
Integrated Monitoring and Control for Performance
Management of Distributed Enterprise Systems

Rajat Mehrotra∗, Abhishek Dubey†, Sherif Abdelwahed∗, Asser Tantawi‡
∗Electrical and Computer Engineering, Mississippi State University, Miss. State, MS

†Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN
‡IBM TJ Watson Research Center, Hawthorne, NY

I. INTRODUCTION

Self-managing techniques in distributed systems have been

investigated recently for optimizing operational cost and

multidimensional quality of service metrics including re-

sponse time, throughput and reliability. Practical applications

include task scheduling [1], bandwidth allocation and QoS

adaptation in web servers [2], load balancing in e-mail and

file servers [3], and CPU provisioning [4]. The challenge in

developing these techniques such that they remain valid even

when the systems are under uncertain and dynamic operating

conditions, is to identify and learn the system model. Then

only we can develop an appropriate management structure.

Contribution of Our Work: In this paper, we present

an integrated framework for estimating workload patterns,

system performance using mathematical models and model-

predictive control for managing the system’s Quality of Ser-

vice parameters. Our approach starts with performing system

model identification through extensive experimentation and

then identifies the parameters and underlying model structure

of the system using regression and queuing theory techniques.

Later, the value of model parameters is estimated and refined

using Kalman Filters(KF). We use auto regressive moving

average filters for workload forecasting. The effectiveness

of our approach has been demonstrated by using a model

predictive controller to minimize power consumption of a

multi-tier enterprise system while maintaining the system

response time within a desired level. A detailed description

of these results is available as a technical report [5].

System Setup: This work utilizes IBM Web Sphere Ap-

plication Server Community Edition with Daytrader as the

representative application. Modified version of Httperf is used

to generate client requests (see [5]). Table I summarizes

configuration of physical machines. Numerous experiments

were performed to understand the system behavior with

respect to system utilization, various work load profiles,

bottleneck resource utilization, and their impact on system

performance to develop analytical models. Next subsections

describe them in detail.

II. SYSTEM MODELING APPROACH

Queuing Model With Runtime Estimation of Various
Parameters: Queues are a useful abstraction for understand-

ing the nature of web servers. Typically, a new web request

has to wait in a queue for release of computational resources

from older requests before entering in to the system. There-

fore, the total service time of the enterprise system is directly

affected by the queuing policy at each tier. During these tests,

we used an equivalent open single-tier queuing model to

approximate the combined behavior of all tiers that is shown

in Fig. 1. Here S is the average service time for each request.

D is a delay corresponding to the time taken to process the

request in all subsequent tiers.

Fig. 1. An equivalent queuing model for the two-tier system.

To obtain the relationship between the state vector and

the observation vector on-line, we consider Processor Shar-
ing(PS) queue system. From experiments, we found that this

model provides good estimation of the system behavior and

is easier to analyze compared to Limited Processor Sharing
(LPS) queue system. We implemented an exponential Kalman
filter to predict the computational nature of the incident

requests over web server by estimating the S and D of a

request by observing the current average response time of the

incident request and request arrival rate on the web server.

This filter uses an M/G/1/∞ PS queuing model and

considers variation in S and D at previous approximation to

estimate the S and D at next sample time. It operates on

the exponential transformation of the system state variables

that allows us to enforce the feasibility constraints, S,D ≥
0. Such constraints are not possible in typical Kalman filter

implementations as described in [6].

Note: We can approximate the system as a M/G/1/∞ PS

queue only if the total number of requests in the system are

less than the maximum concurrency limit, or the bottleneck
resource utilization is less than 1 that represents an infinite

PS queue model. Hence, we identify the operating regions

through bottleneck utilization and analyze the system in the

infinite PS queue region only.

The KF equations, written in the terms of exponentially

transformed variables, [x1 ∈ R;x2 ∈ R] s.t. S = exp(x1)
and D = exp(x2) are as follows. Note that this transforma-

tion ensures S,D ∈ R
+: For a given timed index of observa-

2010 18th Annual IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

1526-7539/10 $26.00 © 2010 IEEE

DOI 10.1109/MASCOTS.2010.57

416

2010 18th Annual IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

1526-7539/10 $26.00 © 2010 IEEE

DOI 10.1109/MASCOTS.2010.57

424

TABLE I
PHYSICAL MACHINE CONFIGURATION.

Physical M/C Cores Description RAM DVFS Virtual Machines
Nop01 8 2 Quad core 1.9GHz AMD Opteron 2347 HE 8GB No Nop04,Nop07 (Development Machines)
Nop02 4 2.0 GHz Intel Xeon E5405 processor 4GB No Nop05,Nop08 (Client Machines)
Nop03 8 2 Quad core 1.9GHz AMD Opteron 2350 8GB Yes Nop06,Nop09 (Application server)
Nop10 8 2 Quad core 1.9GHz AMD Opteron 2350z 8GB Yes Nop11,Nop12 (Database Server)

tion, k, the equations

(
exp(x1k)
exp(x2k)

)
=

(
exp(x1k−1)
exp(x2k−1)

)
+

N(0,Q) and T = exp(x1k) ∗ (1/(1− λk ∗ exp(x1k))) +

exp(x2k)+ V (0,R) define the state update dynamics and

observation. N and V are Gaussian process and measurement

noises with mean zero and covariances Q and R respectively.

The assumption that this process is Gaussian in nature is

based on our limited observation. We do not claim that

this will be applicable in all situations. Predicted bottleneck

utilization is given by ρ̂k = λk*exp(x1k).
Note: For stability reasons and infinite PS queue assump-

tion, the Kalman filter does not update its state when the

predicted bottleneck resource utilization becomes equal to 1 .

Model for Power Consumption: We extend our previous

power consumption model described in [6] with additional

parameters and data to achieve greater accuracy. Main obser-

vation during our experiments (details available in [5]) was

that power consumption model of a physical machine is non-

linear because power consumption in these machines depends

not only upon the CPU core frequency and utilization, but

also depends non-linearly on other power consuming devices

e.g. hard drive, CPU cooling fan etc. As a result, a look-up

table with near neighbor interpolation was used as the power

consumption model of the physical machine. Combination

of CPU frequency, and aggregate CPU core usage of the

physical machine was used as a key of the lookup table

to access the corresponding power consumption value. This

aggregate power model was utilized mainly for the controlled

experiments described in section IV.

III. THE CONTROLLER

This section describes the implementation of a feed-

back control based online predictive controller that uses the

Kalman filter and the queuing model identified in previous

section to maintain the multi-dimensional QoS demands.

This controller is similar to the L0 Controller described

in [7]. It predicts the aggregate response time of the incident

requests and the estimated power consumption during the

next sample time (look-ahead horizon N) of the system based

on different possible combinations of control inputs (CPU

core frequency). It optimizes the system behavior in terms

of QoS objectives by continuous observation of the system

measurements and choosing the best control input for the

system in next sample interval.

System Variables: We have chosen a small set of most

relevant parameters from list in [5] for our predictive con-

troller to show the performance of our modeling approach.

The chosen control input is the CPU core frequency due to its

impact on the system performance in multiple dimensions for

response time of the system and power consumption. Exper-

iments from [5] indicate that the higher value of application

queue represents contention in computational resources of the

application and total response time value indicates system’s

capability to process the requests lying in system queue in

a timely manner. Therefore System queue size and response
time were the chosen state variables while power consump-
tion was the performance variable. These are also the typical

variables measured in web service industry and used to define

multi-dimensional service level agreements (SLA).

Control Objective: We try to minimize the application

queue size and total response time as one of the component

in cost function J (described later in this section).

Plant Model: The queuing model identified in the previous

section was used to estimate the state of the managed system.

Controller Model: To combine the power consumption,

QoS and the predicted response time, the controller uses a

different internal model (not same as plant model, which

is used for state estimation). The controller model uses the

estimated system state, predicted response time and predicted

power consumption to make the system decisions. Kalman

filter is used at run-time to estimate the service time Ŝt of

the incident request at current frequency u(t), which is then

used by the controller to estimate the average service time

for the next sampling interval.

Request Forecaster: An autoregressive moving average
model is used as estimator of the environmental input with

user specified weights on the current and previous arrival

rates for accurate prediction.

Control Algorithm and Performance Specification: We

use a limited look ahead controller algorithm, which is a

type of model predictive control. Starting from a time t0,

the controller solves an optimization problem defined over a

predefined horizon (t = 1...N) and chooses the first control

input (CPU core frequency u(t0)) that minimizes the total

cost of operating the system J within the prediction horizon.

During this work, we set the horizon to N = 2 to reduce the

computation overhead.

The cost function (J) is the weighted conjunction of drift

of system state from the desired set point of the system state

(desired maximum queue size, desired maximum response

time) and power consumption (desired power consumption

is 0). The power consumption is predicted with the help of

lookup table generated from the system power consumption

model, the current frequency of the CPU core, and aggregate

system utilization of the physical server.

IV. CASE STUDY: POWER CONSUMPTION AND RESPONSE

TIME MANAGEMENT

This section uses the concepts introduced in the earlier

sections for managing server power consumption while main-

taining the predefined QoS requirement of minimum response

417425

Fig. 2. Comparison of of results with and without controller: Sampling pe-
riod=30 seconds. Std deviation for all response measurements=0.02 seconds
(without controller), 0.019 seconds(with controller)

Fig. 3. Online exponential Kalman filter output corresponding to the
experiment with controller. Service time and delay are in millisecond range.
Response time is specified in seconds.

time under a time varying dynamic workload for application

hosted in virtualized environment [5]. During this study, we

performed two separate experiments to operate a multi-tier

enterprise service (Daytrader) described in [5] with and with-

out predictive controller and compared the cost of operating

the system in terms of response time and power consumption

over a periods of 4 hours.

Analysis of the controller results: Fig. 3 shows the

Kalman filter tracking average response time of the incident

requests and bottleneck utilization with high accuracy. Ac-

cording to sub-figure 3, predicted response time from the

Kalman filter Tpred and actual response time T observed at

web server are also very close to each other, which indicates

accuracy of the Kalman filter estimation. The controlled

version runs at a lower frequency most of the times that

results into considerable amount of power saving (18%) over

a period of four hours of experiment (fig 2) compared to the

baseline experiment without controller at max frequency all

the time. Fig 3 shows the controller changing the frequency

of the CPU core at very few occasions, but it is able to

identify the sudden increase in the incident request rate which

reflects adaptive nature of the controller in case of dynamic

load conditions. This experiment shows that the predictive

controller has a negligeable negative effect on the response

time as well as CPU (not shown in figure) and memory

utilization (not shown in figure), but greatly reduces the

power consumption.
V. CONCLUSION

We have presented a simple and novel approach to develop

models with low variance for multi-tier enterprise systems.

We showed that the developed model can be integrated with

a predictive control framework for dynamically changing the

system tuning parameters to achieve a pre-specified QoS

objective. The results shown in section IV shows that the

developed Kalman filter tracks the system model parameters

at run time with high accuracy. Additionally, the proposed

power consumption model of the system used by the con-

troller predicts the overall physical server power consumption

well (95% accurate). Using this model we showed that we

can optimize system performance and achieve 18% reduction

of power consumption in four hours of experiment in single

server without affecting the response time severely. Further-

more, the experimental results (CPU and RAM consumption

with and without the controller) indicates that the proposed

approach has low run-time overhead in terms of computa-

tional and memory resources. We further plan to extend this

framework and verify its performance over a cluster of multi-

tier computing systems in hierarchical fashion as described

in [7].
Acknowledgment This work was supported in part by the

NSF SOD Program, contact number CNS-0804230.

REFERENCES

[1] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik. Feedback–
feedforward scheduling of control tasks. Real-Time Syst., 23(1/2):25–53,
2002.

[2] T.F. Abdelzaher, K.G. Shin, and N. Bhatti. Performance guarantees for
web server end-systems: a control-theoretical approach. Parallel and
Distributed Systems, IEEE Transactions on, 13(1):80–96, Jan 2002.

[3] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct:
Online data migration with performance guarantees. In FAST ’02:
Proceedings of the 1st USENIX Conference on File and Storage Tech-
nologies, page 21, Berkeley, CA, USA, 2002. USENIX Association.

[4] Dara Kusic, Nagarajan Kandasamy, and Guofei Jiang. Approximation
modeling for the online performance management of distributed com-
puting systems. In ICAC ’07: Proceedings of the Fourth International
Conference on Autonomic Computing, page 23, 2007.

[5] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Asser
Tantawi. Model identification for performance management of dis-
tributed enterprise systems. Technical Report ISIS-10-104, Institute for
Software Integrated Systems, Vanderbilt University, April 2010.

[6] Abhishek Dubey, Rajat Mehrotra, Sherif Abdelwahed, and Asser
Tantawi. Performance modeling of distributed multi-tier enterprise
systems. SIGMETRICS Performance Evaluation Review, 37(2):9–11,
2009.

[7] N. Kandasamy, S. Abdelwahed, and M. Khandekar. A hierarchical
optimization framework for autonomic performance management of dis-
tributed computing systems. In Proc. 26th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS), 2006.

418426

