal federation of clusters. In this architecture, multiple nodes
are grouped as a cluster which is attached to a module, and
then multiple clusters are again grouped under a monitoring
module. Nodes and applications utilize a multi-cast based
listen/announce protocol for sending their measurements to
all of the other nodes. The primary advantage of Gan-
glia is auto-discovery of the nodes, easy portability and
manageability, and aggregation of cluster measurements at
each node. Nagios [15] is developed upon plug-in based
agent/server architecture, where agents can report the ab-
normal events from the computing nodes to the server node
(administrators) through email, SMS, or instant messages.
Nagios consists of three components - Scheduler: This is the
administrator component that checks the plug-ins and take
corrective actions if needed. Plug-in: These small modules
are placed on the computing node, configured to monitor a
resource, and then send the reading to the “Nagios” server
module over SNMP interface. GUI: This is a web based
interface that presents the measurements from the system
through various colourful buttons, sounds, and graphs.



Zenoss [16] is a model-based monitoring solution that has
comprehensive and flexible approach of monitoring with an
extremely detailed GUI interface. It is an agentless mon-
itoring approach where central monitoring server collects
measurements from each node over SNMP interface through
ssh commands. In Zenoss, the computing nodes can be
discovered automatically and specified with their types (Xen,
VMWare, etc.) that ensures appropriate and complete mon-
itoring using pre-defined templates, thresholds, and event
rules. Nimsoft Monitoring Solution [17](NMS) offers a
light-weight, reliable, extensive, and GUI based monitoring
of the entire infrastructure. NMS uses a message BUS for
exchange of messages among the applications residing in
the infrastructure. These applications (or components) are
configured with the help of a software component (HUB)
and are attached to the message BUS. Monitoring action
is performed by small probes and the measurements are
published to the message BUS by software components
(ROBOTS) deployed over each managed device. NMS also
provides an Alarm Server for alarm monitoring and a GUI
portal to visualize the comprehensive view of the system.

These distributed monitoring approaches are significantly
scalable in number of nodes, responsive to changes at
the nodes, and comprehensive in number of parameters.
However, these approaches do not support capping of the
resource consumed by the monitoring framework, fault con-
tainment in monitoring unit, and expandability of the moni-
toring approach for new parameters in the already executing
framework. Additionally, these approaches are stand-alone
and are not easily extendible to associate with other modules
that can perform fault diagnosis for the infrastructure at
different granularity (application level, system level, and
monitoring level). Furthermore, they work in a server/client
or host/agent manner (except NMS) that requires direct
coupling of two entities, where one entity has to be aware
of the location and identity of the other entity.

Therefore, “RFDMon” utilizes the data distribution ser-
vice (DDS) methodology to report the events or monitor-
ing measurements from each node to a central node in a
decoupled manner. In “RFDMon”, all monitoring sensors
execute on the ARINC-653 Emulator [2]. This enables the
monitoring agents to be organized into one or more partitions
and each partition has a fixed periodic schedule to use
the processing resources (temporal partitioning). The pro-
cesses executing under each partition can be configured for
real-time properties (priority, periodicity, duration, soft/hard
deadline, etc.). Additionally, ARINC-653 uses spatial parti-
tioning [9] that ensures exclusive use of a memory region
by an ARINC partition and introduces fault containment
property in the monitoring framework. The details of the
approach are described in later sections of the paper.

IV. ARCHITECTURE OF THE FRAMEWORK
The proposed monitoring framework “RFDMon” is based

upon data centric publish subscribe communication mecha-
nism. Modules (or processes) in the framework are separated
from each other through concept of spatial and temporal lo-
cality as described in section II. Architecture of “RFDMon”

Figure 1. Architecture of Sensor Framework

is shown in Figure 1. The proposed framework has following
key concepts and components.
A. Sensors

Sensors are the primary component of the framework.
These are lightweight processes that monitor a device on
the computing nodes and read it periodically or aperiodi-
cally to get the measurements. These sensors publish the
measurements under a topic (described in next subsection)
to DDS domain. There are various types of sensors in the
framework which are described in section V.
B. Region

The proposed monitoring framework organizes the nodes
in regions (or clusters). Nodes can be homogeneous or
heterogeneous. Nodes are combined only logically. These
nodes can be located in a single server rack or on single
physical machine (in case of virtualization). However, phys-
ical closeness is recommended to combine the nodes in a
single region to minimize the unnecessary communication
overhead in the network.
C. Local Manager

Local Manager is a module that is executed as an agent on
each computing node of the monitoring framework. These
agents are executed on each node with knowledge about its
pre-defined region name. However, it is not provided with
any information related to other nodes or configuration of
the region. The primary responsibility of the local manager
is to set up sensor framework on the node.
D. Regional Leader

Among multiple local manager nodes that belongs to same
region, there is a local manager node which is selected as
“Regional Leader” for updating the monitoring database for
sensor measurements from each local manager. Regional
leader will also be responsible for updating the changes
in state (UP, DOWN, FRAMEWORK DOWN) of various
local manager nodes. Each local manager is supplied with
the pre-defined URLs to Ruby on Rails web service for
database updates and update is done over http interface using
“libcurl” library [18]. However, these URLs are used to
update the database only when a local manager is selected
as regional leader. Once a regional leader terminates, a
new leader will be selected for the region. Selection of the
leader is done by Global Membership Manager module as
described in Section IV-G.



E. Topics
Topics are the primary unit of information exchange in

DDS domain. Details about the type of topic (structure
definition) and key values (keylist) to identify the different
instances of the topic are described in interface definition
language (IDL) file. CORBA IDL files are used to promote
the interoperability among the monitoring frameworks de-
veloped in different programming languages (e.g., C, C++,
Java, etc.) using the same interface. Keys can represent
arbitrary number of fields in the topic. These topics are
categorized in following categories based upon their content.

MONITORING INFO: System resource and hardware
health monitoring sensors publish measurements under this
topic.

HEARTBEAT: Heartbeat Sensor uses this topic to publish
its heartbeat in the DDS domain to notify the framework that
the node is attached to the framework. All nodes which are
listening to HEARTBEAT topic can keep track the health
condition of other nodes in the framework through this topic.

NODE HEALTH INFO: When a Regional Leader node
(defined in Section IV-D) detects change in state (UP,
DOWN, or FRAMEWORK DOWN) of any other node by
observing the change in node’s heartbeat, it publishes a
message with NODE HEALTH INFO topic to notify all
other nodes regarding change in status of the node.

LOCAL COMMAND: This topic is used by the Regional
Leader to send the control commands to other local nodes
for START, STOP, or POLL the sensors.

GLOBAL MEMBERSHIP INFO: This topic is used for
communication between local nodes and Global Member-
ship Manager (defined in Section IV-G) for selection of
Regional Leader and for providing information related to
existence of the leader.

PROCESS ACCOUNTING INFO: Process accounting
sensor reads records from the process accounting system
and publishes the records under this topic.

MPI PROCESS INFO: This topic is used to publish the
execution state (STARTED, ENDED, KILLED) and MPI or
PBS information variables of MPI processes executing on
the computing node.

WEB APPLICATION INFO: This topic is used to pub-
lish the performance measurements of a web application that
contains information logged from the web service related to
average response time, heap memory usage, number of JAVA
threads, and pending requests inside the system.
F. Topic Managers

Topic Managers are classes that create subscriber or
publisher for a pre-defined topic. This publisher publishes
the data received from various sensors under the same topic
name. Subscriber receives data from the DDS domain under
the same topic name and delivers it to underlying application
for further processing.
G. Global Membership Manager

Global Membership Manager (GMM) module is re-
sponsible to maintain the membership of each node
for a particular region and for selection of a Regional
Leader. Once a local node comes alive, it first contacts

Figure 2. Architecture of Scientific Application Health Monitoring Sensor

the GMM module with node’s region name using topic
GLOBAL MEMBERSHIP INFO to get the information re-
garding Regional Leader. GMM module replies with the
name of Regional Leader (if leader exists) or assign the new
node as Regional Leader. GMM module updates the leader
information in file (“REGIONAL LEADER MAP.txt”) on
disk in colon separated format (RegionName:LeaderName).
When a local node sends message to GMM module that its
leader is dead, GMM module selects a new leader for that
region and replies to the Local Node with leader name.

This leader re-election functionality enables the fault tol-
erant nature in the framework with respect to regional leader
that ensures periodic update of the infrastructure monitoring
database with measurements even in case of leader failure.
The leader selection for the region is performed by a single
GMM module that ensures that there will be only one
leader of a region. Because the leader selection or re-
selection is performed by communication between only two
nodes, this process is unaffected by the size of the region.
Communication delay of message exchange in DDS domain
is the only factor that can delay the leader selection process.
Additionally, other more sophisticated algorithms can be
easily plugged into the framework by modifying the GMM
module for leader selection.

GMM module is executed through a wrapper executable
“GMM Monitor” as a child process. “GMM Monitor”
keeps track of execution state of the GMM module
and starts a fresh instance of GMM module if previ-
ous instance terminates due to some error. New instance
of the GMM module receives updated data from “RE-
GIONAL LEADER MAP.txt” file. It provides the fault
tolerant abilities in the framework with respect to GMM
module.

V. SENSOR IMPLEMENTATION

The proposed monitoring framework implements various
software sensors to monitor system resources, network re-
sources, node states, MPI and PBS related information, and
performance of web applications (see Table I).

These sensors are executed as a ARINC-653 process on
top of the ARINC-653 emulator [2]. All sensors on a node
are deployed in a single ARINC-653 partition on top of the
ARINC-653 emulator. The ARINC-653 emulator monitors
the deadline and schedules the sensors such that their pe-
riodicity is maintained. Furthermore, the emulator performs
static cyclic scheduling of the ARINC-653 partition of the



Sensor Name Period Description
CPU Utilization 30 seconds Aggregate utilization of all CPU cores on the machines.
Swap Utilization 30 seconds Swap space usage on the machines.
Ram Utilization 30 seconds Memory usage on the machines.

Hard Disk Utilization 30 seconds Disk usage on the machine.
CPU Fan Speed 30 seconds Speed of CPU fan that helps keep the processor cool.

Motherboard Fan Speed 10 seconds Speed of motherboard fan that helps keep the motherboard cool.
CPU Temperature 10 seconds Temperature of the processor on the machines.

Motherboard Temperature 10 seconds Temperature of the motherboard on the machines.
CPU Voltage 10 seconds Voltage of the processor on the machines.

Motherboard Voltage 10 seconds Voltage of the motherboard on the machines.
Network Utilization 10 seconds Bandwidth utilization of each network card.
Network Connection 30 seconds Number of TCP connections on the machines.

Heartbeat 30 seconds Periodic liveness messages.
Process Accounting 30 seconds Periodic sensor that publishes the commands executed on the system.
MPI Process Info -1 Aperiodic sensor that reports the change in state of the MPI Processes.

Web Application Info -1 Aperiodic sensor that reports the performance data of Web Application.
Table I

LIST OF MONITORING SENSORS

local manager. The schedule is specified in terms of a hyper
period, the phase and the duration of execution in that
hyper period [13]. Effectively, it limits the maximum CPU
utilization of the local managers.

Sensors are constructed with following attributes:
Name: Name of the sensor (e.g., UtilizationAggregatec-

puScalar).
Source Device: Name of the device to monitor for the

measurements (e.g., “/proc/stat”).
Period: Periodicity of the sensor (e.g., 10 seconds for

periodic sensors and −1 for aperiodic sensors).
Deadline: A sensor has to finish its work within a spec-

ified deadline. A HARD deadline violation is an error that
requires intervention from the underlying middle-ware while
a SOFT deadline violation results in a warning.

Priority: Sensor priority indicates the priority of schedul-
ing the sensor over other processes in to the system. In
general, normal (base) priority is assigned to the sensor.

Dead Band: Sensor reports the value only if the difference
between current value and previous recorded value becomes
greater than the specified sensor dead band. It reduces the
number of sensor measurements in the DDS domain if
sensor measurement is changing slightly.

Sensors support three types of commands for publishing
the measurement: START, STOP, and POLL. START com-
mand starts the already initialized sensor to start publishing
the sensor measurements. STOP command stops the sensor
thread to stop publishing the measurement. POLL command
tries to get the latest measurement from the sensor. Sensors
publish the data as per the predefined topic to the DDS do-
main (e.g., MONITORING INFO). Sensors are categorized
based upon their functionality as follows.

System Resource Utilization Monitoring Sensors:
These sensors monitor utilization of the system resources:
CPU, RAM, Disk, Swap, and Network. These sensors (pe-
riodic in nature), follow SOFT deadlines, contain normal
priority, and provide monitoring of system devices (e.g.,
/proc/stat) to collect the measurements. These sensors pub-
lish the measurements under MONITORING INFO topic.

Hardware Health Monitoring Sensors: These sensors
monitor health of the system hardware components: CPU
Fan Speed, CPU Temperature, Motherboard Temperature,

and Motherboard voltage. These sensors are periodic.Theses
follow soft deadlines, contain normal priority, and read
the measurements over Intelligent Platform Management
Interface (IPMI) interface [19]. These sensors publish the
measurements under MONITORING INFO topic.

Node Health Monitoring Sensors: Each local manager
executes a Heartbeat sensor that periodically sends its own
node name to DDS domain under topic “HEARTBEAT” to
inform other nodes regarding its existence in the framework.

Scientific Application Health Monitoring Sensor: This
Sensor logs the information in case of state change
(Started, Killed, Ended) of the processes related to sci-
entific applications and reports the data to the centralized
database. In the proposed framework, a wrapper application
(SciAppManager) is developed that can execute the real
scientific applications (e.g., SciAPP in Figure 2) internally
as a child process. MPI “run command” is issued to ex-
ecute SciAppManager application from master nodes in
the cluster (see Figure 2). SciAppManager writes the state
information of scientific application in a POSIX message
queue that exists on each node. Scientific application sensor
will listen on that message queue and publishes message to
the DDS domain under MPI PROCESS INFO topic.

Web Application Performance Monitoring Sensor:
This sensor keeps track of performance behaviour of the
web application executing over the node through the web
server performance logs written to a POSIX message queue
(different from SciAppManager). This sensor will listen on
that message queue and publishes the message to the DDS
domain under WEB APPLICATION INFO topic.

VI. EXPERIMENTS

A set of experiments have been performed to exhibit the
system resource overhead, fault adaptive nature, and respon-
siveness towards fault in the developed monitoring frame-
work. During these experiments, the monitoring framework
is deployed in a Linux environment (2.6.18-274.7.1.el5xen)
that consists of five nodes (ddshost1, ddsnode1, ddsnode2,
ddsnode3, and ddsnode4). Ruby on Rails based web service
and MYSQL database are hosted on ddshost1 node. These
experiments have been performed to measure the impact
of executing monitoring framework over the computational



Figure 3. CPU and RAM Utilization by the Sensor Framework at Nodes

Figure 4. State Transition of Nodes and Leaders of the Sensor Framework.

resources (e.g., CPU and RAM) of system and to display the
fault tolerant and self-configure properties of the framework
in case of failures in the framework itself.

In one of these experiments, all of the nodes (ddshost1,
and ddsnode1..4) are started one by one with a random
time interval. Once all the nodes have started executing
the framework, local manager on a few nodes are killed
through KILL system call. During this experiment, the CPU
and RAM consumption by local manager at each node is
monitored through “TOP” system command. Results from
the experiment are presented in Figures 3, 4, and 5.

Figure 3 describes the CPU and RAM utilization by
monitoring framework (local manager) at each node during
the experiment. It is evident from Figure 3 that CPU
utilization is mostly in the range of 0 to 1 percent with
occasional spikes. However, even in case of spikes, CPU
utilization is under ten percent. Similarly, RAM utilization
by the monitoring framework is less than even two percent.
These results clearly indicates that overall resource over-
head of the developed monitoring approach “RFDMon” is
extremely low. As mentioned earlier, it is possible to cap this
resource usage by specifying the hyper period and duration
of execution of the local manager within the hyper period.
However, due to space constraints this experiment is not
shown in the paper. More details are available in [13].

Transition of various nodes between states UP and
FRAMEWORK DOWN is shown in Figure 4. According
to the figure, ddshost1 is started first, then followed by
ddsnode1, ddsnode2, ddsnode3, and ddsnode4. ddshost1
is selected as the regional leader in the beginning. At
time sample 310 (approximately), local manager of host
ddshost1 was killed, therefore its state has been updated to
FRAMEWORK DOWN. Similarly, state of ddsnode2 and
ddsnode3 is also updated to FRAMEWORK DOWN once

Figure 5. CPU Utilization at node ddsnode1 during the Experiment

their local manager is killed on time sample 390 and 410
respectively. local manager at ddshost1 is again started at
time sample 440; therefore its state is updated to UP at the
same time. Figure 4 also represents the nodes which were
regional leaders during the experiment. According to the
figure, initially ddshost1 was the leader of the region, while
as soon as local manager at ddshost1 is killed at time sample
310 (see Figure 4), ddsnode4 is elected as the new leader of
the region (as per the procedure specified in Section IV-G).
Similarly, when local manager of the ddsnode4 is killed at
time sample 520 (see Figure 4), ddshost1 is again elected as
the leader of the region. From Figure 4, it is clearly evident
that as soon as there is a fault in the framework related to
the regional leader, a new leader is elected instantly without
any further delay. This specific feature of the monitoring
framework exhibit that it is robust with respect to failures
of the regional leader and it can adapt to the faults in the
framework instantly without delay.

Sensor framework at ddsnode1 was allowed to execute
during the complete experiment (see Figure 4) and no
fault was introduced in this node. The primary purpose of
executing this node continuously was to observe the impact
of introducing faults in the framework over monitoring
capabilities of the framework. In the most ideal scenario,
entire monitoring data of ddsnode1 should be reported to
the centralized database without any interruption even in
case of faults (leader re-election and nodes going out of the
framework). Figure 5 shows the CPU utilization of ddsnode1
from the centralized database as reported by regional leader
through CPU monitoring sensor from ddsnode1. According
to the Figure 5, monitoring data from ddsnode1 was col-
lected successfully during the entire experiment. Even in
case of Regional Leader re-election at time sample 310 and
520 (see Figure 4), only one or two (max) data samples
are missing from the database (see Figure 5). Henceforth,
it is evident that there is a minimal impact of faults in
the framework over the monitoring functionality of the
framework.

VII. BENEFITS OF THE APPROACH

“RFDMon” can monitor system resources, hardware
health, node availability, MPI job state, and application
performance data in a comprehensive manner. “RFDMon” is
easily scalable with the number of nodes because it is based
upon data centric publish-subscribe mechanism. Publish-
subscribe mechanism is extremely scalable with respect
to number of nodes. Also, in proposed framework, new
sensors can be easily added to increase the number of
monitoring parameters. It is fault tolerant with respect to
faults in the framework due to partial outage (if regional
leader or global membership manager terminates). It can



self-configure (Start, Stop, and Poll) the sensors and can be
applied in the heterogeneous environment. The major benefit
of using this framework is that the total resource consump-
tion by the sensors can be limited by applying ARINC-
653 scheduling policies and due to spatial isolation features
of ARINC-653 emulation, monitoring framework will not
corrupt the memory area or data structures of applications
in execution on the node. Additionally, framework has a
small computational overhead.

VIII. APPLICATION OF THE FRAMEWORK

The initial version of the proposed approach was com-
bined with a hierarchical workflow management system
in [20] to monitor the scientific workflows for failure
recovery. Another direct implementation of “RFDMon” is
presented in [21] where virtual machine monitoring tools
and a model based predictive controller were combined
with the proposed monitoring framework to manage the
multi-dimensional QoS data for a multi-tier web service.
An extended version of this paper is available as technical
report [13].

IX. CONCLUSION AND FUTURE WORK

In this paper, detailed design of “RFDMon” is presented.
“RFDMon” is a real-time and fault-tolerant distributed sys-
tem monitoring approach based upon data centric publish-
subscribe paradigm. Basic concepts of OpenSplice DDS,
ARINC-653, and Ruby on Rails are also described in the
paper. Additionally, it is shown that “RFDMon” can effi-
ciently and accurately monitor the system resource consump-
tion, system health, application performance variables, and
scientific application data structures with minimum latency.
Furthermore, fault tolerance and self configurable properties
of “RFDMon” is also demonstrated through experiments.

An administrator can easily find the location and pos-
sible causes of the faults in system by visualizing the
measurements. To make this fault identification and di-
agnosis procedure autonomic, we are developing a fault
diagnosis module that can detect or predict the faults in
the infrastructure by observing and co-relating the various
sensor measurements. Additionally, we are developing a self-
configuring hierarchical control framework (extension of our
work in [22]) to manage multi-dimensional QoS parameters
in multi-tier web service environment.

X. ACKNOWLEDGEMENT

R. Mehrotra and S. Abdelwahed are supported for this
work from NSF I/UCRC CGI Program grant number IIP-
1034897 and The Engineer Research and Development
Center (ERDC) at Vicksburg, MS. A. Dubey is supported
in part by Fermi National Accelerator Laboratory, operated
by Fermi Research Alliance, LLC under contract No. DE-
AC02-07CH11359 with the United States Department of
Energy (DoE), and by DoE SciDAC program under the
contract No. DOE DE-FC02-06 ER41442. We are grateful
to the help and guidance provided by T. Bapty, S. Neema, J.
Kowalkowski, J. Simone, D. Holmgren, A. Singh, N. Seenu
and R. Herber.

REFERENCES

[1] Catalog of omg data distribution service (dds) spec-
ifications. http://www.omg.org/technology/documents/
dds spec catalog.htm [Nov 2010].

[2] Abhishek Dubey, Gabor Karsai, and Nagabhushan
Mahadevan. A component model for hard real-time
systems: Ccm with arinc-653. Software: Practice and
Experience, 41(12):1517–1550, 2011.

[3] Opensplice dds community edition. http://www.
prismtech.com/opensplice/opensplice-dds-community.

[4] Fermilab lattice gauge theory computational facility.
http://www.usqcd.org/fnal/ [Nov 2010].

[5] Arinc specification 653-2 : Avionics application soft-
ware standard interface part 1required services. Tech-
nical report, Annapolis, MD, December 2005.

[6] Ruby on rails. http://rubyonrails.org/ [Sep 2011].
[7] Object management group. http://www.omg.org/ [Nov

2010].
[8] Nuno Diniz and Jose Rufino. Arinc 653 in space.

In Proceedings of the DASIA 2005 ”Data Systems in
Aerospace” Conference, May/June 2005.

[9] A. Goldberg and G. Horvath. Software fault protection
with arinc 653. In Aerospace Conference, 2007 IEEE,
pages 1 –11, March 2007.

[10] Model-based software health management. https://wiki.
isis.vanderbilt.edu/mbshm/index.php/Main Page [Nov
2011].

[11] Ruby. http://www.ruby-lang.org/en/ [Sep 2011].
[12] J. Deacon. Model-view-controller (mvc) architec-

ture. JOHN DEACON Computer Systems Development,
Consulting & Training, 2005.

[13] Abhishek Dubey Rajat Mehrotra and Sherif Abdelwa-
hed. Rfdmon: A real-time and fault-tolerant distributed
system monitoring approach. Technical Report ISIS-
11-107, Institute for Software Integrated Systems, Van-
derbilt University, Oct 2011.

[14] Ganglia. http://ganglia.sourceforge.net/ [Sep 2011].
[15] Nagios. http://www.nagios.org/ [Sep 2011].
[16] Zenoss. http://www.zenoss.com/ [Sep 2011].
[17] Nimsoft unified manager. http://www.nimsoft.com/

solutions/nimsoft-unified-manager [Nov 2011].
[18] Curl. http://curl.haxx.se/ [Nov 2011].
[19] Intelligent platform management interface (ipmi). http:

//www.intel.com/design/servers/ipmi/ [Sep 2011].
[20] Pan Pan, Abhishek Dubey, and Luciano Piccoli. Dy-

namic workflow management and monitoring using
dds. In 7th International Workshop on Engineering
of Autonomic & Autonomous Systems (EASe), 2010.

[21] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed,
and Weston Monceaux. Large scale monitoring and
online analysis in a distributed virtualized environment.
Engineering of Autonomic and Autonomous Systems,
IEEE International Workshop on, 0:1–9, 2011.

[22] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed,
and Asser Tantawi. A Power-aware Modeling and
Autonomic Management Framework for Distributed
Computing Systems. CRC Press, 2011.

http://www.omg.org/technology/documents/dds_spec_catalog.htm 
http://www.omg.org/technology/documents/dds_spec_catalog.htm 
http://www.prismtech.com/opensplice/opensplice-dds-community
http://www.prismtech.com/opensplice/opensplice-dds-community
http://www.usqcd.org/fnal/
http://rubyonrails.org/
http://www.omg.org/
https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page
https://wiki.isis.vanderbilt.edu/mbshm/index.php/Main_Page
http://www.ruby-lang.org/en/
http://ganglia.sourceforge.net/
http://www.nagios.org/
http://www.zenoss.com/
http://www.nimsoft.com/solutions/nimsoft-unified-manager
http://www.nimsoft.com/solutions/nimsoft-unified-manager
http://curl.haxx.se/
http://www.intel.com/design/servers/ipmi/
http://www.intel.com/design/servers/ipmi/

	Introduction
	Preliminaries
	Other Distributed Monitoring Systems
	Architecture of the framework
	Sensors
	Region
	Local Manager
	Regional Leader
	Topics
	Topic Managers
	Global Membership Manager

	Sensor Implementation
	Experiments
	Benefits of the approach
	Application of the Framework
	Conclusion and Future Work
	Acknowledgement

