
sensors

Article

Computation and Communication Evaluation of
an Authentication Mechanism for Time-Triggered
Networked Control Systems

Goncalo Martins 1, Arul Moondra 2, Abhishek Dubey 2, Anirban Bhattacharjee 2

and Xenofon D. Koutsoukos 2,*
1 Department of Electrical and Computer Engineering, University of Denver, Denver, CO 80208, USA;

Goncalo.Martins@du.edu
2 Institute for Software Integrated Systems (ISIS), Department of Electrical Engineering and Computer

Science, Vanderbilt University, Nashville, TN 37212, USA; Arul.Moondra@vanderbilt.edu (A.M.);
Abhishek.Dubey@vanderbilt.edu (A.D.); Anirban.Bhattacharjee@vanderbilt.edu (A.B.)

* Correspondence: Xenofon.Koutsoukos@vanderbilt.edu; Tel.: +1-615-322-8283

Academic Editor: Albert M. K. Cheng
Received: 2 May 2016; Accepted: 15 July 2016; Published: 25 July 2016

Abstract: In modern networked control applications, confidentiality and integrity are important
features to address in order to prevent against attacks. Moreover, network control systems
are a fundamental part of the communication components of current cyber-physical systems
(e.g., automotive communications). Many networked control systems employ Time-Triggered
(TT) architectures that provide mechanisms enabling the exchange of precise and synchronous
messages. TT systems have computation and communication constraints, and with the aim to
enable secure communications in the network, it is important to evaluate the computational and
communication overhead of implementing secure communication mechanisms. This paper presents a
comprehensive analysis and evaluation of the effects of adding a Hash-based Message Authentication
(HMAC) to TT networked control systems. The contributions of the paper include (1) the analysis
and experimental validation of the communication overhead, as well as a scalability analysis that
utilizes the experimental result for both wired and wireless platforms and (2) an experimental
evaluation of the computational overhead of HMAC based on a kernel-level Linux implementation.
An automotive application is used as an example, and the results show that it is feasible to implement
a secure communication mechanism without interfering with the existing automotive controller
execution times. The methods and results of the paper can be used for evaluating the performance
impact of security mechanisms and, thus, for the design of secure wired and wireless TT networked
control systems.

Keywords: time-trigger architectures; wireless TTA; secure messages; cyber-physical systems;
timing and performance analysis; HMAC

1. Introduction

There is a continuing demand to provide services required for predictable message communication
of safety-critical control applications, such as drive-by-wire in automotive systems. In such systems
where the failure of the system can lead to serious injury or even death, it is important that the
system provides real-time communication guarantees. For those ultra-dependable systems, the failure
rates should be in the order of 10−9 failures/h [1]. Moreover, networks in automotive systems and
avionics require distributed architectures to support safety-critical real-time control. For such systems,
Time-Triggered Architectures (TTA) offer significant advantages in terms of safety, reliability and fault
tolerance [2,3].

Sensors 2016, 16, 1166; doi:10.3390/s16081166 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1166 2 of 18

TTA provides a framework that allows the design of distributed, embedded and real-time systems
ensuring high-dependability. In particular, TTA provides mechanisms that enable the exchange of
precise and synchronous messages and helps to engineer fault-tolerant systems for both control
software and networked data communications [4]. Time-triggered networks are beneficial in many
applications that include safety-critical systems, especially in-vehicle networks, by managing the
complexity of fault-tolerance and analytic dependability models and ensuring highly reliable and
deterministic systems [4].

Safety, reliability and fault-tolerance properties have been the main focus of TTA systems.
Another important property is to ensure communication security [5,6]. Providing mechanisms to enable
secure communications is important to prevent actions by attackers. Typically, TT systems cannot be
equipped with traditional processors. Instead, embedded processors are used. Adding security
mechanisms may incur significant computational and communication overhead and jeopardize
temporal properties. Therefore, it is important to evaluate the computational and communication
overhead of implementing such secure communication mechanisms.

The objective of this paper is to perform a comprehensive evaluation of the computational
and communication overhead due to message integrity and authentication for TT networked control
systems. To meet these security goals, a Hash-based Authentication Code (HMAC) or digital signatures
can be used. Digital signatures are normally slower than HMAC methods, but both are capable of
providing identical levels of security. The main difference relies on the management of keys and
includes or does not the non-repudiation security property, which it is not covered by this work. A fast
message integrity and authentication method is preferred due to the fact that TT control systems
have restricted timing constraints. In this work, HMAC is implemented and tested to achieve the
desired security goals. The first contribution of this work is the analysis and experimental validation
of the communication overhead of HMAC for both wired and wireless platforms. In addition, a
scalability analysis of the communication overhead with the network size is presented utilizing the
experimental results. The second contribution is the experimental evaluation of the computational
overhead of HMAC. The implementation is performed using the Linux cryptographic libraries at the
kernel level of the selected platforms.

The comprehensive evaluation results presented in the paper show that it is possible to implement
HMAC in TT networked control systems and to analyze both the computational and communication
overhead. As an example, an automotive application is used, and the results show that it is feasible
to implement a secure communication mechanism without interfering with the existing automotive
controller execution times. It is shown that for the selected platforms, the overhead is relatively small
and does not interfere with the time-triggered control execution and network schedule. Further, the
methods and results of the paper can be used for evaluating the performance impact of security
mechanisms, and thus, for the design of secure wired and wireless TT networked control systems.

This paper is organized as follows. Section 2 describes the related work. Section 3 formulates the
problem and provides a description of the TT systems under evaluation. In Section 5, the theoretical
analysis for the communication overhead is presented. In Sections 6 and 7, the practical evaluation
results for the computational and communication overhead are presented, respectively. Section 8
presents the scalability analysis. At last, Section 9 provides the conclusion.

2. Related Work

As software complexity increases in networked control systems, it is almost impossible to avoid
security flaws. Drive-by-wire systems can be developed based on time-triggered architectures, such as
TTEthernet [7]. The authors in [8] discuss security threats that are currently not covered by TTEthernet.
A relevant threat pointed out in this work that still triggers attention from the research community is
dataflow threats. From a network perspective dataflow threats are related to the way an attacker may
modify messages communicated in the network (message modification). The author highlights that in

Sensors 2016, 16, 1166 3 of 18

current TTEthernet systems, depending on the location of the internal attack, the attacker can forge all
messages that are white-listed at a given port.

For wireless time-triggered architectures, WirelessHART is the first open wireless communication
standard specifically designed for process measurement and control applications [9]. Other wireless
technologies relying on ZigBee or Bluetooth communications have been used before for TT systems [6].
However, these technologies may not meet the demanding timing requirements of industrial control.
The authors in [10] present a comparison study of WirelessHART and ZigBee for industrial applications.
Security in communications is addressed and included in WirelessHART, although it is not clear what
is the impact on the computational or network overhead by implementing such security measures.

The National Highway Traffic Safety Administration (NHTSA) reported cases about infiltration
in automotive control systems and installing malware remotely, using Bluetooth devices and CD [11].
The authors in [12] conduct an experiment to evaluate the fragility of the underlying system structure
of a modern automobile system. The work shows how an attacker is able to infiltrate virtually any
Electronic Control Unit (ECU). The attacker has the ability to completely circumvent a broad array of
safety-critical systems and manipulate and control the automotive functions by ignoring the driver’s
input. Such vulnerabilities highlight the importance in securing messages in vehicular networks.

The authors in [13] present a study of current and future bus systems with respect to their security
features. The work states that “a fundamental step to improve automotive bus communication security
is the encryption of all vehicular data transmission”. A secure automotive communication based on
modern cryptographic mechanisms is proposed; however, the performance impact of such security
mechanisms is not evaluated.

In [14], the authors provide a study about the implementation, performance and research
challenges for secure vehicle communication systems. One of the challenges relies on the integration
of security systems or mechanisms for different platforms used in Vehicular Communications (VC).
The study proposes an architecture (entitled SeVeCom) with the aim of implementing and deploying
specific aspects, such as flexible integration in existing communication stacks, the use of a hardware
security module and secure connections of VC onboard units to in-vehicle bus systems. The study
focuses mainly on the analysis of the performance and communication overhead of communication
between vehicles. The study addresses the computational implications for the selected secure
mechanisms, but it does not cover any communication overhead results for in-vehicle bus systems.

In [15], the authors propose a novel vehicle security architecture that incorporates encrypted
messages to enable in-vehicle electronic control units to authenticate and participate in an e-voting
computation scheme. This scheme allows one to determine whether or not the system is considered
secure to initialize. This work is one more step in the direction of securing in-vehicle communications;
however, it does not address the computation or communication overhead of using such a secure
architecture scheme.

A comparison of different authentication algorithms to facilitate authentication in time-triggered
systems is presented in [16]. The work addresses the computational effort required to compute
authentication protocols for embedded systems with scarce computational resources. Moreover,
it focuses on analyzing two properties of time-triggered transmission channels (sender authenticity
and channel integrity) that are applicable to prove a message’s origins. However, it does not address
in detail the communication overhead of using authentication algorithms in time-triggered systems.

3. Problem Formulation

With the aim to address the feasibility in securing messages for TT systems, a comprehensive
evaluation of the computation and communication overhead of the implementation of an
authentication mechanism is presented.

The general idea is to use a keyed-Hashed Message Authentication Code (HMAC) [17] in order
to verify the data integrity and authentication of a message (Figure 1). The first goal is to measure
the computational overhead on the sender and receiver nodes due to adding the authentication

Sensors 2016, 16, 1166 4 of 18

mechanism. The authentication mechanism generates additional information that needs to be attached
to the original message (tag). The second goal is to measure the communication overhead generated
on the communication medium as a result of adding information on the message that is desired to
be transmitted.

Figure 1. Message authentication scheme.

3.1. Platforms under Evaluation

The two different TT platforms considered in this evaluation are described below.

3.1.1. Platform A

Platform A is a wired TT network, which represents an automotive communication
system. The bus communication system used is TTEthernet (http://www.tttech.com/technologies/
ttethernet/). The system is composed of four Electronic Control Units (ECUs) and one TTEthernet
switch. The ECUs are self-contained units (IBX-530W box) that include a processor (1.6-GHz Intel
Atom processor) with 1 GB of memory and 512 MB of cache, and a real-time operating system based
on RTLinux and Ubuntu (Linux Kernel 2.6.24-24-rt). All of the software developed is running in the
kernel space managed by the RTLinux scheduler, ensuring real-time execution.

The network is a star topology (Figure 2a) that allows communication synchronization among
nodes in a centralized way. The nodes are connected through a central switch via bidirectional
communication links. Each node communicates with the other nodes by sending messages to the
switch, which then relays the messages to the respective receiving nodes. Events occur at a predefined
time with precision at the microsecond level. The system uses an off-line scheduling tool that statically
creates the bus communication schedule table. This table specifies when messages (e.g., Time-Triggered
(TT) or Best Effort (BE) messages) are transmitted by a node and the node that will receive the message.
This feature ensures that the network gives priority to TT messages.

Figure 2. Platform A network topology: star configuration.

3.1.2. Platform B

Platform B is a wireless TT platform, which implements the TT communication scheme in a
wireless network. The system includes four identical ARM (Advance RISC Machine) boards. The nodes

http://www.tttech.com/technologies/ttethernet/
http://www.tttech.com/technologies/ttethernet/

Sensors 2016, 16, 1166 5 of 18

(or ECUs) are single board units named Trimslice (http://utilite-computer.com/web/models), with a
CPU based on the NVIDIA Tegra2 SoC, a dual-core 1-GHz ARM Cortex-A9 CPU with 1 GB of RAM,
and it runs an operating system based on Ubuntu 12.04 (Linux Kernel 3.1.10-l4t.r16.02). All of the
software developed is running in the kernel space managed by RTLinux scheduler, guaranteeing
real-time execution.

The nodes are connected in an ad hoc mode (Figure 3) using WiFi 802.11 g at 54 Mbps. To achieve
communication synchronization among all of the nodes, a Time-Division Multiplexing Scheme (TDMA)
is implemented. Each node has a unique ID number, which corresponds to the respective time slot
allocated in the communication scheduler (off-line scheduler). Time synchronization is provided by
assigning one node as the master node, which broadcasts a beacon packet in a predefined interval.
All of the other nodes adjust their clocks upon receiving the beacon packet and wait until their
preassigned time to transmit their data.

Figure 3. Platform B network topology: mesh configuration.

3.2. Authentication Mechanism

The security goals that we are trying to achieve are message integrity and authentication.
Nodes should be authenticated, and the integrity of the messages of the sender’s node should be
maintained. The messages should not be able to be tampered with; that is, an attacker should not
be able to modify the messages remotely, and the receiver node should only accept messages from
authenticated nodes, discarding the other messages.

The technique implemented to authenticate the messages relies on a keyed-Hashed Message
Authentication Code (HMAC) [17]. The idea is to generate a tag for the respective message, and then,
the tag is appended and transmitted with the original message (Figure 1).

HMAC generates a tag by combining a cryptographic hash function with a secret cryptographic
key. The cryptographic hash functions should be one-way and collision resistant. It is computationally
infeasible to find a message that corresponds to a given message digest or to find two different
messages that produce the same message digest. Any change to a message in transit will, with
very high probability, result in a different message digest, and the signature will fail to be verified.
The strength of the HMAC depends on the cryptographic strength of the underlying hash function,
the size of its hash output and on the size and quality of the key [17].

In this paper, three cryptographic hash functions are implemented and evaluated:

SHA-1: a 160-bit hash function;
SHA-2: SHA-256 hash function with 32-bit words;
SHA-3: Keccak hash function that supports the same hash lengths as SHA-2, but its internal structure

is significantly different from the rest of the SHA family [18].

http://utilite-computer.com/web/models

Sensors 2016, 16, 1166 6 of 18

For all of the hash functions described above, a secret cryptographic key with 64 bytes is used.
The unique tag message authentication code generated by the hash algorithms simultaneously verifies
the data integrity and the authentication of a message. The sender and receiver share the same key.

The message authentication and validation scheme is outlined below:

• The sender node generates a tag for the desired message to transmit;
• The message is appended with the tag, and the combination is transmitted to the receiver node;
• The receiver node separates the message and the tag;
• Then, using the same key as the sender, the receiver node regenerates the tag for the message received;
• The receiver then compares the regenerated tag with the received tag.

The extra message tag overhead in bytes introduced is dependent on the message tag generated
by the cryptographic hash-function used in HMAC. For SHA-1, the message tag is 20 bytes, and for
SHA-2 and SHA-3, the message tag is 32 bytes.

4. Evaluation Metrics

Overhead can be defined as any combination of excess computation time (computational
overhead), bandwidth (communication overhead), memory, scheduling (CPU overhead) or other
resources that are required to attain a particular goal. The authentication scheme does not have any
impact on the CPU overhead. TTA schedulers schedule all of tasks and messages involved in the
system offline. This is how TTA guarantees real-time and deterministic networks. The authentication
scheme has an impact only on the task execution time level, which is related to the computational
overhead. The ECUs used in this work have enough memory to consider memory overhead as
negligible. Moreover, memory overhead does not have a direct impact on the network communication
system. In this work, the computational overhead and communication overhead impacts of the
implemented authentication scheme are considered. The evaluation metric for the computational
overhead uses the HMAC execution time.

Regarding the communication performance, time-triggered systems use TDMA to allocate each
message a unique access time within a periodic transmission schedule. Based on this technique, the
need for an explicit collision-resolution mechanism is eliminated. Each transmitter determines its turn
to access the network by checking a time reference. During the design of the communication system
the maximum number of nodes that can participate in the TDMA scheduling should be taken into
account. Adding an extra node might disturb the correct operation of the already integrated ones [2].

A similar problem is expected to occur if nodes send more information than the maximum
allocated per slot. This extra information might be necessary to ensure security during communications.
Therefore, it is important to reserve adequate bandwidth in order to ensure schedulability.

Figure 4 shows a typical TT TDMA frame. It consists of a Base Period (BP), the minimum time
between two action times, also called the Guard Period (GP), and the frame or slot time (Frametime).

The maximum number of frames (NFmax) allowed per BP is the following:

NFmax =
BP

(Frametime) + GP
(1)

where,

Frametime =
Packetsize

Transmissionrate
(2)

Therefore, we select the evaluation metric for the communication overhead to be the maximum
number of frames (NFmax) allowed per BP.

Sensors 2016, 16, 1166 7 of 18

Figure 4. TT TDMA frame.

Table 1 summarizes the notation and respective terminology used in this paper.

Table 1. Notation and terminology.

Notation Terminology

BP Base Period
Diff Time Difference (Switch Performance)

ECUs Electronic Control Units
GP Guard Period

HMAC Hash-Based Message Authentication
MaxTT Maximum Transmission Time
NFmax Maximum Number of Frames
Nswitch Number of Switches

Rx Packet Transmission Time
SO Switch Overhead

TDMA Time-Division Multiple Access
TTA Time-Triggered Architectures
Tx Packet Arrival Time
WS Additional Switch (Wireshark)

Nodes Number of End Nodes

5. Analysis of the Communication Overhead

This section provides the theoretical analysis for the communication overhead by appending the
additional information generated by the authentication mechanism to the messages.

5.1. Platform A

For Platform A, the theoretical and empirical results assume a 100-Mbits/s TTEthernet switch.
The TTEthernet platform defines a minimum frame size of 60 bytes and a maximum frame size of
1514 bytes. It also defines a minimum transmission time between two packets of 0.2 ms (Guard Period
(GP) = 0.2 ms). This minimum guard period is used to guarantee that the physical switch has time
to route one frame size at its maximum size. Table 2 summarizes the parameters used in Platform A.
The Base Period (BP) is 10 ms, and it is selected to ensure that all of the control units will work at the
designed and desired rate with the proposed secure mechanism implemented. The maximum packet
size used is 60 bytes, which is sufficient for control. As mentioned in Section 3.2, the overhead on the
frame size due to the generated hash tag is 20 or 32 bytes (depending on the hash function used).

Sensors 2016, 16, 1166 8 of 18

Table 2. Platform A: experiment parameters.

Parameter Description

TransmissionRate Transmission Rate 100 Mbits/s
GP Guard Period 0.2 ms

PacketSize Packet Size Min: 60 bytes Max: 1514 bytes
BP Base Period 10 ms
Tag SHA-1 Hash Tag Size 20 bytes

Table 3 shows the theoretical results for NFmax and Frametime with BP = 10 ms and frame sizes of
60 and 80 bytes. It is assumed that GP = 0. The table also shows the theoretical results for NFmax and
Frametime with BP = 10 ms and the suggested and defined TTEthernet guard period (GP = 0.2 ms).

Table 3. Platform A: theoretical results (with BP = 10 ms).

GP = 0 GP = 0.2 ms

60 bytes 80 bytes 60 bytes 80 bytes

NFmax 2083 1563 48 48
Frametime (ms) 0.0048 0.0064 0.2048 0.2064

A guard period of 0.2 ms reduces the maximum number of frames per BP drastically. As an
example, for the selected guard period and using the message tag overhead introduced by using
SHA-1, there is no impact (in theory) on the maximum number of frames by changing the packet size
from 60 to 80 bytes (20 bytes message tag overhead). Figure 5a shows the expected impact for NFmax

per BP by changing the frame size from 60 to 1514 bytes. Figure 5b shows the expected impact for
Frametime per BP by changing again the frame size from 60 to 1514 bytes.

Figure 5. Platform A (a) NFmax vs. packet size (bytes) with BP = 10 ms and GP = 0.2 ms;
(b) Frametime (ms) vs. packet size (bytes) with BP = 10 ms and GP = 0.2 ms.

5.2. Platform B

Platform B has a built-in 802.11 n WiFi card. The maximum data rate is 54 Mbits/s, and the system
has the same minimum frame size of 60 bytes. Due to hardware and operating system limitations the
maximum frame size is 1300 bytes. It is important to highlight that the guard period or minimum
transmission time between two packets is addressed in a different way for Platform B. In the IEEE
802.11 standard, the beginning of each symbol is preceded by a guard interval. The size of the symbol
is defined by the type of modulation used during the Orthogonal Frequency-Division Multiplexing
(OFDM) encoding process. This guard interval is to guarantee that the receiver has the ability to
decode the actual data in time. The guard interval can vary according to the 802.11 standard, and it is
included during the calculation of the theoretical maximum data rate.

Sensors 2016, 16, 1166 9 of 18

The guard period for the TDMA analysis has a different value from the 802.11 guard interval.
The guard period for the TDMA is added to avoid data loss and to reduce interference, caused
by propagation delay. To be consistent with the analysis performed for Platform A, a minimum
transmission time between two packets of 0.2 ms (GP = 0.2 ms) is used. Table 4 summarizes the
experiment parameters used for this platform.

Table 4. Platform B: experiment parameters.

Parameter Description

TransmissionRate Transmission Rate 54 Mbits/s
GP Guard Period 0.2 ms

PacketSize Packet Size Min: 60 bytes Max: 1300 bytes
BP Base Period 10 ms
Tag SHA-1 Hash Tag Size 20 bytes

The Base Period (BP) and the maximum packet size are the same as the ones used for Platform A,
BP = 10 ms and 60 bytes, respectively. As mentioned in Section 3.2, the overhead on the frame size due
to the generated hash tag is 20 or 32 bytes (depending on the hash function used).

Table 5 shows the theoretical results for NFmax and Frametime with BP = 10 ms and changing the
frame size from 60 to 80 bytes. The table also shows the theoretical results for GP = 0 (assuming only
the guard interval of the Orthogonal Frequency Division Multiplexing (OFDM) encoding process) and
for GP equal to the one used for Platform A (GP = 0.2 ms).

Similar to the results from Platform A, with a guard period of 0.2 ms, the maximum number of
frames per BP is reduced drastically. The main differences from Platform A are the following: the
maximum date rate drops from 100 Mbits/s to 54 Mbits/s; and for GP = 0, there is actually a guard
interval inherent to the 802.11 OFDM encoding process that will affect Frametime and, consequently,
NFmax. From Table 5, for the selected guard period and the message tab overhead introduced by using
SHA-1, there is no impact (in theory) on the maximum number of frames by changing the packet size
from 60 to 80 bytes (20 bytes of message tag overhead).

Table 5. Platform B: theoretical results (with BP = 10 ms).

GP = 0 GP = 0.2 ms

60 bytes 80 bytes 60 bytes 80 bytes

NFmax 1125 843 47 47
Frametime (ms) 0.0089 0.0119 0.2089 0.2119

6. Evaluation of the Computational Overhead

This section presents the computational overhead due to implementing the authentication
mechanism in the sender and receiver nodes. To ensure deterministic and fast execution, all of
the code is implemented at the kernel level on the end nodes.

In order to evaluate the computational overhead, the HMAC execution time is used as the
evaluation metric. The minimum, maximum and average execution time for each hash function
(SHA-1, SHA-2 and SHA-3) for a packet size of 60 bytes plus the respective message tag was measured
(Figure 6). SHA-3 was not implemented on Platform B due to kernel incompatibilities.

The typical controller code execution time is 1200 µs [19], and for the experiments conducted, the
maximum HMAC execution time is 25 µs for Platform A and 20 µs for Platform B. The computational
overhead of the implemented hash function is negligible.

Sensors 2016, 16, 1166 10 of 18

Figure 6. HMAC kernel execution time for different hash functions: (a) Platform A; (b) Platform B.

7. Evaluation of the Communication Overhead

This section presents the experimental analysis of the communication overhead.
The block diagram for the experimental setup is depicted in Figure 7. In order to measure the

impact on NFmax by adding additional information on the message, it is important to measure the
time that a packet takes to travel from one end node to the other through a network channel (wired
or wireless). It is desired to measure this interval with as little interference as possible.

Figure 7. Block diagram for the general physical setup.

7.1. Platform A

7.1.1. Physical Measurement Setup

For Platform A, the approach relies on “sniffing” the packets on the network channel, in this case,
the central switch. The central switch is not configured to broadcast the packets to all ports. In order to
monitor the packets during communications, it is necessary to connect a secondary switch that allows
the connection of a packet analyzer (e.g., Wireshark http://www.wireshark.org/). Figure 8 shows the
block diagram for the measurement setup. The additional switch (Wireshark (WS)) introduces a small
delay in the packets’ transmission time, but this delay is consistent and deterministic, as can be seen in
Table 6.

The central switch is the master node of the TDMA scheduler. It sends to all nodes a sync beacon
at a predefined and deterministic time in a dedicated channel (Channel 4043). This is the reference
packet time used for all measurements. Then, the packet arrival time (Tx) and the packet transmission
time (Rx) at the switch are measured. With these measurements in conjunction with the sync beacon
(Sync Beacons are frames used as time reference) packet timing, it is possible to infer the packet
transmission time from the end node to the switch.

http://www.wireshark.org/

Sensors 2016, 16, 1166 11 of 18

Figure 8. Block diagram for the measurement physical setup: (a) Packet arrival at the central switch;
(b) Packet transmission at the central switch.

Table 6. Central switch performance measured values. Diff, time difference.

60 bytes 1514 bytes

Min Average Max Min Average Max

Tx (ms) 0 0.0080 0.1150 0.1100 0.2220 0.3470
Rx (ms) 0.2740 0.3860 0.6730 0.4940 0.5940 0.8260

Diff (ms) 0.2740 0.3780 0.5580 0.3840 0.3720 0.4790

7.1.2. Experimental Results

Wireshark is used as the packet analyzer, and it allows the visualization of the sync beacon
packets, the packet arrival and packet transmission timings. All of these measurements are related to
the central switch, because the central switch is responsible for sending the synchronization beacon.
Four tests are conducted in order to evaluate the switch performance at its minimum and maximum
frame size. For all of the tests, data are collected for 5 min. The tests are the following:

• Measure the packet arrival time (Tx) for the minimum TTA frame size (60 bytes),
• Measure the packet transmission time (Rx) for the minimum TTA frame size (60 bytes),
• Measure the packet arrival time (Tx) for the maximum TTA frame size (1514 bytes),
• Measure the packet transmission time (Rx) for the maximum TTA frame size (1514 bytes).

Table 6 shows the values of the performed tests (due to network communication overhead).
Based on these data, it is possible to compute the switch performance. For that, it is necessary to
compute the time difference (Diff) between the time that the switch received the packet (Tx) with the
time that the switch forwarded the packet (Rx) to the respective channel.

SwitchPer f ormance : Di f f = Tx − Rx (3)

The average value for Diff at 60 bytes (0.378 ms) and 1514 bytes (0.372 ms) is approximately the
same and, it reflects the consistency and determinism of the central switch in forwarding different
frame sizes. In theory, this Diff should be the same as the guard period (0.2 ms) mentioned in Section 5.
One of the factors that contributes to the extra overhead is the addition of the extra switch to sniff
the communication channel. It is important to mention that all of the values from Table 6 include this
overhead. The additional switch takes different times to forward the packets, which are also dependent
on the size of the packets. If the theoretical guard period (0.2 ms) from the Diff results (0.378 ms) is
removed, the overhead introduced by the additional switch is left. For the remaining calculations, a
boundary of 0.1 ms is assumed for the additional Switch Overhead (SO).

Based on the collected data, it is also possible to obtain the time that the transmitted packet takes
from one end node to the central switch. Once again, this is possible to compute because all end nodes

Sensors 2016, 16, 1166 12 of 18

are in sync with the central switch by the sync beacon packet. From Table 6, the average transmission
time (Tx) for 60 bytes is 0.008 ms and 0.222 ms for 1514 bytes. As expected, the end node takes more
time to transmit more data. This is due to the time that the network device drivers at the end node
take to make the data available to transmit.

The maximum transmission time (MaxTT) can be calculated with the following equation:

MaxTT = (2 × (Frametime − SO) + Di f f) (4)

where Frametime is the time that it takes for the message to go from the end node to the central switch
and Diff the time that the central switch takes to forward the message. In all experiments, it is assumed
that the network device drivers’ delay at the receiver end node is the same as the network drivers’
delay at the transmitter node.

As an example, from Table 6, taking the maximum transmission time for 60 bytes (0.115 ms) and
with Diff equal to the guard period (0.2 ms), the following MaxTT is obtained:

MaxTT = (2 × (0.115 − 0.1)) + 0.2 = 0.23 ms (5)

Using the SHA-1 message tag overhead and using the equation mentioned above (MaxTT), it is
possible to evaluate the performance impact on the maximum number of frames per BP by adding
extra bytes to ensure secure authentication. Table 7 shows the performance impact values (Note that
the MaxTT for the Measured results from Table 7 has the additional switch overhead subtracted).

Table 7. Platform A: performance impact results.

Theoretical Measured

60 bytes 80 bytes 60 bytes 80 bytes

NFmax 48 48 43 33
Frametime (ms) 0.0048 0.0064 0.1150 0.1500

MaxTT (ms) 0.2096 0.2128 0.2300 0.3000

7.1.3. Interpretation of the Results

There is a significant drop in the maximum number of frames per BP between the theoretical
and measured values. The main reason is that the theoretical values do not include the time that the
device drivers from the end node side take to make available the frame to transmit. The end node
network device driver’s time is not deterministic, and it depends on several factors, such as the type of
operating system running on it and the amount of data desired to transmit.

Moreover, based on the measured values, there is a small impact on the maximum number
of frames per BP by increasing the packet size from 60 to 80 bytes (in this case, using the SHA-1
message tag). The time that it takes to transmit a frame with or without the generated hash tag is
approximately the same, and it does not affect the real-time execution of the application example.

7.2. Platform B

7.2.1. Physical Measurement Setup

For Platform B, the approach needs to be different. Because the network channel is wireless,
therefore it is not feasible, by “sniffing” the packets, to find a common clock base between the nodes.
Moreover, since the internal timer of the nodes cannot be used because of the clock skew, the approach
relies on using GPIO (General Purpose Input and Output) pins available in the end nodes and
connecting them to an oscilloscope. The GPIO pins are toggled to specify an event in the system.

Figure 9 shows the experimental setup. The oscilloscope used is a Tektronix TDS 3054B with
500 MHz of bandwidth and four analog channels.

Sensors 2016, 16, 1166 13 of 18

Figure 9. Measurement setup: (a) Block diagram; (b) Physical setup.

One node is assigned as the master node of the TDMA scheduler. The master node broadcasts
a beacon packet (Tx) at a predefined interval (10 ms), and it toggles a pin to highlight the
event. The remaining nodes toggle a pin upon reception (Rx) of that beacon packet. The packet
transmission time is then measured by taking the difference between these two events. Figure 10
shows an oscilloscope measurement (60 bytes plus SHA-1 20 bytes tag = 80 bytes) of the packet
propagation time.

Figure 10. Oscilloscope packet transmission measurement.

7.2.2. Experimental Results

From Figure 10, the measured time (minimum or maximum) is related to the packet transmission
time, but it does not include the time that the end node network device driver takes to pass and receive
the packet to the physical layer. With this in mind, measurements are made in two parts.

The first part of the experiment involves calculating the time it takes the network device driver
to attach the network headers and pass it to the physical layer and vice versa. It is important to note
that these times are hardware dependent and may vary for different hardware and operating systems.
To calculate these times, the GIPO pins are toggled just before and after the send and receive function.
Table 8 presents the different network device driver times for the send function. Since the use of SHA-1
adds 20 bytes of data, the packet size was varied from 60 to 80 bytes and from 1280 to 1300 bytes.

As mentioned in Section 3, all of the software developed is running in the kernel space, and
the packet sockets used to receive and send packets are at the device driver level (data link layer:
OSI Layer 2). When data are sent through the socket, the data link layer is responsible for several
different operations (e.g., queuing or traffic-shaping functions), apart from just handing over the

Sensors 2016, 16, 1166 14 of 18

packet to the physical layer. The main function at this level is to schedule the packet to be sent out.
For this purpose, Linux uses a queuing mechanism. The packet is added to a queue and sent out into
the medium by calling a set of I/O instructions to copy the packet to hardware and start transmitting.
After the packet transmission is complete, the device frees the queue. If the transmission fails for
any reason, then the packet is re-queued again for processing later. If for some reason the packet
transmission could not occur, then the packet transmission is scheduled again in the soft Interrupt
Request (IRQ) context. This explains the variability present in the values for the send function (Table 8).

Table 8. Send function: network device driver time.

Packet Size (bytes) Min (µs) Max (µs)
60 208 240
80 208 240

1280 240 320
1300 240 320

On the other hand, the measured receive function time has a constant value of 1 µs independent
of the packet size, due to the high priority IRQ being used for handling incoming data. When data
are received from the medium, the card receives the packet, and the packet is transferred directly
through DMA to the kernel memory space. After the packet is transferred to the kernel memory, the
card interrupts the CPU, to inform about the availability of a new packet. The CPU then transfers
the control to the core Interrupt Service Routine (ISR), which will take care of the packet processing.
As the processing in the interrupt context should be as low as possible, the ISR initiates the soft IRQ
context, which will take the packet processing further.

The second part of the experiment is related to the measurement of the packet transmission time.
The results for this case do not include the send function time, but they include the negligible and
deterministic receiving function time (described above). Since the use of SHA-1 adds 20 bytes of
data, the packet size was varied from 60 to 80 bytes and from 1280 to 1300 bytes. Table 9 presents the
minimum and maximum packet transmission time for the respective packet size.

Table 9. Packet transmission time.

Packet Size (bytes) Min (µs) Max (µs)
60 432 584
80 432 592

1280 696 888
1300 700 896

As expected, it takes more time to transmit more data. Once again, the transmission is not
deterministic; it varies with the packet size. However, the packet transmission time is relatively the
same for an additional 20 bytes.

The maximum transmission time is equal to the packet transmission time plus the send function
network device driver time plus the guard period:

MaxTT = Frametime + GP (6)

where,

Frametime = Packet Transmission Time + Send Function Time (7)

As an example, from Tables 8 and 9, taking the maximum time for a packet size of 60 bytes and
with a guard period of 0.2 ms, the following MaxTT is obtained:

Sensors 2016, 16, 1166 15 of 18

MaxTT = (0.584 (ms) + 0.240 (ms)) + 0.2 (ms) = 1.024 (ms) (8)

Considering the Frametime with the SHA-1 message tag overhead, it is possible to evaluate
the performance impact on the maximum number of frames per BP. Table 10 shows the
performance impact.

Table 10. Platform B: performance impact results.

Theoretical Measured

60 bytes 80 bytes 60 bytes 80 bytes

NFmax 47 47 9 9
MaxTT (ms) 0.2089 0.2119 1.024 1.032

7.2.3. Interpretation of Results

There is a drop in the maximum number of frames per BP between the theoretical and measured
values. One reason is related to the fact that the theoretical values do not take the send function time
into consideration. Another problem relates to the nature of WiFi technology that makes throughput
hard to predict [20]. External factors, such as radio and/or physical and/or electrical interference,
distance between radios, physical obstacles and other wireless networks, can have an impact on the
observed maximum throughput. As mentioned in [21], a maximum raw data rate of 54 Mbits/s
can typically yield a throughout in the mid-20 Mbits/s, more than 50% of the bandwidth reduction.
In order to measure the bandwidth performance for the wireless setup, Iperf (https://iperf.fr/) was
used. Iperf is a tool that allows one to measure the maximum TCP and UDP bandwidth performance.
The results obtained were in the range of 14 to 20 Mbits/s. Another issue that can contribute to such
a difference between the theoretical and measured values is related to the Medium Access Control
(MAC) protocol used in the WiFi 802.11 standards. The MAC protocol is not deterministic, because it
relies on random times to access the transmission medium to avoid packet collisions.

Similarly to the previous section, there is no impact on the maximum number of frames per BP by
increasing the packet size from 60 to 80 bytes (in this case, using the SHA-1 message tag). The time
that it takes to transmit a frame with or without the generated hash tag is approximately the same, and
it does not affect the real-time execution of the application example.

8. Scalability Analysis

This section presents the scalability analysis for the communication overhead. The aim is to
present the impact on the NFmax evaluation metric, as the number of nodes increases, using the
experimental values from Section 7 by scaling the TT networks.

8.1. Platform A

For Platform A (star network topology; Section 5.1), the theoretical maximum number of messages
per BP is 48 (Table 3). The switch used during the experiments (Section 7.1) has eight ports. Therefore,
it is possible to connect up to eight different end nodes to it. If this is the case, then each node can
transmit up to six messages per BP. If the application requires connecting more than eight end nodes,
it is necessary to increase the number of ports. There are two possible ways to achieve this: use a
switch with more ports or connect several switches.

The first solution does not have an impact on the calculation of NFmax. As long as the switch has
enough ports for the required number of end nodes, and the minimum guard period (0.2 ms) used
to ensure that physical switch is fast enough to route one frame at its maximum size is the same, the
calculation remains the same. However, this becomes an impractical solution, since every time there is

https://iperf.fr/

Sensors 2016, 16, 1166 16 of 18

a need to add more end nodes, the switch needs to be changed accordingly. The second solution is
more practical, and it relies on connecting switches in a cascade topology (Figure 11).

Figure 11. Scalability: Platform A, cascade network topology.

In order to calculate the maximum number of frames per BP, every time a new switch is added,
there is an additional guard period that needs to be added to the TDMA frame (Equation (9)).

NFmax =
BP

(Frametime) + (GP ∗ NSwitch)
(9)

In order to measure the scalability impact on NFmax, the Frametime from the experimental values
from Section 7.1.2 are used in the equation above. Table 11 shows the respective results. In this case,
there is significant impact on NFmax. By authenticating the messages (60 to 80 bytes), the impact is
negligible on NFmax, and there is no impact on the number of end nodes (# Nodes) that can transmit in
the same TDMA frame. On the other hand, after adding the third switch, the number of nodes that can
be connected to the switch ports is bigger than the actual number of messages that can be transmitted
per BP. The additional guard period starts to take significant space in the TDMA frames, reducing the
number of messages that can be transmitted.

Table 11. Platform A: scalability practical results (with BP = 10 ms).

GP = 0.2 ms

60 bytes 80 bytes

Nswitch NFmax # Nodes Nswitch NFmax # Nodes

1 31 8 1 28 8
2 19 14 2 18 14
3 13 20 3 13 20
4 10 26 4 10 26
5 8 32 5 8 32

8.2. Platform B

For Platform B (mesh network topology; Section 5.2), scalability is addressed in a different way.
The theoretical maximum number of messages per BP is 47 (Table 5), and the network topology is a
mesh configuration (no switch). In this case, each message per BP can be an end node (47 end nodes
total). If the application requires connecting more end nodes (fixing BP and GP from Equation (1)),
then it is necessary to decrease the Frametime, that is increase the Transmissionrate from Equation (2) to
allow adding more end nodes to the TDMA frame.

Sensors 2016, 16, 1166 17 of 18

9. Conclusions

Time-triggered network control systems are a fundamental part of the communication components
of current cyber-physical systems (e.g., automotive/planes communications). They allow safe, reliable
and fault-tolerant network communications. Nonetheless, secure communication mechanisms need to
be incorporated without affecting the overall system stability, and the impact performance of secure
messages should be analyzed in existing network communications.

This paper presents an authentication method based on a keyed-Hashed Authentication Code
(HMAC) with the aim to enable secure communications between several nodes. The computation and
communication performance of the bus communication by adding this level of security on the messages
is analyzed on two different platforms (Platform A, wired, and Platform B, wireless networked control
systems). For both platforms, the computation overhead for implementing HMAC does not affect the
overall system performance. The algorithms are implemented at the operating system kernel level,
and the execution time is negligible for the end nodes that are authenticating the messages.

Regarding the communication overhead, it is important to highlight that the packet size will have
a direct influence not only on the time that it takes to transmit a packet, but also on the number of
frames per BP in the communication scheme for TT networks. For the wired network (Platform A),
there is a small impact on the maximum number of frames per base period (BP) by including secure
messages. On the other hand, for the wireless network (Platform B), there is no impact on the maximum
number of frames per BP by including secure messages.

Overall, in this case study, it is feasible to implement a secure communication mechanism
(HMAC) for TT networked control systems without interfering with the existing computation and
communication controller execution times.

Both HMAC and digital signatures enable message integrity and authentication. Moreover, both
are capable of providing identical levels of security. Digital signatures are normally slower than HMAC
methods, but digital signatures enable the non-repudiation property, that is a node that transmitted
some information cannot at a later time deny having signed it. As future work, it will be interesting
to measure the computational and communication overhead by implementing a digital signature
approach and comparing the respective results with the HMAC approach.

Acknowledgments: This work is supported in part by the Air Force Research Laboratory (FA 8750-14-2-0180),
the National Science Foundation (CNS-1238959), and by NIST (70NANB15H263). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of AFRL, NSF, NIST.

Author Contributions: Goncalo Martins led the system development and implementation, the theoretical and
experimental analysis, and the writing of the paper. Arul Moondra, Abhishek Dubey, Anirban Bhattacharjee
contributed parts in the system implementation. Xenofon Koutsoukos conceived the system architecture, the
problem formulation, and the evaluation requirements.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Suri, N.; Walter, C.J.; Hugue, M.M. Advances in Ultra-Dependable Distributed Systems; IEEE Computer Society
Press: Los Alamitos, CA, USA, 1994.

2. Kopetz, H.; Bauer, G. The time-triggered architecture. IEEE Proc. 2003, 91, 112–126.
3. Sztipanovits, J.; Koutsoukos, X.; Karsai, G.; Kottenstette, N.; Antsaklis, P.; Gupta, V.; Goodwine, B.; Baras, J.;

Wang, S. Toward a Science of Cyber-Physical System Integration. IEEE. Proc. Spec. Issue Cyber-Phys. Syst.
2012, 100, 29–44.

4. Navet, N.; Song, Y.; Simonot-Lion, F.; Wilwert, C. Trends in automotive communication systems. IEEE Proc.
2005, 93, 1204–1223.

5. Lee, E.A. Cyber Physical Systems: Design Challenges. In Proceedings of the 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008.

Sensors 2016, 16, 1166 18 of 18

6. Nolte, T.; Hansson, H.; Bello, L. Automotive Communications—Past, Current and Future. In Proceedings
of the 10th IEEE Conference on Emerging Technologies and Factory Automation (ETFA), Catania, Italy,
19–22 September 2005.

7. Kopetz, H. The time-triggered model of computation. In Proceedings of the 19th IEEE Real-Time Systems
Symposium, Madrid, Spain, 2–4 December 1998.

8. Steiner, W. Candidate Security Solutions for TTEthernet. In Proceedings of IEEE/AIAA 32nd Digital Avionics
Systems Conference (DASC), New York, NY, USA, 5–10 October 2013.

9. Song, J.; Han, S.; Mok, A.K.; Chen, D.; Lucas, M.; Nixon, M. WirelessHART: Applying Wireless Technology
in Real-Time Industrial Process Control. In Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium, St. Louis, MO, USA, 22–24 April 2008.

10. Lennvall, T.; Svensson, S. A Comparison of WirelessHART and ZigBee for Industrial Applications.
In Proceedings of the IEEE International Workshop Factory Communication Systems, Dresden, Germany,
21–23 May 2008.

11. National Research Council (US). Committee on Electronic Vehicle Controls and Unintended Acceleration.
In The Safety Promise and Challenge of Automotive Electronics: Insights from Unintended Acceleration; Transport
Ortation Research Board: Washington, DC, USA, 2012.

12. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.;
Shacham, H. Experimental security analysis of a modern automobile. In Proceedings of the IEEE Symposium
on Security and Privacy (SP), Oakland, CA, USA, 16–19 May 2010.

13. Wolf, M.; Weimerskirch, A.; Paar, C. Security in Automotive Bus Systems. In Proceedings of the Workshop
on Embedded Security in Cars (ESCAR), Bochum, Germany, 12 November 2004.

14. Kargl, F.; Papadimitratos, P.; Buttyan, L.; Müter, M.; Schoch, E.; Wiedersheim, B.; Thong, T.; Calandriello, G.;
Held, A.; Kung, A.; et al. Secure Vehicular Communication Systems: Implementation, Performance, and
Research Challenges. IEEE Commun. Mag. Top. Autom. Netw. 2008, 46, 110–118.

15. Patsakis, C.; Dellios, K.; Bouroche, M. Towards a distributed secure in-vehicle communication architecture
for modern vehicles. Comput. Secur. 2014, 40, 60–74.

16. Wasicek, A.; El–Salloum, C.; Kopetz, H. Authentication in Time Triggered Systems using
Time delayed Release of Keys. In Proceedings of the 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, Newport Beach, CA, USA,
28–31 March 2011.

17. Stallings, W. Cryptography and Network Security: Principles and Practices, 5th ed.; Prentice-Hall Press:
Englewood Cliffs, NJ, USA, 2010.

18. Gilbert, H.; Handschuh, H. Security Analysis of SHA-256 and Sisters. In Selected Areas in Cryptography;
Springer: Heidelberg, Germany, 2004; pp. 175–193.

19. Zhang, Z.; Eyisi, E.; Koutsoukos, X.; Porter, J.; Karsai, G.; Sztipanovits, J. A co-simulation framework for
design of time-triggered automotive cyber physical systems. Simul. Model. Pract. Theory 2014, 43, 16–33.

20. Lee, H.C. A MAC throughput in the wireless LAN. In Advanced Wireless LAN; Guo, S., Ed.; Intech: Vienna,
Austria, 2012; pp. 23–69.

21. Tektronix. Wi-Fi: Overview of the 802.11 Physical Layer and Transmitter Measurements. Available online:
www.tektronix.com/wifi (accessed on 26 March 2014).

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

www.tektronix.com/wifi
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Problem Formulation
	Platforms under Evaluation
	Platform A
	Platform B

	Authentication Mechanism

	Evaluation Metrics
	Analysis of the Communication Overhead
	Platform A
	Platform B

	Evaluation of the Computational Overhead
	Evaluation of the Communication Overhead
	Platform A
	Physical Measurement Setup
	Experimental Results
	Interpretation of the Results

	Platform B
	Physical Measurement Setup
	Experimental Results
	Interpretation of Results

	Scalability Analysis
	Platform A
	Platform B

	Conclusions

