
Large Scale Monitoring and Online Analysis in a Distributed Virtualized
Environment

Rajat Mehrotra* Abhishek Dubey† Sherif Abdelwahed* Weston Monceaux#

* Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS
†Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN

#US Army Corps of Engineers, ERDC, Vicksburg, MS

Abstract

Due to increase in number and complexity of the large
scale systems, performance monitoring and multidimen-
sional quality of service (QoS) management has become
a difficult and error prone task for system administrators.
Recently, the trend has been to use virtualization technol-
ogy, which facilitates hosting of multiple distributed systems
with minimum infrastructure cost via sharing of computa-
tional and memory resources among multiple instances, and
allows dynamic creation of even bigger clusters. An effec-
tive monitoring technique should not only be fine grained
with respect to the measured variables, but also should be
able to provide a high level overview of the distributed sys-
tems to the administrator of all variables that can affect the
QoS requirements. At the same time, the technique should
not add performance burden to the system. Finally, it should
be integrated with a control methodology that manages per-
formance of the enterprise system.

In this paper, a systematic distributed event based (DEB)
performance monitoring approach is presented for dis-
tributed systems by measuring system variables (physi-
cal/virtual CPU utilization and memory utilization), ap-
plication variables (application queue size, queue waiting
time, and service time), and performance variables (re-
sponse time, throughput, and power consumption) accu-
rately with minimum latency at a specified rate. Further-
more, we have shown that proposed monitoring approach
can be utilized to provide input to an application monitoring
utility to understand the underlying performance model of
the system for a successful on-line control of the distributed
systems for achieving predefined QoS parameters.

1 Introduction

In general, distributed systems are comprised of several
data processing nodes deployed over a network and attached

through communication channels for exchange of informa-
tion and control commands. There is tremendous growth
in usage of distributed system paradigm for health-care,
e-commerce, transport, manufacturing, social networking,
and enterprise applications. With the increase in usage, size,
and implementation complexity of the distributed system
architecture, efficient and accurate monitoring of these sys-
tems to achieve QoS requirements of the underlying appli-
cation, has become a challenging task for researchers. Fur-
thermore, due to large size and complexity of distributed
systems, they generate large number of events with vary-
ing level of importance for the administrator. Occasion-
ally, multiple low-level events should be combined to gen-
erate high-level overview to understand the abnormal be-
havior of the system operation. Moreover, presence of
multiple processes running on separate nodes, synchroniza-
tion issues among nodes, communication delay, and bottle-
neck resource performance make administration and anal-
ysis of system event reports extremely difficult that results
in to outage or poor performance of these systems. Due
to the mission critical nature of the underlying application,
distributed systems require an effective monitoring frame-
work as well as real time on-line analysis of the monitoring
data to make appropriate configuration or resource provi-
sion changes in the system to maintain the QoS require-
ment. Additionally, distributed systems require an effec-
tive monitoring technique, which can work in a distributed
manner similar to the system in observation, and reports
each event to the system administrator with maximum ac-
curacy and minimum latency. Distributed event based sys-
tems (DEBS) can be used for monitoring and management
of distributed systems for faults and system health notifica-
tions through system alarms. Moreover, the DEBS based
monitoring is able to provide the notion of system health
in terms of fault/status signals, which will help to take the
appropriate control actions to maintain the system in safe
boundary of operation.

Contribution: In this paper, we propose an effective

2011 Eighth IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems

978-0-7695-4380-2/11 $26.00 © 2011 IEEE

DOI 10.1109/EASe.2011.17

1

event based monitoring framework for distributed systems
hosted in virtualized environment and present the experi-
mental steps with results for monitoring the underlying ap-
plication as well as complete system. The proposed mon-
itoring framework is based upon the appropriate and accu-
rate combination of each state-of-the-art monitoring utility
used for each component of the distributed system. Accord-
ing to the results, the proposed event based framework has
minimal overhead / latency with high accuracy for the sys-
tem monitoring and modeling the system performance. Ad-
ditionally, the monitoring information generated by the pro-
posed approach can also be used to control the distributed
systems in autonomic manner to achieve / maintain the
multi-dimensional QoS requirements of the deployed sys-
tem. Discussion about the controller is not included in this
paper, but is available as technical report in [7].

Outline: This paper is organized as follows. Previous
efforts for distributed event based monitoring are outlined
in section 2 and some preliminary concepts are presented in
section 3. Our experiment setup is described in section 4,
while the proposed approach is introduced in section 5. The
benchmarking and experimental results of the monitoring
framework are described in section 6 and benefits of the
approach are listed in section 7. Finally, conclusions are
presented in section 8.

2 Related Work

In [6] an event based monitoring approach is presented
for distributed systems with help of “GEM”, a declarative
and interpreted language, which can specify the operation
for event monitors. Each event monitor can be controlled in-
teractively with help of GEM scripts, which contain the ac-
tions to be taken in case of particular trigger. Additionally,
GEM trigger scripts can be changed and loaded dynami-
cally for the dynamically changing pattern of the events in
the system.

Another novel approach “NetLogger” is described in
[10] for distributed system monitoring, which consists of
time stamp based event logs, visualization tools, and real
time system state logs. This approach combines network,
host, and application level monitoring to provide complete
aggregate view of the system. It is extremely lightweight
and can be used for pinpointing the component responsible
for failure or fault in the distributed system.

An event based programming model is introduced in [9]
for flexible monitoring of distributed information systems
(DIS), where an administrator can specify the monitoring of
critical properties for successful functioning of a DIS. This
approach translates specified events in to event predicates,
which is detected by the distributed algorithms for moni-
toring of DIS. Any deviation of critical properties from the
desired behavior is considered as malfunctioning of the DIS

under given operating and environmental conditions.
The primary goal of this paper is to present an event

based distributed monitoring framework for distributed sys-
tems through monitoring all of the different computing
nodes and their processes with minimum jitter in recorded
events, and provide an accurate high level overview of the
current state of the system with reference to QoS parame-
ters. In this approach, we have tried to combine the frame-
work described in [8, 3] with added monitoring utilities
for virtualized environment. Additionally, we have shown
results of combining the proposed framework with a pre-
dictive controller to maintain the distributed system perfor-
mance.

Timing jitter is one of the major difficulties for accurate
monitoring of a computing system for periodic tasks
when the computing system is too busy in running other
applications instead of the monitoring sensors. [3] presents
a feedback based approach for compensating timing jitter
without any change in operating system kernel. This ap-
proach has low overhead with platform independent nature
and maintains total bounded jitter for the running scheduler
or monitor. Our current work uses this approach to reduce
the distributed jitter of sensors across all machines.

3 Preliminaries

Our work uses Data distribution services (DDS) mid-
dleware standard. Specifically, we use the Opensplice Com-
munity edition 1. It is a middleware standard for publish-
subscribe communication model that overcomes the typical
shortcomings of traditional client-server model. It features
extensive QoS configurations. In publish-subscribe model,
message sender and message receiver are decoupled. Mes-
sages are distributed by publisher without knowing who will
receive the messages. Each message is associated with a
special data type called topic. A subscriber registers to one
or more topics of its interest. DDS guarantees that the sub-
scriber will receive messages only from the topics that it
subscribed to. In DDS, a host is allowed to act as a pub-
lisher for some topics and simultaneously act as subscriber
for others.

An initial design and integration of a hierarchical event
based distributed system monitoring framework with a sci-
entific workflow management system is presented in [8].
This approach shows an improvement in monitoring real
time high performance computing systems by applying
an effective work flow management through tracking the
progress of scientific job execution and maintaining the
timed state machine for those jobs.

1http://www.opensplice.org/cgi-bin/twiki/view/Community/WebHome

2

Name Cores Description RAM DVFS VMs
Nop01 8 2 Quad core 1.9GHz AMD Opteron 2347

HE
8GB No Nop04,Nop07 (Development Machines)

Nop02 4 2.0 GHz Intel Xeon E5405 processor 4GB No Nop05,Nop08 (Client Machines)
Nop03 8 2 Quad core 1.9GHz AMD Opteron 2350 8GB Yes Nop06,Nop09 (Application server)
Nop10 8 2 Quad core 1.9GHz AMD Opteron 2350 8GB Yes Nop11,Nop12 (Database Server)

Table 1. Physical machine configuration.

4 Computing System Setup

Our set up consists of four physical computing and vir-
tual computing nodes. Table 1 summarizes configuration of
physical machines and the virtual machines (VM) running
on all physical machines used in the experiments presented
in this paper. Nop03 and Nop10 both have Dynamic Volt-
age and Frequency Scaling (DVFS) capability that allows
administrator to tune the complete physical node or its indi-
vidual core for desired performance level. We have used
Xen Hypervisor (http://www.xen.org/) and Linux
version 2.6.18-92.el5xen to create and manage physical re-
sources (CPU and RAM) for cluster of Virtual Machines
(VMs) on these physical servers. This table also shows the
roles played by these machines in an experimental enter-
prise system. Client machines are used to generate request
load. Application servers run the open source version of
IBM’s J2EE middleware, Web Sphere Application Server
Community Edition (WASCE) and Database machines run
MySQL.

We use Daytrader, an open source benchmark applica-
tion developed to compare and measure the performance of
a distributed multi-tier J2EE web servers in industry, as our
web application. It drives a trade scenario based application
that allows users to monitor their stock portfolio, inquire
about stock quotes, buy or sell stock shares, as well as mea-
sure the response time for benchmarking.

Out of the box, the Daytrader application puts most of
the load on the database server. We modified the main
trade scenario servelet to allow shifting the processing load
of a request from the database node to the computing
node. This was done to emulate business enterprise loads in
highly dynamic environment. For the basic service, we dis-
tributed the Daytrader application across multiple instances
of WASCE, deployed over virtual machines. Daytrader in-
stances belonging to same cluster share common instance
of database. Finally, a modified Daytrader client is used
to generate workload requests based on a given throughput
profile (specified as a lookup table). This table contains the
sampling period and number of requests in that period.

In addition to Daytrader client, we use the Httperf [1]
benchmarking application tool for measuring the web server
performance. This tool supports both http 1.0/1.1 and SSL
protocols. It provides flexibility to generate various work-

Figure 1. Main components of the Monitoring
Framework

load patterns (poisson, deterministic, and uniform) with nu-
merous command line options for benchmarking. At the
end of experiment, it prints out the detailed performance
statistics of the experiment. Due to its availability as open
source, we have modified it to print the performance mea-
surements of our interest periodically while running the ex-
periment. Furthermore, to support the high workload be-
tween the client - web server interface, changes were made
to remove the file socket limitation in the Linux OS installed
over client and webserver machines.

5 Proposed Approach

For efficient management of the distributed systems in
a highly dynamic and unpredictable environment, an effec-
tive monitoring framework is needed, which can provide the
exact notion of system state that can help to take actions to
meet the customer and market needs. In other words, The
monitoring framework should make the distributed system
capable of adapting to the changes in the environment and
interaction with its own components in autonomic manner.
These systems should follow service oriented architecture
(SOA) foot prints and should be ready to integrate with new
services in the enterprise domain.

Different components of the monitoring framework are
described in following subsections.

3

5.1 Monitoring Utilities

We have used multiple utilities to synchronize all com-
puting nodes and monitor system resources i.e. physi-
cal/virtual CPU, memory utilization, disk utilization, and
application performance in terms of average queue size, av-
erage response time, and arrival workload for a sample pe-
riod. Description of these utilities is given in following sub-
sections.

5.1.1 Synchronization Scripts

The primary concern while running a distributed comput-
ing infrastructure is to maintain the time synchronization
among all the elements. In general, when a computing node
restarts, it gets synchronized with the pre-specified time
server. However, the computing node gets out of synchro-
nization with the time due to difference between the local
clock and the pre-specified time server clock. Initially the
difference can be quite small, but with the time, this differ-
ence gets accumulated and results in to range of seconds or
sometime minutes too. To remove this time discrepancy, we
synchronize all computing nodes (client, application, and
database) with help of specially developed scripts, which
use Network Time Protocol (NTP version 3). Additionally,
we schedule these synchronization utilities to run after a
certain time period to maintain the synchronization among
all computing nodes.

5.1.2 Monitoring Sensors

Specially written monitoring sensors are used on each node
to report the physical CPU and memory utilization in ev-
ery sample period and at the end of the experiment. These
sensors are based upon the feedback controller approach to
eliminate the problems due to timing jitter in computing
systems for periodic tasks [3]. These sensors are deployed
on each computing node. Currently, we are using multiple
sensors to monitor CPU utilization, memory utilization, and
heartbeat as listed in table 2. These sensors report different
events of utilization periodically through as DDS message
to the central monitor.

5.1.3 Xenmon Monitoring

We are using Xen hypervisor built in the physical server to
support virtualization technology paradigm. Xen provides
a virtual machine monitoring tool named Xenmon [4] for
measurement of performance metrics related to virtual CPU
utilization at a virtual machine in previous execution pe-
riod. These performance metrics consist of following key
parameters: CPU usage indicates percentage of time when
a particular physical CPU is used by a particular domain,

blocked time indicates the percentage of time when a do-
main was blocked for some I/O events, and waiting time
indicates the waiting time for domain to get the CPU for
scheduling. During our experiment, we primarily used the
virtual CPU utilization metric to measure the current state
metrics of the system. This xenmon monitoring utility re-
ports virtual CPU utilization through DDS approach to the
central monitor.

Figure 2. Power consumption on Nop03 vs
CPU frequency and Aggregate CPU core uti-
lization.

5.1.4 Power Consumption Monitoring

During our experiment, for off-line analysis, we measured
the real time power consumption with help of a real time
watt meter. For real time prediction of the power con-
sumption in the computing node, we have created an aggre-
gated interpolated map of power consumption through off-
line analysis of the system. The mutual relationship among
physical CPU core utilization, CPU frequency, and power
consumption of the physical server is identified. Fig. 2
shows the power consumed on one of the physical server
Nop03 with respect to the aggregate CPU core usage and
CPU frequency. An extensive experiment was performed
over physical server Nop03 with help of a specially writ-
ten script, which exhausted a physical CPU core through
floating point operations in increments of 10% utilization
independent of the current CPU frequency. With multiple
instances of this utility, all eight physical CPU core of the
Nop03 server were loaded in incremental manner for differ-
ent discrete values of CPU frequencies. CPU frequency of
all physical cores (1 to 8) was kept same during each step.
Based on this experiment, we created a regression model
for power consumption at physical machine with respect to
CPU core frequency and aggregate CPU utilization. After
analysis of the results (and reconfirmation with several other
experiments across other nodes), it was observed that power

4

Sensor Name Period Description
CPU Utilization 30 seconds Aggregate utilization of all CPU cores on the machines.
Swap Utilization 30 seconds Swap space usage on the machines.
Ram Utilization 30 seconds Memory usage on the machines.

Hard Disk Utilization 30 seconds Disk usage on the machine.
CPU Utilization Per Process 30 seconds CPU usage of each process on the machines.
Swap Utilization Per Process 30 seconds Swap space usage of each process on the machines.
Ram Utilization Per Process 30 seconds Memory usage of each process on the machines.

Network Connection 30 seconds Number of TCP connections on the machines.
Heartbeat 300 seconds Periodic liveness messages.

Table 2. Monitoring Sensors

consumption model of a physical machine is non-linear be-
cause power consumption in these machines depends not
only upon the CPU core frequency and utilization, but also
depends non-linearly on other power consuming devices
e.g. hard drive, CPU cooling fan etc. As a result, a look-up
table with near neighbor interpolation was found to be the
best fit for aggregating the power consumption model of the
physical machine.

5.1.5 Application Monitoring

Modification in web server code allows us to monitor the
web server performance in terms of active java threads, av-
erage queue size, incident request rate, response time at ap-
plication tier, and database tier separately in each sample in-
terval. A specially written java program is developed to col-
lect the the performance data from the web server over the
sample interval and provide as input to the Central Mon-
itor utility, which can process the data further and create
aggregate view of the web server.

5.2 System Modeling Utilities

For identification of an accurate system model, extensive
experiments have been performed and results have been an-
alyzed with help of an exponential kalman filter [5] imple-
mentation. We have implemented an exponential Kalman
filter to predict the computational nature of the incident re-
quests over web server by predicting the service time S and
delay D of a request by observing the current average re-
sponse time of the incident request and request arrival rate
on the web server. This filter uses an M/G/1/∞ proces-
sor sharing (PS) approximate queuing model as the system
state equation and considers variation in S and D at previ-
ous approximation to estimate the S and D at next sample
time. This filter is exponential because it operates on the ex-
ponential transformation of the system state variables. This
transformation allows us to enforce the ≥ 0 constraints on
the state variables.

An exponential Kalman filter (KF) is used to estimate
the system state as mentioned earlier. It is important to note
that we can approximate the system as a M/G/1/∞ PS queue
if the system has no bottleneck. In the presence of bottle-
neck, the system utilization (not necessarily CPU) will ap-
proach unity. At that time, the system will change to the
limited processor sharing (LPS) queue model. However, it
is difficult to build a tractable model for LPS queuing sys-
tems. Hence, we just identify the operating regions where
the system changes the mode between two queuing models
and analyze the system in the Infinite PS queue region only.

Written in the term of exponentially transformed vari-
ables, [x1 ∈ R;x2 ∈ R] s.t. S = exp(x1) and D =
exp(x2), the equations 1 and 2 define the state update dy-
namics and observation for a given timed index of observa-
tion, k. N and V are Gaussian process and measurement
noises with mean zero and covariances Q and R respec-
tively. Note that this transformation ensures S,D ∈ R+.
One can verify that these equations described the behavior
of a M/G/1 PS queue. Here, predicted bottleneck utilization
is given by ρ̂k = λk*exp(x1k). Additionally, the Kalman
filter does not update its state when the predicted bottleneck
resource utilization becomes more than 1. The kalman fil-
ter works on-line by monitoring the performance data of the
web server and estimates the service time S of the incident
requests.

(
exp(x̂1k)

exp(x̂2k)

)
=

(
exp(x1k−1)
exp(x2k−1)

)
+N(0, Q), and (1)

T =
exp(x1k)

(1− λk ∗ exp(x1k))
+ exp(x2k) + V (0, R) (2)

5.3 Data Processing Utilities

We have developed a JAV ATM , based Data Processing
utility to process the performance data received from the
web server, xenmon monitoring data for virtual CPU utiliza-
tion, sensor monitoring data for physical CPU and memory

5

0 20 40 60 80 100
CONGRAD Iteration. Experiment:WithoutMonitoringFrameworkdata

0

200

400

600

800

1000

1200

M
Fl

o
p
/s

e
c

Std Deviation 52.01 Mflops/s
Mean: 778.69 Mflops/s
Max:847.58 Mflops/s

MILC CONGRAD PERFORMANCE: lattice 16^4X8, 16 node-run

Figure 3. Baseline performance of a MILC run
on 16 nodes. The Y-axis is MFLops/sec. The
X-axis shows the iterations.

utilization, and estimated service time from kalman filter.
With help of data processing utilities, different monitoring
data are co-related to visualize aggregate system overview
for performance variables and appropriate data is transfered
to the online monitoring framework for estimating the ap-
propriate control actions to apply in the system configura-
tion for maintaining the QoS requirement of the system.

6 Experimental Results

This section describes the results of three experiments
designed to illustrate the use of monitoring data. The first
experiment was performed on 16 physical nodes to measure
the performance penalty imposed by the increasing CPU,
memory and network utilization. The second experiment
was done to use the monitoring data and characterize the
web server behavior under varying workload with help of all
sets of monitoring data. All monitoring data was analyzed
online.

6.1 Experiment 1: Performance Impact

A programming model commonly followed in parallel
computing jobs is Multiple Instruction Stream and Multi-
ple Data Stream (MIMD). In this model, different nodes
execute in parallel on different data streams. However,
the computation results from various nodes have to syn-
chronize together in order to solve for boundary condi-
tions. For example, a high energy physics application called
MILC2(MIMD Lattice computation collaboration) has to do

2http://physics.indiana.edu/˜sg/milc.html

0 50 100 150 200 250 300 350
CONGRAD Iteration. Experiment:WithMonitoringFrameworkdata

0

200

400

600

800

1000

1200

M
Fl

o
p
/s

e
c

Std Deviation 58.88 Mflops/s
Mean: 764.84 Mflops/s
Max:842.45 Mflops/s

MILC CONGRAD PERFORMANCE: lattice 16^4X8, 16 node-run

Figure 4. Effect of our Monitoring framework
on the same MILC configuration. This exper-
iment was run longer than the baseline test
shown above.

a global synchronization every 45 milliseconds. This ap-
plication is extremely sensitive to extra load on the CPU
and change in network traffic. We used this application in
this experiment to test the performance penalty of running
our sensors. All nodes (total 16) used in this experiment
had single CPU. The goal was to study the worst case per-
formance impact. Results for this experiment is shown in
Fig: 3 and Fig: 4. It can be seen that the mean performance
of the application only dropped by 14 MFlops/sec. The
standard deviation increased by 6 MFLops. Fig: 5 shows
the average delay between publication of monitoring data
and its assimilation by the control system for tracking the
system state. The delay was less then 0.28 seconds. This
delay includes any time synchronization drift between the
worker node and the central monitor.

6.2 Experiment 2: Online Data Use by a
Predictive Controller

This experiment is performed to use the monitoring data
gathered by monitoring utilities described in section 5.1 in
real time.

Experiment settings: This experiment was configured
with Nop09 (physical machine Nop03) as the virtual ma-
chine running the first tier of Daytrader application. With
help of Xen, virtual CPU of Nop09 was pinned to a sin-
gle physical core and 50% of the physical core was as-
signed to Nop09 as maximum available computational re-
source. Physical memory was also limited to 1000MB for
Nop09. Nop11 was configured as database using similar
CPU and memory related operating settings over physi-

6

Figure 5. CPU Utilization and Delay in event
report With DDS

Figure 6. Integration of Monitoring Frame-
work with a Predictive Controller

cal server Nop10. To simulate real time load scenario, all
CPU cores of physical server Nop03 (except the CPU core
hosting Nop09) were loaded approximately 50% with help
of utility scripts described in Section 5.1.4. MAX JAVA
threads, a parameter that sets the maximum concurrency
limit was configured as 600 in the webserver application.

The architecture is shown in Fig. 6. The Local Response
Monitor monitors the webserver performance on the VM
(Nop09) hosting web server. It collects, processes, and re-
ports performance data after every SAMPLE TIME (in this
case it was set to 30 seconds) to the Central Monitor run-
ning on host machine (Nop03). These performance data
includes average service time at webserver (computation
time at application tier as well as query time over database
tier), average queue size (average resident request into the
system) of the system during the time interval of SAM-

Figure 7. Web server behavior: Sampling pe-
riod=30 seconds.

7

Figure 8. Online exponential Kalman filter
output corresponding to the experiment from
Section 6.2 figure 7. Service time and delay
are in milli second range. Response time is
specified in seconds.

PLE TIME, and request arrival rate. The average queue
size of the system is measured based on the total resident
request in the system at previous sample, (plus) total inci-
dent request into the system, and (minus) total completed
request from the system in the current sample duration.

We used the exponential Kalman filter described earlier
to track the system state online. The two main parameters
received from the filter are the current service time and pre-
dicted response time. The power model described in Sec-
tion 5.1.4 was used to estimate the system (physical node of
webserver) power consumption (graph not shown).

We are developing an online controller that will use the
analyzed data to control the total power consumption by
setting the optimal CPU core frequency while maintaining
a set response time. Performance of the online controller
directly depends upon the accuracy of the different moni-
toring utilities: Kalman filter estimation for the parameters
of the webserver, application monitoring utility, monitoring
sensors, xenmon monitoring for virtual CPU utilization, and
the power consumption model of the physical system.

Figure 7 shows the generated client request rate, (Actu-
alRequestRateSent), and corresponding server throughput
(ActualRequestRateCompleted) for the experiment. Time
series “ExpectedRequestRate” shows the request profile
supplied to the client, which can be different from the “Ac-

tualRequestRateSent” in case of client side connection limi-
tations. This request trace is based on the user request traces
from the 1998 World Cup Soccer(WCS-98) web site [2].

The aggregate CPU utilization of webserver and
database tier are shown in Fig. 7. Observed response time
at webserver is also shown in the same figure.Correlation
among request rate, CPU utilization, and response time is
clearly visible. Finally, plots of the estimates from the on-
line Kalman filter are shown in Fig 8. It is evident that the
observed response time tracks the predicted response time
closely. Furthermore, it can be seen the Kalman filter tracks
the utilization of bottleneck resource well. In some regions
the utilization of bottleneck resource is greater than CPU
utilization indicating that a different computation resource
is the bottleneck.

7 Benefits of the Approach

Experiment 1 is instrumental in showing that our moni-
toring framework does not impact the system detrimentally.

Experiment-2 describes how the proposed event based
monitoring framework can be utilized effectively to analyze
and then potentially control a distributed computing system
for QoS maintenance with almost negligible overhead but
with significantly higher performance.

The proposed monitoring framework is used to monitor
the web server characteristic in the real time dynamic en-
vironment. The proposed approach utilizes the benefits of
DDS approach mentioned in section 3 as well as the accu-
racy of different monitoring utilities: xenmon, application
monitoring, kalman filter, and monitoring sensors. The ma-
jor benefit of the proposed monitoring framework is that the
monitoring utilities can be used for online and autonomic
control of the web server behavior to maintain the system
close to QoS requirements without many changes to the sys-
tem. Direct observation of the figure 8 shows that system
modeling utility (Kalman filter) tracks the system response
behavior and bottleneck resource utilization with high ac-
curacy.

8 Conclusion

We have presented a distributed event based monitor-
ing framework for a distributed enterprise system hosted
in a virtualized environment, to report different event data
logs periodically with maximum accuracy in reference to
the time stamp and corresponding data values with minimal
overhead. Additionally, with the help of reported event data
logs, we are able to capture the performance behavior of
the distributed system accurately. In future we will show
that this monitoring framework can be used with an intelli-
gent predictive controller to maintain the system in closed

8

boundary of QoS even in case of highly dynamic and unpre-
dictable environment. Furthermore, the proposed technique
is highly scalable in terms of accommodating the monitored
parameters and event logs for system monitoring in online
manner.

9 Acknowledgments

This work is supported in part by the NSF I/UCRC CGI
Program grant number IIP-1034897 and and The Engineer
Research and Development Center (ERDC) at Vicksburg,
MS. Part of this work was conducted at Vanderbilt Univer-
sity in collaboration with Fermi National Accelerator Labo-
ratory supported by DoE SciDAC-II program under the con-
tract No. DOE DE-FC02-06 ER41442.

References

[1] httperf documentation. Technical report, HP, 2007.
[2] M. Arlitt and T. Jin. Workload characterization of the

1998 world cup web site. Technical Report HPL-99-35R1,
Hewlett-Packard Labs, September 1999.

[3] A. Dubey et al. Compensating for timing jitter in computing
systems with general-purpose operating systems. In ISROC,
Tokyo, Japan, 2009.

[4] R. C. L. Gupta, Diwaker; Gardner. Xenmon: Qos moni-
toring and performance profiling tool. Technical report, HP
Labs, 2005.

[5] R. E. Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME Journal of Basic
Engineering, (82 (Series D)):35–45, 1960.

[6] M. Mansouri-Samani and M. Sloman. Gem: a generalized
event monitoring language for distributed systems. Dis-
tributed Systems Engineering, 4(2):96–108.

[7] R. Mehrotra, A. Dubey, S. Abdelwahed, and A. Tantawi.
Model identification for performance management of dis-
tributed enterprise systems. (ISIS-10-104), 2010.

[8] P. Pan, A. Dubey, and L. Piccoli. Dynamic workflow man-
agement and monitoring using dds. In Proceedings of the
2010 Seventh IEEE International Conference and Work-
shops on Engineering of Autonomic and Autonomous Sys-
tems, EASE ’10, pages 20–29, Washington, DC, USA, 2010.
IEEE Computer Society.

[9] K. Ravindran and J. Wu. Event-based programming mod-
els for monitoring of distributed information systems. In
DS-RT ’05: Proceedings of the 9th IEEE International Sym-
posium on Distributed Simulation and Real-Time Applica-
tions, pages 236–248, Washington, DC, USA, 2005. IEEE
Computer Society.

[10] B. Tierney and D. Gunter. Netlogger: A toolkit for dis-
tributed system performance tuning and debugging. 1997.

9

