
Contents

1 A Power-Aware Modeling and Autonomic Management Frame-
work for Distributed Computing Systems 1
Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Asser N. Tantawi

1.1 Introduction . 2
1.2 Background and Related Research 3

1.2.1 Power consumption in computing systems 3
1.2.2 Power consumption modeling 4
1.2.3 Power management techniques 5
1.2.4 Control based management of computing systems . . . 7
1.2.5 Queuing models for multi-tier systems 8
1.2.6 Kalman filters . 10

1.3 Our Approach . 11
1.4 Case Study: A Multi-Tier Enterprise System 11
1.5 Model Identification . 13
1.6 System Modeling . 14

1.6.1 Power consumption . 14
1.6.2 Request characteristics 16
1.6.3 Webserver characteristics 16
1.6.4 Impact of maximum usage of bottleneck resource . . . 19
1.6.5 Impact of limited usage of bottleneck resource 21

1.7 Power Management using Predictive Control 25
1.7.1 Power consumption and response time management . 27
1.7.2 Performance analysis 29

1.8 Conclusion and Discussions 31

Bibliography 32

1

DRAFT

2

DRAFT

Chapter 1

A Power-Aware Modeling and
Autonomic Management Framework
for Distributed Computing Systems

Rajat Mehrotra

Electrical and Computer Engineering, Mississippi State University, Miss. State,
MS

Abhishek Dubey

Institute for Software Integrated Systems, Vanderbilt University, Nashville,
TN

Sherif Abdelwahed

Electrical and Computer Engineering, Mississippi State University, Miss. State,
MS

Asser N. Tantawi

IBM Thomas J. Watson Research Center, Yorktown Heights, NY

1.1 Introduction . 2
1.2 Background and Related Research . 3

1.2.1 Power consumption in computing systems . 3
1.2.2 Power consumption modeling . 4
1.2.3 Power management techniques . 4
1.2.4 Control based management of computing systems 7
1.2.5 Queuing models for multi-tier systems . 8
1.2.6 Kalman filters . 9

1.3 Our Approach . 11
1.4 Case Study: A Multi-Tier Enterprise System . 11
1.5 Model Identification . 13
1.6 System Modeling . 14

1.6.1 Power consumption . 14
1.6.2 Request characteristics . 15
1.6.3 Webserver characteristics . 16
1.6.4 Impact of maximum usage of bottleneck resource 19
1.6.5 Impact of limited usage of bottleneck resource 21

1.7 Power Management using Predictive Control . 25
1.7.1 Power consumption and response time management 27
1.7.2 Performance analysis . 29

1.8 Conclusion and Discussions . 31
Bibliography . 32

1

DRAFT

2 Book title goes here

1.1 Introduction

According to two related recent studies [1, 2], energy consumption cost
contributes to more than 12% of overall cost of data center and is the fastest
growing component of the operating cost. Same studies also point out that
data centers consume only 15% energy in actual processing, while rest of
the energy is used by the cooling equipment. Cooling infrastructure adds a
significant overhead to the operating cost in terms of power consumption as
well as system management. In addition, according to [2], the data center
industry accounts for the 2% of global CO2 emission which is at the same
level as the emission introduced by the aviation industry. Therefore, it is clear
that improving power consumption will have a significant influence on the
cost effectiveness, reliability, and environmental impact of current and future
distributed systems. Consequently, extensive research effort has been recently
directed towards developing power efficient computing systems, also referred
as “Power-Aware” systems.

Power awareness requires identifying the main factors contributing to power
consumption as well as the mechanisms that can be used to control (reduce)
this consumption, as well as the effect of using these control mechanisms on
other quality of service (QoS) aspects of the system [10]. Adjustments in power
consumption need to be made within the tolerance limit of system QoS. Typi-
cally, power management requires expert administrator knowledge to identify
workload pattern, system behavior, capacity planning, and resource allocation.
However, with increasing size and complexity of computing systems, effective
administration is not only tedious but also error-prone and in many cases
infeasible. Autonomic computing [32] is a new strategy aiming at replacing
manual management with a more systematic approach based on well-founded
approaches in AI and systems theory. Such approaches rely on a model that de-
fines the relationship among the system performance, various measurements,
and operating parameters of the system. An effective system model is therefore
essential to achieve the power-awareness in computing systems infrastructure.

In this chapter, a model-based power management framework is presented
for distributed multi-tier systems. This framework implements a predictive
control approach to minimize power consumption in a representative system
while keeping the QoS parameters at the desired level. The proposed approach
starts by experimentally identifying the various system parameters that im-
pact system performance. The dependency relationships among identified pa-
rameters are determined and then used to develop a mathematical model
structure of the system. Offline regression techniques are used to estimate
the parameters of the power consumption model while an online Bayesian
method (exponential extended Kalman Filter) is used to estimate the state of
the system modeled as an equivalent limited processor sharing queue system.
Experiments show that the developed model captures the system behaviorDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 3

accurately in varying environmental conditions with small error variance. Fi-
nally, we apply a predictive control approach to optimize power consumption
while maintaining a desired level of response time at a negligible overhead
for a representative multi-tier system. Some preliminary research and results
have been previously published in [43] and [20].

This chapter is organized as follows. Preliminary concepts related to the
proposed approach and related research work is presented in Section 1.2. Sys-
tem setup is discussed in 1.4 and identified system parameters are presented
in section 1.5. The system modeling approach is outlined in Section 1.6. The
predictive controller is presented in Section 1.7 and a case study related to
managing power consumption and response time using the developed system
model and controller is described in section 1.7.1.

1.2 Background and Related Research

1.2.1 Power consumption in computing systems

Most modern electronic components are built using the CMOS (Com-
plementary Metal Oxide Semiconductor) technology. Advances made in the
last decade have led to increased clock rates and narrower feature length of
the CMOS transistor. This in turn has allowed chip developers to stack more
transistors on the die, increasing the available computational power. However,
these advancements have come at the cost of increased power consumption.

At the level of a transistor, the power consumption can be attributed to
three factors. These factors are applicable to all electronic systems of the com-
puter, including CPU, memory and even the hard drive. In the hard drive,
there are some other mechanical factors that lead to increased power con-
sumption. We will discuss them later in this section.

1. Switching (Dynamic) Power Consumption: Working principle of a CMOS
FET (Field Effect Transistor) is based upon modulation of the electric
charge stored by the capacitance between the gate and the body of the
transistor. This capacitor actually charges and discharges during one
cycle i.e. turning the switch on and then off. Effectively, this causes a
drain on power, which goes towards charging the capacitor. This power
loss is also called the switching or the dynamic loss.

2. Leakage (Static) Current Power Consumption : This is due to leakage
current flowing through the transistor while being in OFF state. Pre-
viously static power consumption was negligible due to low number of
transistors per inch and high resistance of wires used on chip. Currently,
power loss due to leakage current is 40% of the total power budget. Low-
ering the voltage across the chip increases the leakage current by makingDRAFT

4 Book title goes here

transistors too leaky, which in turn increases the power consumption
of the microprocessor [48]. Additionally, high operating temperature of
microprocessor increases the leakage current power consumption signif-
icantly.

3. Short Circuit Power Consumption: Small amount of power consumption
is present in CMOS due to short circuit current on short circuit path
between supply rails and ground.

Dynamic power loss has been the main component of the total power loss
in past. However, lately percentage of static power loss is increasing as feature
sizes have been decreasing.

1.2.2 Power consumption modeling

A non intrusive but accurate real time power consumption model is pre-
sented in [21], which generates power model with help of AC power mea-
surements and user level utilization metrics. It provides power consumption
model with high accuracy for both temporal and overall power consumption in
the servers. A microprocessor level power consumption estimation technique
is described in [26] that first examines the hardware performance counters
and then uses relevant counters to estimate the power consumption through
sampling based approaches. Another approach to model hard disk power con-
sumption is shown in [54] that extracts performance information from the
hard disk itself and predicts the power model. Additionally, it shows that the
modeling of idle periods is an important step in predicting the power con-
sumption model of a hard disk. Another approach for power consumption
modeling in embedded multimedia application is presented in [24] that takes
various image, speech, and video coding algorithms into account with supplied
frequency and voltage to predict the power consumption behavior. A highly
scalable power modeling approach is described in [29] for high performance
computing systems by linearly extrapolating the power consumed by a sin-
gle node to complete large scale system using various electrical equipment.
A micro architecture level temperature and voltage aware performance and
leakage power modeling is introduced in [36] that shows variation of leakage
current and energy consumption with varying temperature. An approach for
accurately estimating power consumption in embedded systems is presented
in [45] while running a software application and considering pipeline stall,
inter-instructions effect, and cache misses. A power modeling approach for
smart phones is described in [34] that models the power consumption with
help of in-built voltage sensors inside the battery and its discharge behavior.
Another approach of CMOS power short circuit dissipation is presented in [11]
that helps to model the short circuit power dissipation for the configurations
when it represents the significant amount of power consumption.DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 5

1.2.3 Power management techniques

CPU power management
Main focus of the academia and industry has been target the power con-

sumption of microprocessors. Various methods have been proposed to control
the power consumption in microprocessors through logical and system level
techniques.

1. Dynamic voltage and frequency scaling (DVFS): In this method, the
voltage across the chip and clock frequency of the transistor is varied
(increased or decreased) to lower the power consumption and maintain
the processing speed at same time. This method is helpful in preventing
the computer systems from an overheating that can result into system
crash. However, the applied voltage should be kept at the level suggested
from the manufacturer to keep the system stable for safe operation.
DVFS reduces processor idle time by lowering the voltage or frequency,
while continue to process assigned task in permissible amount of time
with minimum possible power consumption. This reduces the dynamic
power loss.

2. Dynamic power switching (DPS): In contrast to DVFS, DPS tries to
maximize the system idle time that in turn forces processor to make
transition to idle or low power mode for reducing power consumption.
The only concern is to keep track of the wakeup latency for the processor.
It tries to finish the assigned tasks as quickly as possible so that rest of
the time can be considered as idle time of the processor. It only reduces
leakage current power consumption while increases the dynamic power
consumption due to excessive mode switching of the processor.

3. Standby leakage management (SLM): This technique is close to the
strategy used in DPS by keeping the system in low power mode. How-
ever, this strategy comes in to the effect when there is no application
running in the system and the system just needs to take care of its re-
sponsiveness towards user related wake up events (e.g. GUI interaction,
key press, or mouse click).

RAM power management
In general, CPU is considered as the dominant component for power con-
sumption in a computing system. However, recent research [18, 42] shows
that random access memory can also be a significant contributor to system
power consumption. Therefore, it should be a target for managing the power
consumption specially in case of small size computers. Currently, memory
chips with multiple power modes (e.g. active, standby, nap, and power down)
are available in the market and can be used for designing an efficient mem-
ory power management technique. The primary idea behind multiple modes
of memory operation is that different amount of power is consumed inside a
memory in different states. Memory can execute a transaction only in activeDRAFT

6 Book title goes here

state but can store the data in all of the states. The only concern while uti-
lizing multiple modes is to consider the latency in terms of time and power
consumption while switching the modes. Similar to CPU power management,
there are primarily two approaches for memory power management through
utilizing mode: static and dynamic. In case of static method, memory is kept
at a low power mode for all the time duration of system operation, while for
dynamic method memory is placed in a low power mode when its idle time is
more than the threshold time. Another approach of memory power manage-
ment is described in [60] that combines multiple hardware components on a
single chip to create smaller and power efficient components.

A memory power consumption management technique is described in [16]
that concentrates on DRAM modules for energy optimizations by putting
them in low power operating modes during idle periods without paying very
high penalties. Another approach for power consumption memory manage-
ment is shown in [18] which changes the power state of memory with the
change in load on the memory subsystem modules. A feedback control theory
based approach for managing memory power consumption is presented in [42]
that puts memory chips in low power mode while maintaining the desired la-
tency and improves memory power efficiency by 19.3%. An Operating system
scheduler based approach is presented in [31] where OS directs the memory
module to be in low power mode by keeping track of all the processes running
on the system. A comprehensive approach of DRAM power management is
shown in [25] that combines the benefit of low power mode of modern DRAMs,
history based adaptive memory schedulers, and proposes an approach of de-
laying the issuance of memory commands. A faster and accurate framework
for analyzing and optimizing microprocessor power dissipation at the architec-
tural level is described in [12] that validates the power requirement in design
stage of the circuit.

Another application level power management technique is described in [51]
that solves the cost-aware application placement problem and to design an
algorithm that minimizes the cost and migration costs while meeting the per-
formance requirements. Another two step approach of power aware processor
scheduling is presented in [55] that first performs load balancing among the
multiple processors and then applies DVFS to control the speed of the proces-
sors to minimize the power consumption. A proactive thermal management
approach in data centers is described in [35] which optimizes the air compres-
sor duty cycle and fan speed to prevent heat imbalance in cooling the data
center while minimizing the cooling cost. Additionally, it reduces the risk of
damage to the data center due to excessive heating in the data center. An ap-
proach of saving power consumption in servers is introduced in [49] in which
NAND flash based disk caches is extended to replace PCRAM.

Miscellaneous power consumption

According to [21], miscellaneous components are responsible for large fraction
(30% - 40%) of power consumption inside a computing system that consists
of disk, I/O peripherals, network, and power supplies. The primary contribu-DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 7

tors in power consumption are disk and power supplies. Device vendors have
started implementing their power management protocols to ensure that these
devices can run in a low performance mode. For example, hard disks typically
have a timer that measures the time of inactivity and spins the drive down,
if possible, to save power.

1.2.4 Control based management of computing systems

FIGURE 1.1: Elements of a general control system

Control theory offers a promising methodology to automate key system
management tasks in distributed computing systems (DCS) with some im-
portant advantages over heuristic or rule-based approaches. It allows us to
systematically solve a general class of dynamic resource provisioning prob-
lems using the same basic control concepts, and to verify the feasibility of
a control scheme before deployment on the actual system. Control theory
provides a systematic and well-founded way to design an automated and effi-
cient management technique through continuous observation of system state
as well as variation in the environment input, and apply control inputs so as
to maintain the system within a desired stable state region corresponding to
the desired QoS requirements.

Research in real-time computing has focused on using classical feedback
control as the theoretical basis for performance management of single-CPU
applications [23]. These reactive techniques observe the current application
state and take corrective action to achieve a specified performance metric,
and have been successfully applied to problems such as task scheduling [14],
CPU provisioning [39, 13, 37], bandwidth allocation and QoS adaptation in
web servers [8], multi-tier websites [38], load balancing in e-mail and file servers
[47, 38], and CPU power management [40, 50]. In more complex control prob-
lems, a pre-specified plan, the feedback map, is inflexible and does not adapt
well to constantly changing operating conditions. Moreover, classical controlDRAFT

8 Book title goes here

is not a suitable option for managing computing systems exhibiting hybrid
and non-linear behavior, and where control options must be chosen from a
finite set. Therefore, researchers (including the authors) have studied the use
of more advanced state-space methods adapted from model predictive con-
trol [41] and limited lookahead supervisory control [15] to manage such ap-
plications [7, 6, 30]. These methods offers a natural framework to accommo-
date the above-described system characteristics, and take into account multi-
objective non-linear cost functions, finite control input sets and dynamic op-
erating constraints while optimizing application performance. The autonomic
approach proposed in [30] describes a hierarchical control based framework to
manage the high level goals for a distributed computing system by continuous
observation of the underlying system performance. Additionally, the proposed
approach is scalable and highly adaptive even in case of time varying dynamic
workload patterns.

A typical control system consists of the components shown in Fig. 1.1.
System Set Point is the desired state of the system in consideration that a
system tries to achieve during its operation. Control Error is the difference
between the desired system set point and the measured output during system
operation. Control Inputs are the set of system parameters, which are applied
to the system dynamically for changing the performance level of the system.
The Controller Module takes observation of the measured output and provides
the optimal combination of different control inputs to achieve the desired set
point. Estimator Module estimates the unknown parameters for the system
based upon the previous history using statistical methods. Disturbance input
can be considered as the environment input that affects the system perfor-
mance. Target system is the system in consideration, while System Model is
the mathematical model of the system, which defines the relation between
its input and output variables. A Learning Module takes measured output
through the monitor and extracts information based on the statistical meth-
ods. System State typically define the relationship between control or input
variables and performance parameters of the system.

1.2.5 Queuing models for multi-tier systems

Multi-tier enterprise systems are composed of various components that
typically include web (http) servers, application servers, and database servers,
subjected to a stream of web requests. Each component performs its function
by servicing requests from upper tiers and may submit sub-requests to lower
tiers. In order to avoid overloading, system administrators usually limit the
number of concurrent requests served at each tier that is called “concurrency
limit” for that particular tier [17].

In general, a web request has to wait in a queue for computational resources
before it can enter a tier. For example, if the number of maximum threads
allowed in the application (app) server is capped to limit concurrency, a new
request will wait until an existing running request releases a thread. Clearly,DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 9

the total service time of the enterprise system is directly affected by the queu-
ing policy at each tier. Therefore, an approximate queuing model can be used
to capture the behavior of such systems. Thereafter, it can be used to measure
the average number of web requests in the queue and the average time spent
there. During the progression of this work, we have considered four different
queuing models. For a detailed description, readers are referred to [33]. These
are:

M/M/1: This is the most basic queuing model where both service time
and inter-arrival time are exponentially distributed.

M/G/1 FCFS: The M/G/1 queue assumes that the inter-arrival time is
exponentially distributed, but the service time has a general distribution. This
is a more realistic model of web service behavior since web requests exhibit a
wide variance in their service requirements. The scheduling discipline is first
come first served (FCFS). Thus, this model assumes that only one request is
serviced at a time, hence restricting the concurrency level to one.

M/G/1 PS: This is an M/G/1 queue with processor sharing (PS) schedul-
ing. In such a model, as a web request arrives, it is able to share the server
concurrently with all preceding, existing requests. The computational resource
is shared equally by all the requests in a round-robin manner, though with an
extremely short slice. When not using the server, a request waits in the queue
for its turn to get a slice of the server. In other words, the concurrency level is
basically unlimited. The mean analysis of this system is rather simple. In fact,
the closed form expression for the mean response time is similar to that of the
M/M/1 queue. The only catch is that this model can only be used to study
a web server realistically if we can ensure that the total number of requests
in the system do not increase above the maximum concurrency limit. Thus, if
the bottleneck resource utilization is light to moderate, we can use this queue
to model web servers.

M/G/1 LPS(k): This is an M/G/1 queue with Limited Processor Shar-
ing(LPS) scheduling discipline. The parameter k models the concurrency level.
In such a model, the first k requests in the queue share the server and the
rest of the requests wait in the queue. As requests complete their service and
depart from the system, awaiting requests are admitted to be among the k
concurrently sharing the server in a processor sharing manner. When k = 1
the queue becomes a FCFS queue, and when k = ∞ it becomes a PS queue.
The LPS(k) is a realistic queuing model for systems that have a limit on the
maximum number of concurrently executing jobs. This limit is typically en-
forced on all web servers and databases. Even in an operating system, the
maximum number of processes that can execute concurrently is capped. (e.g.
32000 for Linux kernel 2.6). The analysis of the LPS queue is rather diffi-
cult [57, 56] and online prediction for response time and other variables can
become intractable.DRAFT

10 Book title goes here

1.2.6 Kalman filters

Kalman filter [27] is an optimal recursive data processing algorithm, which
estimates the future states of linear stochastic process in presence of measure-
ment noises. This filter is optimal in the sense that it minimizes the mean
of squared error between the predicted and actual value of the state. It is
typically used in a predict-and-update loop where knowledge of the system,
measurement device dynamics, statistical description of system noise, and the
current state of the system is used to predict the next state estimate. Then
the available measurements and statistical description of measurement noise
is used to update the state estimate.

Two assumption are made before applying Kalman filter for state esti-
mation; first, the system in consideration is described by linear model, or if
the system is non-linear, the system model is linearized at the current state
(extended Kalman Filter), and second, the measurement and system noise
are Gaussian and white respectively. Whiteness indicates that noise is not
correlated with time and it has equal impact on all operating modes. Due to
simple approach with optimal results, Kalman filter has been applied in wide
areas of engineering application including motion tracking, radar vision, and
navigation systems.

Woodside et al. [52] applied extended Kalman (EK) filtering techniques
to the estimation of parameters of a simple closed queueing network model.
The population size was approximated by a continuous variable in order to fit
the EK mathematical framework. A demonstration of the use of the EK filter
to track parameters such as think time and processing time parameters of a
time-varying layered queueing system is provided in [59]. The EK filter uses
observations of average response time as well as utilization of three resources:
a web processor, a database processor, and a disk. In [53], the technique of
using an EK filter in conjunction with layered queueing models is employed to
control the number of allocated servers so as to maintain the average response
time within a given range.

The work on applying EK filtering to estimating performance model pa-
rameters is extended in [58] where an estimation methodology is sought. Mod-
els such as separable closed queueing network models, open queueing network
models, and layered models are considered. Parameters may have lower and
upper bounds. Tracking periodic deterministic as well as random perturbation
of one or more parameters is demonstrated experimentally.

Recently, Kalman filter has been applied to provision CPU resources in
case of virtual machines hosting server applications [28]. In [28], the feedback
controllers based on Kalman filter continuously detect CPU utilization and
update the allocation correspondingly for estimated future workloads. Over-
all, an average of 3% performance improvement in highly dynamic workload
conditions over a three-tier Rubis benchmark web site deployed on a virtual
Xen cluster was observed .

In this chapter, we describe our implementation of an exponential KalmanDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 11

filter that we used to predict the computational nature of the incident requests
over web server by predicting the service time S and delay D of a request by
observing the current average response time of the incident request and request
arrival rate on the web server. This filter uses an M/G/1 PS approximate
queuing model as the system state equation and considers variation in S and
D at previous approximation to estimate the S and D at next sample time.
This filter is exponential because it operates on the exponential transformation
of the system state variables. This transformation allows us to enforce the ≥ 0
constraint on the state variables. Such a constraint are not possible in typical
Kalman filter implementations. Further details are provided in Section 1.6.3.

1.3 Our Approach

A great amount of work has been done in the past for enabling power
awareness within computing systems as described earlier at both hardware
and software level. However, it has been difficult to implement those in real
systems either due to their implementation complexity or inefficiency to cap-
ture the system dynamics completely with multi-dimensional QoS objectives
in fluctuating environment. Our current work addresses both the modeling
and management problems. First we identify the system dynamics accurately
with respect to controllable parameters in off-line as well as on-line manner.
Second we utilize the system model within a model predictive controller to
achieve the desired objectives. The developed predictive controller can accom-
modate multi-dimensional QoS objectives easily just by learning the variation
of that objective with respect to system state, control inputs to the system,
and environmental changes. The novelty of our approach lies in the collection
of state-of-the-art techniques to monitor and model the system performance
with scalable nature of the predictive controller with respect to new QoS ob-
jectives for performance optimization.

1.4 Case Study: A Multi-Tier Enterprise System

Multi-tier enterprise systems are composed of various components that
typically include web (http) servers, application servers, and database servers.
Each component performs its function with respect to web requests and for-
wards the result to the next component (tier). Generally, system administra-
tors limit the number of concurrent requests served at each tier that is calledDRAFT

12 Book title goes here

TABLE 1.1: Physical machine configuration

Name Cores Description RAM DVFS VMs
Nop01 8 2 Quad core 1.9GHz

AMD Opteron 2347 HE
8GB No Nop04,Nop07 (Moni-

toring Server)
Nop02 4 2.0 GHz Intel Xeon

E5405 processor
4GB No Nop05,Nop08 (Client

Machines)
Nop03 8 2 Quad core 1.9GHz

AMD Opteron 2350
8GB Yes Nop06,Nop09 (Appli-

cation Server)
Nop10 8 2 Quad core 1.9GHz

AMD Opteron 2350z
8GB Yes Nop11,Nop12

(Database Server)

“concurrency limit” for that particular tier [17]. In order to experiment and
validate our work we used the following system setup.

System Setup: Our system consists of four physical nodes: Nop01, Nop02,
Nop03 and Nop10. Names Nop04 to Nop09 are reserved for the virtual ma-
chines. Table 1.1 summarizes configuration of physical machines. It also shows
the virtual machines (VM) running on all physical machines and the roles
played by those VMs. All VM run same version of Linux (2.6.18−92.el5xen).
Client machines are used to generate request load. Application servers run
the open source version of IBM’s J2EE middleware, Web Sphere Applica-
tion Server Community Edition (WASCE). Database machines run MySQL.
Nop03 and Nop10 both have Dynamic Voltage and Frequency Scaling (DVFS)
capability that allows administrator to tune the complete physical node or its
individual cores for desired performance level. Xen Hypervisor (http://www.xen.org/)
was used to create and manage physical resources (CPU and RAM) for cluster
of Virtual Machines (VMs) on these physical servers.

We used Daytrader [3], as our representative application. Daytrader comes
with a client that can drive a trade scenario that allows users to monitor their
stock portfolio, inquire about stock quotes, buy or sell stock shares, as well as
measure the response time for benchmarking. Out of the box, this application
puts most of the load on the database server. To emulate business enterprise
loads in highly dynamic environment, we modified the main trade scenario
servelet to allow us to shift the processing load of a request from the database
node to the computing node. In the modified daytrader application, the web
server generates a random symbol for each request from the symbol set of
available stock names. Web server performs database query based on that
symbol and returns the result of the query to the client. Also, it computes
the integral sum of first N integers, where N is supplied through the client
workload.

Due to limitation of workload pattern allowed (only uniform) in Daytrader
client, we used the Httperf [5] benchmarking application client tool in all of
our experiments. It provides flexibility to generate various workload patterns
(Poisson, deterministic, and uniform) with numerous command line options
for benchmarking. We modified Httperf to print the performance measure-
ments of our interest periodically while running the experiment. At the end ofDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 13

each sample period, modified version of Httperf prints out the detailed perfor-
mance statistics of the experiment in terms of total numbers of requests sent,
minimum response time, maximum response time, average response time, total
number of errors with types, and response time for each request.

Monitoring: Specially developed python scripts and Xenmon [22] were
used as monitoring sensors on all virtual and physical machines. These sensors
monitor CPU, disk and RAM utilization of the nodes (physical and virtual)
throughout the system execution and report data after each sampling interval
as well as at the end of the experiment. System time was synchronized using
NTP. The jitter in monitoring sensors across all servers was controlled using
a PID controller as described in [19]. Modifications to the web server code
allowed us to monitor web server performance in terms of max threads active
in web server, response time measured at first tier and at the database tier
for each incident request, and average queue size in the web server after each
sampling interval. The client returns the measured maximum, minimum, and
average response time during the sampling period. We specified 100 seconds
as the timeout value for a request response for all of the experiments as it
provides enough time to web server for serving a most of the web requests
even at the maximum utilization of bottleneck resource. Any outstanding
request after the timeout was logged as an error. It also returns the number of
errors with their type (client timeout, connection reset, etc.) in each sample.
Measurement of power consumption of a physical node was done with help of
a real time watt meter.

1.5 Model Identification

As a result of different experiments described in Section 1.6, an extensive
list of system parameters have been identified. This list is shown in Table 1.2.
It contains three different types of parameters: Control Variables, State Vari-
ables, and Performance Variables. Control variables are those which can be
controlled at runtime to tune the system towards the desired performance
objectives. State variables describe the current state of system under obser-
vation. Performance variables are used to quantify QoS level of the system.
Additionally, state variables are divided into two different categories: Observ-
able and Unobservable. Observable variables can be measured directly through
sensors, system calls or application related API, while unobservable variables
cannot be measured directly, instead they are estimated within certain ac-
curacy using existing measurements through various techniques at runtime.
During our experiments, we used specially written sensors or different tools to
measure observable variables, while unobservable variables (e.g. service time
and delay) are estimated through the exponential Kalman filter described in
Section 1.6.3.DRAFT

14 Book title goes here

TABLE 1.2: System parameters

Control Variables State Variables Performance
Variables

CPU Frequency CPU Utilization (Observable) Average Response
Time

Cap on Virtual machine re-
sources.

Memory Utilization (Observ-
able)

Power consump-
tion in Watts

Load distribution percent-
age (in a cluster)

Service Time (Unobservable) percentage of Er-
rors

Number of Service
Threads

Queue waiting Time (Unobserv-
able)

Number of Virtual Ma-
chines in Cluster

Queue Size on each server (Un-
observable)
Number of Live Threads (Ob-
servable)
Peak Threads available in a
JAVA VM (Observable)

1.6 System Modeling

An accurate system model derivation is necessary to run a computing sys-
tem efficiently in power saving environment. The derived model will depict
the exact system behavior in terms of various performance objectives with
changes in operating environment and controllable parameters. For identifying
an accurate system model of our representative distributed multi-tier system
(see section 1.4), extensive experiments have been performed and results have
been analyzed. During these experiments, we analyzed the multi-tier system
performance with respect to system utilization, various work load profiles,
bottleneck resource utilization, and its impact on system performance. Addi-
tionally, we calculated work factor of our client requests with help of linear
regression techniques described in [46]. Details of the modeling efforts are
described below.

1.6.1 Power consumption

As a first step towards system model identification, the mutual relationship
among physical CPU core utilization, CPU frequency, and power consumption
of the physical server was identified. This work is an extension of the power
modeling effort described in [20] to model the system power consumption
with greater accuracy that can be utilized effectively in real time physical
server deployment. Details of the experiment can be found in our technical
report [44]. Fig. 1.2 shows the power consumed on one of the physical server
Nop03 with respect to the aggregate CPU core usage and CPU frequency. AnDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 15

FIGURE 1.2: Power consumption on Nop03 vs CPU frequency and aggre-
gate CPU core utilization. This plot uses linear interpolation to create the
surface. Note, power consumption decreases as the frequency decreases.

extensive experiment was performed over physical server Nop03 with help of a
specially written script, which exhausted a physical CPU core through floating
point operations in increments of 10% utilization independent of the current
CPU frequency. With multiple instances of this utility, all eight physical CPU
core of the Nop03 server were loaded in incremental manner for different
discrete values of CPU frequencies. CPU frequency across all of the physical
cores (1 to 8) was kept same during each step. The consumed power was
measured with help of a real time watt meter. Based on this experiment, we
created a regression model for power consumption at physical machine with
respect to CPU core frequency and aggregate CPU utilization. After analysis
of the results (and reconfirmation with several other experiments across other
nodes), it was observed that power consumption model of a physical machine
is non-linear because power consumption in these machines depends not only
upon the CPU core frequency and utilization, but also depends non-linearly on
other power consuming devices e.g. memory, hard drive, CPU cooling fan etc.
As a result, a look-up table with near neighbor interpolation was found to be the
best fit for aggregating the power consumption model of the physical machine.
Combination of CPU frequency, and aggregate CPU core usage of the physical
machine is used as a key of the lookup table to access the corresponding power
consumption value. This aggregate power model was utilized further for the
controlled experiments described in section 1.7 for predicting the estimated
power consumption by the physical server at a particular setting of CPU core
frequency and aggregate physical CPU utilization.DRAFT

16 Book title goes here

FIGURE 1.3: Work factor plot for request characteristic

1.6.2 Request characteristics

Httperf benchmark application code was modified to allow the generation
of client requests to the web server, Nop06, at a pre-specified rate provided
from a trace file. At Nop06, each request performed certain fixed floating
point computation on the web server and then performed some random select
query on the database machine. To better evaluate the nature of requests,
we identified the number of CPU cycles needed to process the request using
linear regression [46].

During any sampling interval T , if ρ is virtual CPU utilization, f is CPU
frequency, Wfc is the work factor of the request (defined in terms of CPU clock
cycles), λ is request rate, and ψ is system noise. Then, ρ∗f = λ∗Wfc+ψ. The
average work factor was computed to be 2.5X104 CPU cycles with coefficient
of variation = 0.5. The variation in Wfc shows the variation in the nature of
final request based upon the chosen symbol for query. Result of the experiment
is shown in Fig. 1.3. Due to similar computational nature of all the requests
incident on the web server in a given sample time, we can approximate the
total computation time of all the requests, which in turn gives the average
response time of the requests in a given sample time. We can use this average
response time information to check the status of QoS objective (response time)
in the web server.

1.6.3 Webserver characteristics

We aimed to identify the web server bottle necks and estimate the uncon-
trolled performance to compare later with the performance under the predic-
tive controller. In this experiment, Nop09 was the virtual machine (physicalDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 17

FIGURE 1.4: Http Workload based upon World Cup Soccer(WCS-98) ap-
plied to the web server

machine Nop03) running the first tier of Daytrader application. Virtual CPU
of Nop09 was pinned to a single physical core and 50% of the physical core
was assigned to Nop09 as maximum available computational resource. Phys-
ical memory was also limited to 1000MB for Nop09. Nop11 was configured
as database using similar CPU and memory related operating settings over
physical server Nop10. To simulate real time load scenario, all CPU cores of
physical server Nop03 (except the CPU core hosting Nop09) were loaded
approximately 50% with help of utility scripts described in Section 1.6.1.
MAX JAVA threads, a parameter that sets the maximum concurrency limit
was configured as 600 in the web server application. All CPU cores in phys-
ical server Nop03 were operating at their maximum frequency 2.0 Ghz. The
request trace (see Fig 1.4) in this experiment was based on the user request
traces from the 1998 World Cup Soccer(WCS-98) web site [9]. Figure 1.14
shows the response time and power consumption as measured from this ex-
periment. It also shows the CPU utilization at web server and aggregate CPU
utilization of the physical machine. Notably, we saw that the CPU utilization
at web server (Nop09CPU without controller) and aggregate CPU utilization
of the physical machine (Nop03CPU without controller if we zoom in the line)
follows a trend which is similar as the rate of requests made to the first tier.
The power consumption curve was almost flat. We also noticed that the web
server response time is correlated to the resident requests (system queue size)
in the web server system (not shown here, but described in [44]).

Estimating Bottleneck Resource

To determine the bottleneck resource, we used a queuing approximation
for a two tier system as shown in Fig. 1.5. λ is the incoming throughput of
requests to an application. ρ is the utilization of the bottleneck resource. S is
the average service time on the bottleneck resource. D is the average delay.
T is the average response time of a request. The average waiting time for a
request is W = T − S −D. We define a queue model with state vector [S;D]
and observation vector as [T].DRAFT

18 Book title goes here

FIGURE 1.5: A queuing model for the two-tier system.

An exponential Kalman filter (KF) was used to estimate the system state
as mentioned earlier. It is important to note that we can approximate the
system as a M/G/1/∞ PS queue if the system has no bottleneck. In the pres-
ence of bottleneck, the system utilization (not necessarily CPU) will approach
unity. At that time, the system will change to the LPS queue model. However,
as mentioned earlier, it is difficult to build a tractable model for LPS queu-
ing systems. Hence, we just identify the operating regions where the system
changes the mode between two queuing models and analyze the system in the
Infinite PS queue region only.

The KF equations, written in the term of exponentially transformed vari-
ables, [x1 ∈ <;x2 ∈ <] s.t. S = exp(x1) and D = exp(x2) are as follows.
Note that this transformation ensures S,D ∈ <+: For a given timed index

of observation, k, the equations

(
exp(x̂1k)

exp(x̂2k)

)
=

(
exp(x1k−1)
exp(x2k−1)

)
+N(0, Q)

and T = exp(x1k) ∗ (1/(1− λk ∗ exp(x1k))) + exp(x2k) + V (0, R) define the
state update dynamics and observation. N and V are Gaussian process and
measurement noises with mean zero and covariances Q and R respectively.
One can verify that these equations described the behavior of a M/G/1 PS
queue. Here, predicted bottleneck utilization is given by ρ̂k = λk*exp(x1k).
Additionally, the Kalman filter does not update its state when the predicted
bottleneck resource utilization becomes more than 1.

Figure 1.6 shows results of the off-line analysis of data generated through
experiment 1.6.3 with help of Kalman filter described in current section. Ac-
cording to Fig. 1.6(sub-figure 1), the developed exponential Kalman filter
tracks service time S and delay D at web server perfectly with low error
variance as the experiment (section 1.6.3) progresses. Additionally, as per
sub-figure 2, Kalman filter tracks bottleneck utilization as similar to CPU
utilization of the system. However, we noticed that sometime, the bottle-
neck utilization might saturate at 1 without the CPU utilization reaching
that value. In those cases, we discovered that the number of available systemDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 19

FIGURE 1.6: Offline Exponential Kalman filter output corresponding to
the results from section 1.6.3. Service time and delay are in millisecond range.
Response time is specified in seconds.

threads acted as the bottleneck. According to sub-figure 3, predicted response
time from the Kalman filter Tpred and actual response time T also very close
to each other, which indicates efficiency of the Kalman filter. Efficiency of the
Kalman filter indicate that the developed filter is able to capture the response
time dynamics of the web server system perfectly that will be used in on-line
manner with the predictive control framework in next sub-section.

1.6.4 Impact of maximum usage of bottleneck resource

We aimed then to observe the affect of high bottleneck resource usage on
system performance. Our test setup contains daytrader application which is a
multi-threaded java based enterprise application hosted on Web Sphere Appli-
cation Server Community Edition (WASCE) that listen on port number 8080
for incoming http requests. This daytrader application serves the incomingDRAFT

20 Book title goes here

FIGURE 1.7: Impact of max utilization of bottleneck Resource on perfor-
mance from section 1.6.4. MAX Thread =500.

requests through creating a new child JAVA thread or through existing JAVA
thread if available in pool of free threads. A newly arrived http request for
daytrader application is handed over to the newly created or free child thread
for further processing. This child thread rejoins the pool of free threads once it
finishes the processing. A limit on maximum number of created JAVA threads
can be imposed in the web server that can also be considered as the maximum
concurrency limit of the system. In case of unavailability of a free thread due
to already achieved maximum thread limit and empty pool of free threads,
newly arrived http request has to wait for thread availability that impacts
the application performance severely in terms of response time. Therefore, we
chose the settings that made the number of available threads as the system
bottleneck.DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 21

We performed various experiments with different setting for Max JAVA
Threads. This parameter sets the maximum number of threads that can be
used for request processing. Based on our observation, there are typically
90 more system threads which are not accounted under this cap. Fig. 1.7
shows the results for the one experiment with max threads set to 500. This
figure shows that at maximum utilization of the bottleneck resource, system
performances decrease significantly and response time from the web server
becomes unpredictable. Furthermore, this is the region, where the system
transitions from a PS queue to a LPS queue system.

Once the system reaches the max utilization of the bottleneck resources,
it restricts entry for more requests into the system resulting into max uti-
lization of the incoming system queue which in turn results in rejection of
the incoming client requests from the server. Therefore, to achieve predefined
QoS specifications, system should never be allowed to reach the maximum
utilization of bottleneck resource. Additionally, this boundary related to max
usage of bottleneck resource can also be considered as “Safe Limit” of system
operation.

1.6.5 Impact of limited usage of bottleneck resource

Next we observed the web server performance when the bottleneck resource
utilization varies from minimum to maximum and back to minimum. This type
of study provides knowledge regarding web server performance if bottleneck
resource utilization is lowered from maximum limit through a controller that
maintains the QoS objective of the multi-tier system.

The configuration settings for this experiment was same as experiment 1.
MAX number of JAVA threads for experiment is 600. The client request-trace
profile used for this experiment is shown in Fig. 1.8 subfigure 5. According
to the results shown in the same figure (Fig. 1.8), system utilization (sub-
figure 1) and performance in terms of response time (sub-figure 4) follows
the trend of applied client request profile (sub-figure 6). We can also see the
sudden jump in size of server queue (sub-figure 3), which indicates contention
of computational resource among all of the pending requests inside the system.
Sudden increase in RAM utilization is due to the increase in thread utilization
of the system. Additionally, from the comparison of request rate and response
time plot in Fig. 1.8, it is apparent that by lowering the system utilization and
client load on the web server, web server can be brought back to state, where
it can restore QoS objective of the system that can be consist of minimizing
the system queue size and server response time.

Kalman Filter Analysis. Results of the experiment were analyzed with
the help of Kalman filter described in section 1.6.3 and results of the analysis
are shown in Fig 1.9. According to Fig. 1.9, the defined exponential Kalman
filter tracks service time and delay at web server quite well with low variance
as the experiment progresses. One can notice the regions where the bottleneck
resource utilization approaches unity but the CPU utilization is less than one.DRAFT

22 Book title goes here

Upon further investigation of those time samples, the bottleneck resource was
found to be the maximum number of Java threads available in web server.
This limit can be changed by the ‘MAX JAVA Threads’ configuration setting.
The goal of any successful controller design for performance optimization of
the system will be to drive the system to work in the stable region (where
the bottleneck resource utilization is less than unity). During the experiment,
when predicted utilization of the bottleneck resource is more than one, Kalman
filter does not update its states.

DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 23

FIGURE 1.8: Web server behavior while limiting the use of bottleneck re-
source from section 1.6.5.DRAFT

24 Book title goes here

FIGURE 1.9: Offline KF Analysis of the results from Fig. 1.8 of section 1.6.5.
Service time and delay are in milliseconds. Response time is specified in sec-
onds.

DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 25

1.7 Power Management using Predictive Control

FIGURE 1.10: Elements of the applied predictive control framework

This section describes the implementation of an online predictive controller
that uses the kalman filter and the queuing model identified in previous section
(see Figure1.10). This controller is similar to the L0 Controller described
in [30] and predicts the aggregate response time of the incident requests and
the estimated power consumption during the next sample time (look-ahead
horizon N) of the system based on different possible combinations of control
inputs (CPU core frequency). It optimizes the system behavior in terms of QoS
objectives by continuous observation of the underlying system and choosing
the best control input for the system in next sample interval.

System Variables. Although there are a large number of system pa-
rameters listed in section 1.6, we have chosen a small set of most important
parameters for our predictive controller to show the performance of our mod-
eling approach. The chosen control input is the CPU core frequency due to its
impact on the system performance in multiple dimensions for response time
of the system and power consumption. System queue size and response time
and power consumption were the chosen state variables as they are the typical
performance variables in web service industry used to define a typical multi-
dimensional service level agreement (SLA). Other experiments (reported in
detailed report [44]) indicate that the higher value of application queue rep-
resents contention in computational resources of the application and total
response time value indicates system’s capability process the requests lying
in system queue in a timely manner. Therefore, we try to minimize the ap-
plication queue size and total response time as one of the component in cost
function J (described later in this section).DRAFT

26 Book title goes here

Plant Model. The queuing model identified in the previous section was
used to estimate the state of the managed system.

Controller Model. In order to combine the power consumption quality
of service and the predicted response time, the controller uses a different
internal system model. The controller model uses the estimated system state,
predicted response time and predicted power consumption to make the system
decisions. The system state for this experiment, x(t), at time t can be defined
as set of system queue q(t) and response time r(t), that is, x(t) = [q(t); r(t)].
The queuing system model is given by the equation: q̂(t + 1) = max{q(t) +

(λ̂(t+ 1)− α(t+1)

Ŵf
) ∗ T, 0} and r̂(t+ 1) = (1 + q̂(t+ 1)) ∗ Ŵf

α(t+1) , where at time

t, q(t) is the queue level of the system, λ(t) is the arrival rate of requests,
r(t) is the response time of the system, α(t) is a scaling factor defined as
u(t)/umax where u(t) ∈ U is the frequency at time t (U is the finite set
of all possible frequencies that the system can take), umax is the maximum
supported frequency in the system, Ŵf is the predicted average service time
(work factor in units of time) required per request at the maximum frequency.
Online Kalman filter estimates the service time Ŝt of the incident request
at current frequency u(t), which is scaled against the maximum supported

frequency of the system to calculate the work factor (Ŵf = Ŝt ∗ u(t)
umax

). E(t)
is the system power consumption measured in watts at time t.

Estimating Environment Inputs. The estimation of future environ-
mental input and corresponding output of the system is crucial. In this ex-
periment, an autoregressive moving average model was used as estimator of
the environmental input as per following equation. λ(t + 1) = β ∗ λ(t) + γ ∗
λ(t − 1) + (1 − (β + γ)) ∗ λ(t − 2), where β and γ determines the weight on
the current and previous arrival rates for prediction.

Control Algorithm and Performance Specification: In this work
we use a limited look ahead controller algorithm, which is a type of model
predictive control. Starting from a time t0, the controller solves an opti-
mization problem defined over a predefined horizon (t = 1...N) and chooses
the first input u(t0) that minimizes the total cost of operating the system
J in future prediction horizon. Fomally, the chosen control input u(t0) =

arg minu(t)∈U (
∑t=t0+N
t=t0+1 J(x(t), u(t))). During this work, we limited the hori-

zon to N = 2 as there is a significant computation cost associated with a
longer horizon.

The cost function, J , at time t, is the weighted conjunction of drift of
system state x(t), (x(t) = [q(t); r(t)]) from the desired set point xs, of the
system state (xs = [q∗, r∗] where q∗ = desired maximum queue size, r∗ =
desired maximum response time) and power consumption E(t) (desired power
consumption is 0). Formally, J(t) = Q ∗ ‖x(t)− xs)‖ + R ∗ ‖E(t)‖, where Q
and R are user specified relative weights for the drift from the optimal system
state xs and power consumption E(t), respectively. The power consumption
E(t) is predicted with the help of lookup table generated in section 1.6.1 basedDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 27

upon the current frequency of the CPU core and aggregate system utilization
of the physical server.

1.7.1 Power consumption and response time management

This section uses the concepts introduced in the earlier sections for devel-
oping a control structure to manage server power consumption while main-
taining the predefined QoS requirement of minimum response time under a
time varying dynamic workload for daytrader application hosted in virtual-
ized environment(see section 1.4). Following sections will give details of these
experiments.

Experiment Settings: Experimental settings and incoming request pro-
files were kept similar to Section 1.6.3 for direct comparison between the web
server performance with and without the controller implementation. A local
monitor running on the on the VM (Nop09) hosting web server collected, pro-
cessed, and reported performance data after every SAMPLE TIME (30 sec-
onds) to the controller running on the physical host machine (Nop03). These
performance data includes average service time at web server (computation
time at application tier as well as query time over database tier), average
queue size (average resident request into the system) of the system during
the time interval of SAMPLE TIME, and request arrival rate. The average
queue size of the system is measured based on the total resident request in
the system at previous sample, (plus) total incident request into the system,
and (minus) total completed requests from the system in the current sample
duration.

System State for Predictive Control: We used the exponential Kalman
filter described earlier in section 1.6.3 to track the system state online. The
two main parameters received from the filter are the current service time S
and predicted response time Tpred. These values are then plugged into the
model described in the previous section. The power model described in Sec-
tion 1.6.1 was used to estimate the system (physical node of web server)
power consumption. With help of these system and power model, the pre-
dictive controller provides the optimal configuration of the system in terms
of CPU core frequency. Performance of the online controller directly depends
upon the accuracy of Kalman filter estimation of the parameters of the web
server application model and the power consumption model of the physical
system.

For this experiment, we chose optimal system state set point to be xs =
[q∗, r∗] where q∗ = 0 and r∗ = 0, which shows our inclination towards keep-
ing system queue and response time both minimum. Q and R (user specified
relative weights for cost function) were chosen as 10000 and 1 respectively
to penalize the multi-tier system a lot more for increment in queue size and
response time compared to the increment in power consumption. Addition-
ally, look ahead horizon value N is 2 for the current experiment. Request
forecasting parameters β and γ were equal to 0.8 and 0.15 respectively to putDRAFT

28 Book title goes here

FIGURE 1.11: Web server behavior with controller as per section 1.7.1:
sampling period=30 seconds.

maximum weight on the current arrival rate to calculate future arrival request
rate.

Results from the experiment are shown in Fig. 1.11 and 1.14, while plots
of the estimates from the online Kalman filter are shown in Fig 1.13. Addi-
tionally, direct comparison of the response time statistics and power consump-
tion from section 1.6.3 and 1.7.1 are shown in figure 1.14. Validation of our
power consumption model defined in section 1.6.1 is done by comparing the
power consumption estimated by predictive controller against actual power
consumption reported by real time watt meter (see figure 1.12).

Observations from Figure 1.11 and Figure 1.14: The aggregate CPU
utilization and memory utilization (sub-figure 1) of web server and database
tier are shown in Fig. 1.11. Nop03 CPU core frequencies during the experiment
is shown in Fig. 1.11 (sub figure 2) and java thread utilization of the web server
is shown in sub-figure 3. sub-figure 4 shows the queue size of the web server
through the method described in section 1.7. The most interesting plot inDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 29

(a) Predicted and actual power consump-
tion in web server from section 1.7.1

(b) Error in predicting power consumption
compared to actual in section 1.7.1

FIGURE 1.12: Comparison of power consumption for actual Vs predicted
through predictive controller in section 1.7.1.

figure 1.11 is sub-figure 2, which shows the change in frequency of the CPU
core from the controller to achieve predefined Qos requirements based upon
the control steps taken by observing the system state and estimating the future
environmental inputs. After direct comparison of sub-figure 2 and sub-figure
1 from Figure 1.11, we can see that Nop03 CPU core frequency is changed as
the incident request rate at web server changes. Additionally, controller chose
1.2 Ghz frequency for the CPU core until there was some sudden increase or
decrease in the incident request rate. Furthermore, controller does not change
the frequency of the core too often, even when the incident request rate is
changing continuously, which shows the minimal disturbance in the system
operation due to predictive controller. The power consumption plot for No03
is shown in fig 1.14(sub-figure 3), while Statistics (max and min) of observed
response time at web server are shown in Figure 1.14 (sub-figure 1 and 2).

1.7.2 Performance analysis

According to the Fig. 1.13, online Kalman filter tracks average response
time of the incident requests and bottleneck utilization with high accuracy.
The estimated service time of the incident requests by the Kalman filter shows
minimal variation. According to sub-figure 3, predicted response time from the
Kalman filter Tpred and actual response time T are also very close to each
other, which indicates efficiency of the Kalman filter. The controlled version
runs at a lower frequency most of the times, which results into considerable
amount of power saving (18%) over a period of four hours of experiment
(fig 1.14 sub-figure 3) compared to the baseline experiment shown in sec-
tion 1.6.3. The controller changes the frequency of the CPU core at very few
occasions, but it is able to identify the sudden increase in the incident request
rate which reflects adaptive nature of the controller in case of dynamic load
conditions.

According to Fig. 1.14 (sub-figure 1 and 2), even after the presence of a
local controller and slow running system (lower frequency), response times at
web server is in the similar range in both of the cases. It shows that con-
troller while managing to decrease power consumption does not affect QoSDRAFT

30 Book title goes here

FIGURE 1.13: Online exponential Kalman filter output corresponding to
the experiment from section 1.7.1 (figure 1.11 and 1.14). Service time and
delay are in millisecond range. Response time is specified in seconds.

objectives of the system negatively. Furthermore, it is visible that there is
negligible memory and CPU overhead due to the controller (Fig. 1.14 sub-
figure 4). The overhead in virtual CPU utilization over web server Nop09
can mostly be attributed to the lower physical core frequency. According to
figure 1.12, the power model described in section 1.6.1, estimates the power
consumption in the physical machine Nop03 quite well with only 5% average
error in prediction that indicates its effectiveness. Additionally, Java thread
utilization is less in case of controller, which indicates that even after slowing
down the system, incident requests are getting served in time without much
contention of computational resources. Furthermore, we found out that the,
mean server queue statistics is also in the same range for both of the cases
(details about mean queue statistics in the no controller case are available
in [44]).

Observations in previous paragraph indicate that the current system model
captures the dynamics of the multi-tier web server (daytrader) well. Addi-
tionally, the system model uses typical control inputs, state variables, and
performance measurements of the multi-tier web service domain for achieving
QoS objectives that makes proposed framework suitable for any multi-tier web
service system.DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 31

FIGURE 1.14: Comparison of of results with controller 1.7.1 and without
controller 1.6.3: Sampling period=30 seconds. Std deviation for all response
measurements=0.02 seconds (without controller), 0.019 seconds(with con-
troller)

1.8 Conclusion and Discussions

We have presented a simple and novel approach to develop models with
low variance for multi-tier enterprise systems. We showed that the developed
model can be integrated with a predictive control framework for dynamically
changing the system tuning parameters based on the estimated time varying
workload. According to the results shown in section 1.7.1, the developed sys-
tem model in terms of Kalman filter tracks the system performance on-line
with high accuracy. Additionally, the proposed power consumption model of
the system used by the controller predicts the overall physical server powerDRAFT

32 Book title goes here

consumption well (95% accurate). Using this model we showed that we can op-
timize system performance and achieve 18% reduction of power consumption
in four hours of experiment in single server without affecting the response time
too much. Furthermore, the experimental results (CPU and RAM consump-
tion with and without the controller) indicates that the proposed approach
has low run-time overhead in terms of computational and memory resources.
We further plan to extend this framework and validate its performance over
a cluster of multi-tier computing systems in hierarchical fashion as described
in [30].

Enormous research has been done by research industry and academia to
make computing system infrastructures power aware by applying power man-
agement policies. These policies include hardware redesign, application level
controller, efficient cooling system and shutting down the unused servers in a
data center. Furthermore, these days virtualization technologies are also used
for saving the infrastructure and operating costs of the computing infras-
tructure. Virtualization enables usage of idle CPU cycles by multiple servers
while sharing the hardware resources at same time to reduce the overall power
consumption of the system and savings in hardware cost and hosting space.
Due to increased power consumption in data centers, there is tremendous
need for profiling of data centers with respect to hot spots, air conditioning,
and active server usage. Gradually, data center vendors are taking best prac-
tices to increase the efficiency of their infrastructure. These best practices
include identifying the power consumption in components with respect to im-
pact on performance, enabling the power awareness features, appropriately
sized server farms, shutting down unused servers, and removing the unused
old servers from the infrastructure [4]. Shutting down the unused servers and
installation of an efficient cooling system is easy to accomplish while other
methods, which need careful observation of system behavior with changes in
environment, are complex and need a skilled architect to design the power
efficient policies that can be applicable for various scenarios. In conclusion,
it is not necessary to replace the existing hardware with a new power-aware
hardware, instead a significant amount of power saving can be achieved easily
by employing power aware application (system) controllers and policies on the
existing systems.

Bibliography

[1] http://www.gartner.com/it/page.jsp?id=1368614.

[2] http://www.gartner.com/it/page.jsp?id=1442113.

[3] http://cwiki.apache.org/GMOxDOC20/daytrader.html.DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 33

[4] http://www.thegreengrid.org/Global/Content/white-papers/

Five-Ways-to-Save-Power.

[5] httperf documentation. Technical report, HP, 2007.

[6] S. Abdelwahed, N. Kandasamy, and S. Neema. Online control for self-
management in computing systems. In Proc. RTAS, pages 365–375, 2004.

[7] S. Abdelwahed, S. Neema, J. Loyall, and R. Shapiro. A hybrid con-
trol design for QoS management. In Proc. IEEE Real-Time Syst. Symp.
(RTSS), pages 366–369, 2003.

[8] T.F. Abdelzaher, K.G. Shin, and N. Bhatti. Performance guarantees
for web server end-systems: a control-theoretical approach. Parallel and
Distributed Systems, IEEE Transactions on, 13(1):80–96, Jan 2002.

[9] M. Arlitt and T. Jin. Workload characterization of the 1998 world
cup web site. Technical Report HPL-99-35R1, Hewlett-Packard Labs,
September 1999.

[10] Manish Bhardwaj, Rex Min, and Anantha Chandrakasan. Power-aware
systems, 2000.

[11] L. Bisdounis, S. Nikolaidis, O. Koufolavlou, and C.E. Goutis. Modeling
the cmos short-circuit power dissipation. In Circuits and Systems, 1996.
ISCAS ’96., ’Connecting the World’., 1996 IEEE International Sympo-
sium on, volume 4, pages 469 –472 vol.4, May 1996.

[12] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Ar-
chitecture, 2000. Proceedings of the 27th International Symposium on,
pages 83 – 94, 2000.

[13] A. Cervin, J. Eker, B. Bernhardsson, and K. Arzen. Feedback-feedforward
scheduling of control tasks. J. Real-Time Syst., 23(1–2), 2002.

[14] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik. Feedback–
feedforward scheduling of control tasks. Real-Time Syst., 23(1/2):25–53,
2002.

[15] S. L. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in su-
pervisory control of discrete event systems. IEEE Trans. Autom. Control,
37(12):1921–1935, December 1992.

[16] V. Delaluz, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin.
Memory energy management using software and hardware directed power
mode control. Technical report, 2000.

[17] Yixin Diao, Joseph L. Hellerstein, Sujay Parekh, Hidayatullah Shaikh,
Maheswaran Surendra, and Asser Tantawi. Modeling differentiated ser-
vices of multi-tier web applications. MASCOTS, 0:314–326, 2006.DRAFT

34 Book title goes here

[18] Bruno Diniz, Dorgival Guedes, Wagner Meira, Jr., and Ricardo Bianchini.
Limiting the power consumption of main memory. In Proceedings of the
34th annual international symposium on Computer architecture, ISCA
’07, pages 290–301, New York, NY, USA, 2007. ACM.

[19] Abhishek Dubey et al. Compensating for timing jitter in computing sys-
tems with general-purpose operating systems. In ISROC, Tokyo, Japan,
2009.

[20] Abhishek Dubey, Rajat Mehrotra, Sherif Abdelwahed, and Asser
Tantawi. Performance modeling of distributed multi-tier enterprise sys-
tems. SIGMETRICS Performance Evaluation Review, 37(2):9–11, 2009.

[21] Dimitris Economou, Suzanne Rivoire, and Christos Kozyrakis. Full-
system power analysis and modeling for server environments. In In Work-
shop on Modeling Benchmarking and Simulation (MOBS, 2006.

[22] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. Xenmon: Qos
monitoring and performance profiling tool. Technical report, HP Labs,
2005.

[23] J. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control
of Computing Systems. Wiley-IEEE Press, 2004.

[24] Yu Hu, Qing Li, and C.-C.J. Kuo. Run-time power consumption mod-
eling for embedded multimedia systems. In Embedded and Real-Time
Computing Systems and Applications, 2005. Proceedings. 11th IEEE In-
ternational Conference on, pages 353 – 356, 2005.

[25] I. Hur and C. Lin. A comprehensive approach to dram power manage-
ment. In High Performance Computer Architecture, 2008. HPCA 2008.
IEEE 14th International Symposium on, pages 305 –316, 2008.

[26] Russ Joseph, Margaret Martonosidepartment, and Electrical Engineer-
ing. Run-time power estimation in high performance microprocessors.
In In International Symposium on Low Power Electronics and Design,
pages 135–140, 2001.

[27] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME Journal of Basic Engineering, (82 (Series
D)):35–45, 1960.

[28] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand.
Self-adaptive and self-configured cpu resource provisioning for virtual-
ized servers using kalman filters. In ICAC ’09: Proceedings of the 6th
international conference on Autonomic computing, pages 117–126, New
York, NY, USA, 2009. ACM.DRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 35

[29] S. Kamil, J. Shalf, and E. Strohmaier. Power efficiency in high perfor-
mance computing. In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1 –8, 2008.

[30] N. Kandasamy, S. Abdelwahed, and M. Khandekar. A hierarchical op-
timization framework for autonomic performance management of dis-
tributed computing systems. In Proc. 26th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS), 2006.

[31] Delaluz Sivasubramaniam Kandemir, V. Delaluz, A. Sivasubramaniam,
N. Vijaykrishnan, and M. J. Irwin. Scheduler-based dram energy manage-
ment. In In Proceedings of the 39th Conference on Design Automation,
pages 697–702. ACM Press, 2002.

[32] Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-
puting. Computer, 36:41–50, January 2003.

[33] Leonard Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-
Interscience, 1975.

[34] Z. Qian Z. Wang R. P. Dick Z. Mao L. Zhang, B. Tiwana and L. Yang.
Accurate online power estimation and automatic battery behavior based
power model generation for smartphones. In Proc. Int. Conf. Hard-
ware/Software Codesign and System Synthesis, 2010.

[35] Eun Lee, Indraneel Kulkarni, Dario Pompili, and Manish Parashar.
Proactive thermal management in green datacenters. The Journal of
Supercomputing, pages 1–31, 2010. 10.1007/s11227-010-0453-8.

[36] Weiping Liao, Lei He, and K.M. Lepak. Temperature and supply volt-
age aware performance and power modeling at microarchitecture level.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 24(7):1042 – 1053, 2005.

[37] Liu, X. Zhu, S. Singhal, and M. Arlitt. Adaptive entitlement control
of resource containers on shared servers. In Proc. 9th IFIP/IEEE Int’l
Symp. Integrated Network Management (IM), 2005.

[38] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online
data migration with performance guarantees. In FAST ’02: Proceedings
of the 1st USENIX Conference on File and Storage Technologies, page 21,
Berkeley, CA, USA, 2002. USENIX Association.

[39] Chenyang Lu et al. Feedback control real-time scheduling: Framework,
modeling and algorithms. Journal of Real-Time Systems, 23:85–126,
2002.

[40] Z. Lu et al. Control-theoretic dynamic frequency and voltage scaling for
multimedia workloads. In Intl Conf. Compilers, Architectures, & Synthe-
sis Embedded Syst. (CASES), pages 156–163, 2002.DRAFT

36 Book title goes here

[41] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall,
London, 2002.

[42] Xiaorui Wang Matthias Eiblmaier, Rukun Mao. Power management for
main memory with access latency control. Febid ’09, San Francisco, CA,
USA., 2009. ACM.

[43] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Asser
Tantawi. Integrated monitoring and control for performance management
of distributed enterprise systems. Modeling, Analysis, and Simulation of
Computer Systems, International Symposium on, 0:424–426, 2010.

[44] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Asser
Tantawi. Model identification for performance management of distributed
enterprise systems. Technical Report ISIS-10-104, Institute for Software
Integrated Systems, Vanderbilt University, April 2010.

[45] Markus Rupp Mostafa E. A. Ibrahim and Hossam A. H. Fahmy. A pre-
cise high-level power consumption model for embedded systems software.
EURASIP Journal on Embedded Systems, 2011, 2010.

[46] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi. Cpu demand
for web serving: Measurement analysis and dynamic estimation. Perfor-
mance Evaluation, 65(6–7):531–553, June 2008.

[47] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus.
Using control theory to achieve service level objectives in performance
management. In Proc. IFIP/IEEE Int. Symp. on Integrated Network
Management, 2001.

[48] David A. Patterson and John L. Hennessy. Computer Organization and
Design, The Hardware/Software Interface, 4th Edition. Morgan Kauf-
mann, 2008.

[49] D. Roberts, T. Kgil, and T. Mudge. Using non-volatile memory to save
energy in servers. In Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., pages 743 –748, 2009.

[50] T. Simunic and S. Boyd. Managing power consumption in networks on
chips. In Proc. Design, Automation, & Test Europe (DATE), pages 110–
116, 2002.

[51] Akshat Verma, Puneet Ahuja, and Anindya Neogi. Power-aware dynamic
placement of hpc applications. In Proceedings of the 22nd annual interna-
tional conference on Supercomputing, ICS ’08, pages 175–184, New York,
NY, USA, 2008. ACM.

[52] M. Woodside, T. Zheng, and M. Litoiu. The use of optimal filters to
track parameters of performance models. In QEST ’05: Proceedings ofDRAFT

A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems 37

the Second International Conference on the Quantitative Evaluation of
Systems, page 74, Torino, Italy, September 2005.

[53] M. Woodside, Tao Zheng, and M. Litoiu. Service system resource man-
agement based on a tracked layered performance model. In ICAC ’06:
Proceedings of the third International Conference on Autonomic Comput-
ing, pages 175–184. IEEE Press, June 2006.

[54] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind Kr-
ishnamurthy, and Randolph Wang. Modeling hard-disk power consump-
tion. In Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, pages 217–230, Berkeley, CA, USA, 2003. USENIX Associ-
ation.

[55] Fan Zhang and Samuel T. Chanson. Power-aware processor scheduling
under average delay constraints. In Proceedings of the 11th IEEE Real
Time on Embedded Technology and Applications Symposium, pages 202–
212, Washington, DC, USA, 2005. IEEE Computer Society.

[56] Jiheng Zhang, J. G. Dai, and Bert Zwart. Law of large number lim-
its of limited processor-sharing queues. Math. Oper. Res., 34:937–970,
November 2009.

[57] Jiheng Zhang and Bert Zwart. Steady state approximations of limited
processor sharing queues in heavy traffic. Queueing Systems, 60:227–246,
2008.

[58] Tao Zheng, Murray Woodside, and Marin Litoiu. Performance model
estimation and tracking using optimal filters. IEEE Transactions on
Software Engineering, 34(3):391–406, May–June 2008.

[59] Tao Zheng, Jinmei Yang, Murray Woodside, Marin Litoiu, and Gabriel
Iszlai. Tracking time-varying parameters in software systems with ex-
tended kalman filters. In CASCON ’05: Proceedings of the 2005 confer-
ence of the Centre for Advanced Studies on Collaborative research, pages
334–345. IBM Press, October 2005.

[60] Victor V. Zyuban and Peter M. Kogge. Inherently lower-power high-
performance superscalar architectures. IEEE Trans. Comput., 50:268–
285, March 2001.DRAFT

