
Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

Nagabhushan Mahadevan · Abhishek Dubey · Daniel Balasubramanian ·
Gabor Karsai

Deliberative, Search-based Mitigation Strategies for
Model-based Software Health Management

Abstract Rising software complexity in aerospace sys-
tems makes them very difficult to analyze and prepare
for all possible fault scenarios at design-time, there-
fore classical run-time fault-tolerance techniques, such
as self-checking pairs and triple modular redundancy
are used. However, several recent incidents have made
it clear that existing software fault tolerance techniques
alone are not sufficient. To improve system dependabil-
ity, simpler, yet formally specified and verified run-time
monitoring, diagnosis, and fault mitigation capabilities
are needed. Such architectures are already in use for
managing the health of vehicles and systems. Software
health management is the application of these tech-
niques to software systems. In this paper we briefly
describe the software health management techniques
and architecture developed by our research group. The
foundation of the architecture is a real-time component
framework (built upon ARINC-653 platform services)
that defines a model of computation for software com-
ponents. Dedicated architectural elements: the Compo-
nent Level Health Manager (CLHM) and System Level
Health Manager (SLHM) provide the health manage-
ment services: anomaly detection, fault source isola-
tion, and fault mitigation. The SLHM includes a diag-
nosis engine that (1) uses a Timed Failure Propagation
(TFPG) model derived from the component assembly
model, (2) reasons about cascading fault effects in the
system, and (3) isolates the fault source component(s).
Thereafter, the appropriate system level mitigation ac-
tion is taken. The main focus of this article is the de-
scription of the fault mitigation architecture that uses
goal-based deliberative reasoning to determine the best
mitigation actions for recovering the system from the
identified failure mode.

Nagabhushan Mahadevan · Abhishek Dubey · Daniel Balasub-
ramanian · Gabor Karsai
Institute for Software-Integrated Systems
Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37212, USA
E-mail: {nag,dabhishe, daniel,gabor}@isis.vanderbilt.edu

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background: Software Health Management . . . . . . 2
3 Shifting from a reactive to a deliberative mitigation

strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Design time support: Modeling system functions and

functional redundancy . . . . . . . . . . . . . . . . . . 6
5 Run-time framework . . . . . . . . . . . . . . . . . . . 10
6 Deliberative reasoning with a SAT solver . . . . . . . 13
7 Deliberative reasoning using a Pseudo-Boolean solver . 20
8 Discussion and future work . . . . . . . . . . . . . . . 21
9 Related research . . . . . . . . . . . . . . . . . . . . . 22
10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Introduction

Software has become the key enabler for a number of
core capabilities and services in modern systems. It is
also increasingly used for system integration [34]. For
example, a modern car contains about 20 million lines
of embedded code, while just the flight controls avionics
of modern aircraft (e.g. F-22) contains 1.7-5.7 million
lines of code [10]. The scale of these systems imposes
many challenges to ensuring correct and proper behav-
ior, especially in avionics where software malfunctions
have caused a number of incidents in the past, includ-
ing but not limited to those referred to in these reports:
[36; 3; 4; 23]. In [45] Sha provides an excellent discussion
on the complexity in avionics software.

Safety critical software systems, while in operation,
must be able to adapt to and mitigate the effects of
latent faults in their implementation, in software, in
hardware, or in the larger system, even if those faults
appear simultaneously. State of the art techniques for
safety critical systems involve applying software fault
tolerance principles, methods and tools to ensure that a
system can survive software defects that manifest them-
selves at run-time [30; 29; 50; 9; 40].

However, several incidents mentioned above indicate
the inadequacy of these techniques and point to the
need for additional approaches that apply anomaly de-
tection, fault source identification (i.e. diagnosis), fault

DRAFT



2

effect mitigation, and fault prognosis, as defined and
used in System Health Management of complex engi-
neering systems [38; 25]. One such approach has been
termed Software Health Management. It is a run-time
technique that includes fault detection, isolation, and
mitigation activities to remove fault effects [48]. Recent
work in this area includes [39; 44; 31; 6].

We have developed an architecture and support-
ing model-based tools for implementing software health
management functions for component-based systems.
The foundation of the architecture is a real-time compo-
nent framework (built upon an ARINC-653 platform)
that defines a specific model of computation for software
components [14]. This framework uses the concepts of
temporal isolation, spatial isolation, and strict tempo-
ral deadlines from ARINC-653 and combines them with
the well-defined component interaction patterns derived
from the CORBA Component Model [52]. Health man-
agement in the framework is performed on two levels:
the Component Level Health Manager (CLHM) pro-
vides localized and limited service for managing the
health of individual components while a System Level
Health Manager (SLHM) manages the health of the
overall system.

SLHM employs a diagnosis engine based on a Timed
Failure Propagation Graph (TFPG)[1]. The TFPG model
is automatically synthesized from the model of compo-
nents and their connectivity; the engine reasons about
fault-effect cascades in the system and isolates the fault
source component(s). This is possible because the data
and behavioral dependencies (and hence the fault prop-
agation) across the assembly of software components
can be deduced from the well-defined and restricted
set of interaction patterns supported by the framework
[15]. In the past we showed how system-wide mitiga-
tion can be performed based on reactive timed state
machines specified by the designer at system integra-
tion time [31]. However, one of the problems with this
approach to fault mitigation at the system level is the
complexity of the specifications required to cover all
possible combinations of failure scenarios.

This paper describes an approach to system level
fault mitigation using deliberative, goal-oriented rea-
soning to identify alternate component configurations
that can restore the desired system functionality. We
build upon our earlier work [16] to provide design-time
support for the concise specification of functional goals,
the redundancy available to support these goals and
component-specific operational requirements. We de-
scribe the runtime framework and its use of off-the-
shelf constraint solvers to search for alternate configu-
rations that can restore system functionality. The spe-
cific case of using Boolean Satisifiability (SAT) solvers
is discussed in detail, along with results from illustra-
tive examples and a larger case study. We also outline
the steps for integrating pseudo-Boolean solvers into the
runtime framework.

The outline of this paper is as follows. Section 2
presents background material from our earlier work in
the context of Software Health Management. Section
3 motivates the need to move from a prescriptive to
a deliberative, search-based reasoning. The design-time
and run-time support for the deliberative strategy are
discussed in Sections 4 and 5, respectively. Section 6 fo-
cuses on the representation of the problem for use with
Boolean Satisfiability (SAT) solvers and showcases the
results using a specific SAT solver with small illustra-
tive examples and a larger case study. Section 7 outlines
the encoding required for integrating pseudo-Boolean
solvers. Section 8 contains a discussion of the work. Sec-
tion 9 presents related work and Section 10 concludes.

2 Background: Software Health Management

System level health management and fault tolerance ap-
proaches often rely on the notion of interacting com-
ponents. Hence, it is natural to apply these concepts
of health management to systems built from software
components, where each software component is devel-
oped and tested individually, and then monitored and
managed at run-time. In our work, the first step was to
develop and implement such a component model.

2.1 A real-time component framework

The ARINC-653 component model (ACM) is built upon
the services of ARINC-653: an industry standard for
safety critical operating systems [2]. ARINC-653 sys-
tems group processes1 into spatially and temporally sep-
arated partitions, with one or more partitions assigned
to each module (i.e. a processor), and one or more mod-
ules forming a system.

Spatial partitioning ensures exclusive use of a mem-
ory region by an ARINC partition. It also guarantees
that a faulty process in a partition cannot ruin the data
structures of other processes in other partitions, iso-
lating, for instance, low-criticality vehicle management
software components from safety-critical flight control
software components. Temporal partitioning ensures ex-
clusive use of processing resources by a partition. A
fixed periodic schedule is used by the real-time oper-
ating system (RTOS) to share the resources between
partitions. This deterministic scheduling ensures that
each partition is allowed exclusive access to the proces-
sor within its predetermined execution interval. It also
guarantees that when the predetermined execution in-
terval of a partition is over, the partition’s execution
will be interrupted and the partition will be placed into
a dormant state, and the next partition in the schedule
order will be granted exclusive access to the processor.

1 An ARINC-653 process is a unit of concurrency that is anal-
ogous to a thread in a desktop operating system such as Linux.

DRAFT



3

Fig. 1: ACM Component

The component model: The ARINC-653 component
model allows developers to group a number of ARINC-
653 processes into a reusable component. A component
is a group of processes that share state but do not inter-
act directly. However, components do interact with each
other via well-defined interaction patterns (chosen from
a fixed set), facilitated by ports. In ACM, a component
can have four kinds of external ports for interactions:
publishers, consumers, facets (provided interfaces2) and
receptacles (required interfaces), as shown on Figure 1.

Each port has an interface type: a named collec-
tion of methods, for provided and required ports, or an
event type: a data structure, for publishers and sub-
scribers. The component can interact with other com-
ponents through synchronous call/return interfaces
(associated with providers and required ports), and/or
asynchronous publish/subscribe event connections (as-
signed to publisher and consumer ports). Additionally,
a component can host internal methods that are period-
ically triggered. Most of these interactions borrow con-
cepts from other software component frameworks, most
notably from the CORBA Component Model (CCM)
[52].

Component operations: The operations of a com-
ponent are governed by the operations of its ports and
internal methods. While the framework provides the
generic code to support the execution of the ports and
methods, the component developer implements the busi-
ness logic for each port and method.

Further, as the ACM framework is designed for hard
real-time systems, each component port and internal
method is statically assigned to a dedicated ARINC-
653 process3. Since a component could involve multiple
ARINC-653 processes, the access to component state is
synchronized through a component-wide lock. This en-
sures that at most one ARINC-653 process per compo-
nent is active at any time. In other words, a component
is always single-threaded. Please see [14] for a detailed
description of the component model and its operation.

2 An interface is a collection of related methods.
3 In case of a facet/ provider port, each method in the inter-

face (supported by the facet) is assigned a dedicated ARINC-
653 process.

Component execution states: A component can
be in one of the following three execution states: ac-
tive, inactive and semi-active. When a component is in
the inactive state, none of the component ports (i.e.
processes) are operational. In the other two states, the
component is fully (active) or partially (semi-active) op-
erational. In the active state, all the component ports
perform their tasks. In the semi-active state, only the
consumer and required ports of a component are oper-
ational, the publisher and provider ports are not.

System development with ACM: Typically, sys-
tem development is carried out in two phases. In the
component development phase, the components are de-
veloped and verified independently, and stored in a repos-
itory for reuse. Often, component developers organize
various components into subsystems, which can then
be reused to form systems. The second phase is sys-
tem integration. This includes modeling and configur-
ing the system architecture, as well as deploying the
components on computing hosts. The framework im-
plementing the ARINC-653 component model includes
a Linux-based runtime environment (that includes an
ARINC-653 emulator) and a domain specific modeling
environment with associated design tools4.

Example: Figure 2 shows the assembly for a notional
GPS system with a redundant set of Sensor/GPS com-
ponent pairs: Sensor plus GPS, and Sensor2 plus GPS2.
Here, each sensor component (i.e. Sensor and Sensor2)
publishes an event every 4 sec which is consumed by
the associated GPS component (i.e. GPS and GPS2) at
that rate. Thereafter, each GPS component publishes
an event, which is sporadically consumed by the Nav-
igation Display (NavDisplay) component. The Naviga-
tion Display component fetches location data from the
GPS and GPS2 components by using the provider port
called ’gps’.

Fig. 2: GPS Software Assembly

4 The modeling environment and the Linux runtime are avail-
able from https://wiki.isis.vanderbilt.edu/mbshm/index.
php/Main_Page

DRAFT



4

In the initial setup of the assembly, the Sensor, GPS,
and NavDisplay components are in the active state, al-
lowing the Navigation Display to receive updates from
the active Sensor and GPS components. The redun-
dant Sensor2 and GPS2 components are set to stand-
by mode, ready to replace the functioning Sensor and
GPS components in the case of a problem. Sensor2 is
set to the active state, and GPS2 is set to the semi-
active state, allowing GPS2 to update its state by col-
lecting data through its active consumer port from the
Sensor2 component. Being in semi-active state, GPS2’s
publisher and provider ports do not service the NavDis-
play component.

2.2 Failure scenarios and anomaly monitoring

We consider two primary failure sources during the op-
eration of each component port: (a) a concurrency fault,
and (b) a latent bug in the source-code associated with
the port. The concurrency fault is caused when the port
is unable to obtaining the lock associated with the com-
ponent, leading to delayed or lack of execution of the
port. On the other hand, the latent-bug in the source-
code could lead to an incorrect execution in the compo-
nent port. Both of the above fault sources can lead to
several secondary anomalies in either the same compo-
nent or in a connected component. In the ACM frame-
work, the design tools allow the system designer to de-
ploy monitors, which can be configured to detect devi-
ations from expected behaviors in the component op-
erations. The following discrepancies can be currently
identified using these monitors:
* Lock timeout: The component model requires that

only one component operation can be executed at
any time. In order to achieve this, all component op-
erations synchronize on a component state mutex. If
the ARINC-653 process of the component operation
does not obtain the lock within a specified time, an
anomaly is declared. The value of the timeout is ei-
ther set to a default value equal to the deadline of
the process associated with the component opera-
tion or can be specified by the system designer.

* Data validity violation (only applicable to consumers):
All data exchanged between publishers and consumers
have an expiration age. This is also known as the va-
lidity period in ARINC-653 sampling ports. We have
extended this to be applicable to all types of compo-
nent consumer ports, both periodic and aperiodic.

* Pre-condition violation: Developers can specify con-
ditions that should be checked before an compo-
nent operation is executed. These conditions can be
expressed over the current value or the historical
change in the value, or rate of change of values of
variables (with respect to the previously known val-
ues for same parameter), such as
1. the message in asynchronous calls,
2. the function parameters of synchronous calls, and

3. the (monitored) state variables of the compo-
nent.

* User code failure: Any error or exception raised in
the user code while a component operation is be-
ing executed can be abstracted by the software de-
veloper as an error condition which can then be
reported to the framework. Any unreported error
is recognized as a potentially unobservable discrep-
ancy.

* Post-condition violation: Similar to pre-condition vi-
olations, but these conditions are checked after the
execution of the operation associated with the com-
ponent port.

* Deadline violation: Any process execution must fin-
ish within the specified deadline.

These monitors can be specified via (1) attributes of
model elements (e.g. deadline, data validity, lock time-
out), and (2) via a simple expression language (e.g. con-
ditions). While deadline, data validity and lock timeout
are defined as relative timeouts expressed in seconds,
the conditions (both pre-conditions and post-conditions)
are written as logical expressions using the conventional
logical and comparison operations, over (1) current value
(of an argument, say x), (2) delta value (change in value
since the last sample, written as delta(x)), or(3) rate
value (rate of change, written as rate(x)).

Code-generators included in the design tools pro-
duce the appropriate (C++) code for the monitors. All
monitors, other than those observing deadline viola-
tions, are evaluated in the same thread as executing
the component port. The monitors detecting deadline
violations are run on framework threads, so that they
can observe the CPU resource usage of the concerned
port while that is executing. A violation detected by
any of the monitors is considered as an anomaly and is
reported to the health management system.

The components in the assembly model (Figure 2)
have been instrumented with monitors to detect anoma-
lies related to resource usage (detected as deadline vi-
olations), user code (detected as user code violations),
age of the received data (detected as data validity vi-
olations), as well as violations on the contracts (pre-
conditions and post-conditions) for exchanging data be-
tween the ports [15; 18]. They also have the capability
to mitigate any problems that could arise because of
the anomaly, but this mitigation action may not re-
move the primary source of failure. Realizing the ben-
efits and limitations of each strategy, we implemented
a two-level health management strategy in our frame-
work: the component level that is local to a component,
and the system level that includes the entire assembly
of components. While the component level health man-
ager (CLHM) is specified by the component developers,
the system level health manager (SLHM) is provided by
the system integrator.

DRAFT



5

2.3 Local mitigation

The Component Level Health Manager(CLHM) pro-
vides localized and limited functionality for managing
the health of a component. The CLHM is modeled as
a timed-state machine that can be customized for each
component. It is triggered by anomalies detected by the
monitors (as described in the previous section) deployed
inside the component and reacts with the appropriate
local mitigation action [15].

In addition to these monitors that detect and report
anomalies, monitors to report the starting and stopping
of a port’s process can also be selected. These moni-
tors aid in building observers to track the activation
sequences of component processes (ports) and report
any deviations from the expected sequence. Observers
are also modeled as parallel state machines within the
CLHM, with one machine acting as an observer and an-
other as the health manager. Each of the parallel state
machines could be triggered by their relevant monitor
events. While the observer tracks the state evolution,
the health manager takes appropriate mitigation ac-
tions for the anomalies detected. When an anomaly is
detected in the observer, it triggers the health manager
portion of the CLHM state machine and that takes the
appropriate mitigation action.

A detailed discussion on the local-mitigation actions
of the CLHM as well as example CLHM models cus-
tomized to react to violations in user code, deadlines,
pre-conditions, post-conditions and data validity in the
Sensor, GPS and NavDisplay components are presented
in [15; 18]. The anomalies observed and the mitigation
actions taken by the CLHM are local to the component.
The CLHM provides a ’quick fix’ and could be effective
in handling temporary local faults as well as arresting
the fault propagation. A system-wide mitigation engine
would be ill-suited to react to every local anomaly.

2.4 Diagnosis and system-level mitigation

In component-based systems, anomalies in a component
can be local, or they can be the result of a secondary ef-
fect caused by an anomaly in an upstream component.
Identifying this pattern is important in order to isolate
the root failure source. While the component level miti-
gation code (provided by the component developer) can
quickly react to the local anomaly, this does not guar-
antee that the primary source of failure is mitigated. A
system-wide mitigation engine is better suited to iden-
tify and mitigate the real fault source, especially when
the failure effects cascade across component boundaries.

The SLHM in ACM relies on a Timed Failure Prop-
agation Graph (TFPG) model [1] that captures the
failure modes (fault sources), discrepancies (anomalies)
and the failure propagation among them, across the en-
tire system. The TFPG model for the complete com-
ponent assembly can be automatically generated based

Fig. 3: SLHM architecture

on the knowledge of the components and their ports,
the intra-component data and control flow dependen-
cies between the ports of a component, and the inter-
component interactions as captured in the assembly
model. A detailed discussions of the TFPG model tem-
plates for the component ports, as well as the failure
propagation patterns between the ports (publisher and
consumer, provided and required ports) is presented in
[15; 18].

The System Level Health Management (SLHM) en-
gine uses the information from the local CLHMs (anoma-
lies observed and mitigation actions taken) in the con-
text of the TFPG models to locate the possible fault
source component(s) and identify the possible set of
mitigation actions that could restore the health of the
system. The execution of the SLHM requires augmen-
tation of the ACM assembly with three special SLHM
components: Alarm Aggregator, Diagnosis Engine, and
SystemHM Mitigation Engine, as shown in Figure 3.
These components are described briefly in the follow-
ing paragraphs.

The Alarm Aggregator is responsible for collecting
and aggregating inputs from the component level health
managers (local alarms and the corresponding mitiga-
tion actions). This information is processed using a mov-
ing window with a length of two hyperperiods of the
complete partition schedule. The events are sorted based
on their time of occurrence and then supplied to the di-
agnosis engine.

The Diagnosis Engine contains an instance of a Timed
Failure Propagation Graph reasoning engine. The rea-
soner uses the TFPG model (auto-generated for the
given component assembly) to isolate the most plausi-
ble fault source: a component whose fault could explain
the observations i.e. anomalies detected and the CLHM
commands issued. The diagnosis result, which is a list
of one or more faulty components, is then reported to
the SystemHM Mitigation Engine. The SystemHM Mit-
igation Engine receives the diagnosis results (the set of
faulty components) and responds with an appropriate,
system level command to mitigate the fault and its ef-
fects.

The system level mitigation described in [18; 31] uses
a reactive mitigation technique that employs a timed
parallel state machine. Models captured the mitigation
actions for each failure scenario in examples: a GPS

DRAFT



6

System [18] and an Inertial Measurement Unit of an
avionics suite [31]. The state machine models referred to
the component states (i.e. component execution modes)
and were triggered by the fault diagnosis report from
the diagnosis engine. When the appropriate guard con-
ditions (that are based on the fault state of one or more
components) were satisfied, the mitigation actions (re-
configuration commands) were generated as part of the
state transition. The new state (after the transition)
reflected the component state (execution mode) after
reconfiguration.

While the mitigation strategy based on the reac-
tive timed state machine was effective, the prescriptive
approach to system level mitigation proved extremely
cumbersome. In the following sections, we describe in
detail our recent work on an alternate mitigation scheme
based on a deliberative search strategy to restore the
system functionality.

3 Shifting from a reactive to a deliberative
mitigation strategy

The reactive mitigation strategy used a prescriptive model
in which the mitigation action for each failure scenario
in each component configuration needed to be modeled
in a timed state machine model. While the use of hier-
archical and parallel state machines helped reduce the
complexity of the models, this prescriptive approach
was still very tedious, cumbersome, and error-prone.
The rest of this paper explores an alternate deliberative
mitigation strategy and our results in applying this to
System Level Health Management.

The SLHM mitigation strategy based on a Delibera-
tive Mitigation Engine is similar to the one with a Reac-
tive Mitigation Engine in that it receives the diagnosis
results (i.e. the list of identified faulty components) and
responds with an appropriate set of system level com-
mands to mitigate the fault and its effects. However,
the similarity ends there. Unlike the reactive engine in
which the mitigation action for every failure scenario
had to be prescribed (in our case with a timed state ma-
chine model), the deliberative engine relies on models of
system goals and functionalities and function-allocation
models that identify the specific groups of components
that provide the desired services. The deliberative en-
gine identifies the functionalities affected by the faulty
components and attempts to restore the failed (or de-
graded) functions by searching the function allocation
models for alternate component configurations.

The paradigm shift implied by this deliberative mit-
igation strategy required additional modeling and run-
time support in the ACM framework. Design-time ad-
ditions include support for models that capture the
system goals, the redundancy available to support the
desired functionality, and any component-specific op-
erational requirements. Additionally, the SLHM layer

should support a generic framework that can formulate
the problem in a way that allows a constraint solver to
search through the configuration space and identify al-
ternate configurations to restore the functionality. The
following sections describe in detail our approach to
supporting such design and runtime frameworks that
provide a mitigation engine based on reasoning.

4 Design time support: Modeling system
functions and functional redundancy

This section details the extensions made to the ACM
modeling framework to support a deliberative, search-
based mitigation strategy. The extensions include sup-
port for modeling: (1) system functions as a functional
decomposition tree, (2) redundancy available to support
those functions in terms of function allocation models,
and (3) operational requirements for each component.
In addition, this section also includes definitions of new
properties and their semantics (as mathematical rela-
tions) that serve as the basis for formalizing the search
problem used in the deliberative mitigation strategy.

4.1 Modeling system goals

At design time, the system designer enumerates the
functional requirements and goals of a system in the
form of a tree structure. Each tree represents a top-
level function that the system must support in a spe-
cific mode of operation. The tree structure follows the
functional decomposition of the system, where interme-
diate nodes denote sub-functions that are all required
in order to support a higher-level function, while the
leave nodes are primitive functions that cannot be de-
composed further.

Example: Figure 4 shows the functional requirement
tree model for the GPS assembly shown on Figure 2.
The figure shows the top-level function of the GPS as-
sembly which is to determine the position of the vehi-
cle in inertial space (Inertial Position), represented
by the root. For this Inertial Position function to
be active both its children nodes: Body Acceleration
Measurement and GPS-Position must be available. In
a typical vehicle the continuous tracking of the iner-
tial position depends on the measurement of the ac-
celeration of the concerned body (Body Acceleration
Measurement) and a continuously updating filter (e.g.,
a Kalman filter) that calculates the vehicle’s estimated
position. For this filter to work correctly it has to be reg-
ularly updated with high accuracy position data, pro-
vided by the function GPS-Position.

Semantics : The semantics of the functional re-
quirement tree can be formally expressed in terms of
an isActive boolean attribute that is defined for each
function. The isActive attribute for a function captures

DRAFT



7

Fig. 4: Example of system functions for the GPS
Assembly in Figure 2.

whether the specific functionality is actively provided
by the system. Equation 1 captures the formal relation-
ship between the isActive property of the functions in
a functional requirement tree.

isActive(fp) =
∧
∀f∈F

isActive(f) (1)

where
fp is the root function and
F is the set of all child functions

4.2 Modeling the function allocation

The function allocation model captures the logical group
of components that can support a specific function or
goal. The set of components related to a function can be
hierarchically composed into the groups of the following
types:

1. ALT Group: Exactly 1 out of N components is re-
quired to support a function X. This is expressed as
X → EXACTLY(1, C1, C2, ...CN)
where C1, C2, ...CN are the N components.

2. M-of-N group: At least M out of N components are
required to support a function X. This is expressed
as X → ATLEAST(M)(C1, C2, ...CN)

3. AND Group: All components are required to sup-
port a function X. This is expressed as
X → ALL(C1, C2, ...CN).

Once specified, the function allocation tree contains:
(1) a system function as its root node, (2) groups as in-
termediate nodes, and (3) software components as the
leaf nodes. Note that the ALT and M-of-N groups cap-
ture the redundancy available to provide the desired
functionality.

Example: Figure 5 shows the function allocation model
for one of the functions in Figure 4 using the compo-
nents in the assembly depicted in Figure 2. The model
indicates that providing the GPS Position function re-
quires at least one of the two Groups: Group1 and
Group2. This is represented by an MofN (1 of 2) Group.
Further, it indicates that Group1 and Group2 are both
AND groups. Hence, Group1 requires the services of all
its child nodes: the Sensor and the GPS component.
Likewise, Group2 requires the services of the Sensor2
and GPS2 components.

Fig. 5: Function allocation model for GPS-Position
function in Figure 4

Semantics: The formal relationship between the
nodes (function, group, component) in the function al-
location model are captured in terms of two boolean at-
tributes: isUsable and isActive of each node of the tree.
The isActive attribute represents if the node is cur-
rently active. The isUsable attribute represents whether
the node is usable, i.e., it can provide the desired ser-
vice. In the case of a software component, the isActive
attribute is reflective of the component’s execution state
in the ACM framework (see 2.1). A component is ac-
tive (isActive = true) when it is executing in an active
mode in the ACM framework. The fault status of a
component determines its usability. A component that
is not faulty is regarded as usable (isUsable = true).

The isActive attribute of a function and a group
is determined by the isActive property of their child
nodes. A function is considered active (isActive = true)
when all of its child nodes in the function-allocation
model are active. An AND group is active if and only if
all of its children are active. An ALT group is usable if
exactly one of its child is active. An MofN group is ac-
tive if at least M children are active. Exactly the same
set of rules apply for determining the isUsable property
of a group and a function. These rules for determining
the isActive and isUsable attributes are summarized
in Tables 1 and 2, respectively. Note that in these Ta-
bles (1 and 2), g means group and c means component.
Operator child(x) returns the set of immediate children
of x, and |.| is the cardinality operator.

4.3 Component Operational Requirement (COR)
model

The function allocation model described in the previ-
ous section relates a system function to one or more
groups of components that can provide that function.
As the component assembly models show, the interac-
tions between a component’s ports (publisher and con-
sumer ports and requires and provides ports) estab-
lish an inherent interdependency between these com-
ponents. Based on these component interdependencies,
a function allocation model should exhaustively enu-
merate all the components required to support it. How-
ever, this can quickly turn into an error-prone and cum-

DRAFT



8

Table 1: IsUsable semantics

Type Definition

Component isUsable(c)⇔ ¬isF aulty(c)

And-
Group

isUsable(g)⇔ (∀x ∈ child(g))(isUsable(x))

ALT-
Group

isUsable(g)⇔ (∃x ∈ child(g))(isUsable(x))

MofN-
Group

isUsable(g)⇔ (∃X ⊆ child(g))(|X| ≥M)

(∀x ∈ X)(isUsable(x))

Function isUsable(f)⇔ (∀x ∈ child(f))(isUsable(x))

Table 2: isActive semantics

Type Definition

Component isActive(c) is marked by the deployment
scheme and any previous action of the rea-
soner

And-
Group

isActive(g)⇔ (∀x ∈ child(g))(isActive(x))

ALT-
Group

isActive(g)⇔

(∃x ∈ child(g))(isActive(x))
(∀y ∈ child(g))
(y 6= x)(¬isActive(y))

MofN-
Group

isActive(g)⇔

(∃X ⊆ child(g))(|X| ≥M)
(∀x ∈ X)(isUsable(x))
(∀y ∈ child(f)/X)(¬isUsable(y))

Function isActive(f)⇔ (∀x ∈ child(f))(isActive(x))

bersome task, duplicating the information already con-
tained in the assembly model. In order to keep the func-
tion allocation model concise and avoid duplicating in-
formation, the ACM modeling language supports the
specification of a Component Operational Requirement
model for components.

For a component to be operational, the external
dependencies of that component must be satisfied. In
other words, its consumer and requires ports need the
services of corresponding publisher and provider ports,
respectively. In an assembly model, a consumer port
can be connected to multiple publishers and a requires
port can be connected to multiple provides ports.

The component operational requirements of a com-
ponent are implicitly captured in terms of its ports. A
publisher is active if its parent component is active. A
provider is active if its parent component is active. A
consumer is expected to actively receive and process
data from only one of its suppliers: a publisher port.

Therefore, a consumer port, c , is operational when the
parent component of exactly one of the supplier pub-
lisher ports connected to c is active5. In ACM each
requires port is expected to receive and process data
from only one of its service providers: a provides port.
Thus a requires port, r, is operational when the par-
ent component of at least one of its service provider’s
provider ports connected to r is active.

Implicit and explicit COR Model:
While the implicit component operational requirement
condition assumes that all the consumer and requires
ports in a component need to be serviced for a compo-
nent to be operational, this is not necessarily the case
for all components. Some components need only a sub-
set of their consumer and requires ports to be func-
tional in order to be considered operational. Based on
the expected behavior of a component, a designer might
be able to identify various subsets of consumer and re-
quires ports (within the component) that would keep
the component operational.

Extensions to the ACM modeling language allow
a designer to explicitly model any component’s opera-
tional requirement. This model is similar to the function
allocation model in that it allows a hierarchical compo-
sition of AND/ALT/MofN groups. However, unlike the
function allocation model, the members of the groups in
a component operational model include the consumer
and requires ports of the component.

Example: Implicit COR Model
As stated before, the implicit component operational re-
quirement assumes that all the consumer and requires
ports of a component need to be serviced for the com-
ponent to be operational. In the context of the GPS
component (shown in the assembly model in Figure 2),
this would mean that the GPS component’s consumer
port should be serviced by a publisher from the Sen-
sor component. Hence, the implicit requirement for the
GPS component to be operational is that the Sensor
component be active. The same reasoning applies for
the implicit component operational requirement for the
GPS2 component, which depends on an active Sensor2
component. For the NavDisplay component, the im-
plicit component operational requirement relies on both
its consumer and requires ports being active. Based
on the discussions earlier, the consumer port requires
EXACTLY(1,GPS, GPS2) and the requires port needs
ATLEAST(1)(GPS,GP2) components to be active. Since
the Sensor and Sensor2 components do not have any
consumer or requires ports, they do not depend on any
other component in order to be operational.

5 Note: In ACM a component does not have multiple pub-
lishers of the same kind. Hence, at most one publisher of a
component services a specific consumer port of another compo-
nent

DRAFT



9

Fig. 6: Assembly model with modified NavDisplay

Fig. 7: Explicit Component Operational Requirement
model in modified Display component

Example: Explicit COR Model
To illustrate the explicit specification of a component
operational requirement, the original NavDisplay com-
ponent (Figure 2) is slightly modified, as shown in Fig-
ure 6. The modified NavDisplay component has two re-
quires ports (gps1, gps2) as opposed to only one requires
port (gps) in the original. The assembly model is also
similarly modified. In the original assembly model (Fig-
ure 2), the single requires port in NavDisplay is ser-
viced by two providers: one in component GPS and the
other in component GPS2. In the modified model (Fig-
ure 6), the requires port gps1 is serviced by a provider
port in the component GPS, and the requires port gps2
is serviced by a provided port in component GPS2.

Additionally, Figure 7 illustrates an explicit compo-
nent operational requirement for the modified NavDis-
play component. It states that the modified NavDisplay
component needs EXACTLY(1,gps1, gps2) of the requires
ports to be serviced. Given the interconnections in the
assembly model in Figure 6, this implies that the mod-
ified NavDisplay component requires EXACTLY(1,GPS,
GPS2) components. The original NavDisplay compo-
nent in Figure 2 relies on implicitly derived component
operational requirements using Equation 4.

Semantics: Table 3 and Equation 2 help to formalize
the semantics associated with the component opera-
tional requirement model. Table 3 expresses the isActive
property of a consumer port, c, and requires port, r, in
terms of the isActive property of the parent compo-
nents that service these ports. The isActive property
of the consumer port is related to the isActive prop-

Table 3: isActive for consumer and requires ports

Type Definition

Consumer,c isActive(c) = ALT (isActive(Ppub))
where Ppub is the set of Parent components
of all Publisher ports connected to Con-
sumer port,c

Requires,r isActive(r) = MofNM=1(isActive(Ppro))
where Ppro is the set of Parent components
of all Provider ports connected to Requires
port, r

erty of the parent components, Ppub, of the publisher
ports that service the consumer port(c). The isActive
property of the requires port, r, is expressed in terms of
the isActive property of the parent components, Ppro,
of the provider ports that service the requires port (r).

COR(comp) = f(gc1, gc2, ..., gcn, gr1, gr2, ..., grm) (2)
where

f is a generic function
gci = isActive(ci)
gri = isActive(ri)
comp is the Component
ci refers to the ith consumer port in comp

ri refers to the ith requires port in comp

Equation 2 defines the Component Operational Re-
quirement (COR) criteria for a component comp in
terms of the isActive properties of the consumer and
requires ports in comp. Using the relations defined in
Table 3, it can be inferred that the COR for a compo-
nent comp, depends on the isActive property of the
components containing the publisher and provider ports
that service the consumer and requires ports in comp.

isActive(comp) =⇒ COR(comp) (3)
where comp is a Component

Furthermore, the isActive property for any com-
ponent, comp, is implicitly related to the COR criteria
for the component (Equation 3). When the isActive
property of a component is set to true, it implies that
the component needs to be operational, or its COR
property has to be true, which in turn captures the
dependency on the isActive property of the compo-
nents servicing its consumer and requires ports. This
dependency chain over the isActive property of com-
ponents in an assembly model can be used to effectively
prune the requirements captured in the function allo-
cation model.

While the explicit component operational require-
ment caters to the generic format of COR captured in
Equation 2, the Implicit Component Requirement has a
more specific form captured in Equation4. Apart from

DRAFT



10

capturing the main aspect of the implicit COR, i.e.,
that all (AND-Group) of the consumers and requires
ports in a component be actively serviced, Equation 4
also captures the redundancy available to serve the con-
sumers and requires ports in a component. The exact
expression for the isActive property of each consumer
and requires port in a component can be derived using
the equations in Table 3 and the component interaction
and dependency information captured in the assembly
model. These can then be substituted into Equation 4
to derive the exact implicit component operational re-
quirement expression for each component.

ICOR(comp) =
∧

c∈C

isActive(c) ∧
∧

r∈R

isActive(r) (4)

where
comp is the Component
R Set of all Requires port (r) in comp

C Set of all Consumer port (c) in comp

A detailed derivation of the implicit and explicit
COR expression6 (based on the assembly models in Fig-
ures 2, 6 and explicit COR model in Figure 7) shows
that when component operational requirements are con-
sidered, the functional allocation model in Figure 5 can
be substituted with a simpler and precise model in Fig-
ure 8.

Fig. 8: Allocation model when the COR is considered
for the GPS Position function shown in Figure 4 w.r.t.

the assembly in Figure 3.

The inclusion of the compnent operational require-
ment specification ensures that the function allocation
model can focus on the core component(s) and the re-
dundancy available for meeting the requirement. The
additional dependency of these core components can be
inferred from the assembly model by using the explicit
component operational requirement model (if specified)
or by deriving the implicit operational requirement con-
straint. The designer should exercise due care to ensure
that the explicit or implicit operational constraints cap-
ture the core requirements and redundancies correctly.
The implicit COR constraints are derived only for those
components where the explicit COR constraint is not
specified.

6 See technical report [32]

This section explained in detail the modeling con-
cepts introduced to support the deliberative search based
mitigation strategy. While the model of system func-
tions and goals helps define the services desired from the
software system and capture any dependency between
these functions, the function allocation model bridges
the domain of expected functions with the alternate
groups of service providers: the components in the soft-
ware assembly. Finally, the component operational re-
quirements model states the dependencies between the
various components (and the associated inherent redun-
dancy present in the assembly model), thereby allow-
ing for a concise specification in the function allocation
model. The next section focuses on the runtime infras-
tructure that implements the deliberative, search-based
mitigation strategy.

5 Run-time framework

The execution of a deliberative, search-based mitiga-
tion strategy requires a run-time framework to cap-
ture the inherent relationships between the elements in
the design space (functions, groups and components)
as well as support search algorithms that identify al-
ternate configurations to restore system functionality.
This section details such a run-time framework (Figure
9) deployed in the the SLHM layer of the ACM compo-
nent assembly.

Fig. 9: Outline of the run-time framework to support
deliberative, search-based strategy

DRAFT



11

As outlined in Figure 9, the run-time framework per-
fom the following activities:

1. Initialization of a run-time model representing the
system goals, function allocation, component oper-
ational requirements, and the component assembly
models from models created at design-time

2. Initialization of the run-time model based on the ini-
tial component configuration in the assembly model.

3. Actions of a Deliberative Reasoner (DR) undertaken
after fault diagnosis is performed:
* Initializing the run-time model based on the set

of faulty components identified by the diagnosis
engine.

* Encoding the problem’s search space as a con-
straint satisfaction problem.

* Solving the constraint satisfaction problem to
identify alternate component configurations that
can restore the system functionality.

* Updating the run-time model based on the new
configuration.

* Issuing the appropriate commands to reconfigure
the system.

5.1 Run-time model

The run-time system to support the deliberative search
strategy depends on the information stored in the static
models created at design time, including the software
component assembly, the system goals, the function al-
location, and the component operational requirements
models. The resulting data structures also need to cap-
ture the relationship between the different elements of
the models: the functions, the logical groups, and the
software components.

The run-time model is stored as a tree, similar to
the dependency tree captured in the static models. The
root node corresponds to the system’s top-level func-
tions, and the initial tree structure mimics the func-
tional decomposition model. Thereafter, the tree is fur-
ther expanded by traversing each function allocation
model in a top-down fashion. This allows the run-time
model (tree) to grow and to incorporate nodes that cor-
respond to the logical groups (AND/ ALT/ MofN) and
finally include the nodes that correspond to the compo-
nents in the assembly. The resulting tree may include
multiple nodes that correspond to the same component
and/or function. A separate map is maintained to cap-
ture the unique source (function or component) corre-
sponding to each node. Figure 10 is representative of a
portion of the tree that would be constructed for the as-
sembly in Figure 2 based on the system goals captured
in Figure 4 and function allocation model described in
Figure 5.

Furthermore, during the initialization process, the
run-time model includes information pertaining to the

Fig. 10: Partial model in memory.

component operational requirements for each compo-
nent. If available, the explicit component operational
requirement model is used. Otherwise, the implicit com-
ponent operational requirement model is generated with
nodes for the logical groups based on the expressions in
Equation 4 and Table 3. Finally, each component oper-
ational requirement model is linked to the rest of the
run-time model by parsing the component port interac-
tion information captured in the assembly model.

Each node in the run-time model includes two boolean
attributes that correspond to the isActive and isUsable
properties mentioned in the previous sections. The is-
Active attribute captures the current state of the node:
whether the node is currently active and if it is con-
tributing to the system functions. In the case of a com-
ponent, the isActive boolean attribute depends on its
execution mode in the software component framework.
For a logical group, the isActive property corresponds
to whether any configuration based on the group con-
tributes to any functionality. In the case of the function
nodes, the isActive property captures whether the func-
tionality is currently being provided by the system. The
isUsable attribute reflects whether the node is able to
provide service. In the case of a component, this corre-
sponds to a component not having a fault. In case of
a group node, the isUsable property depends on the
isUsable property of its child nodes and whether they
contain one or more component configurations that can
provide the required service. Finally, in the case of a
function node, the isUsable property reflects whether
the functionality can be provided by the system.

During the initialization of the run-time model, the
value of the isActive attribute of each component node
is based on the initial execution mode of the compo-

DRAFT



12

Fig. 11: Deliberative Reasoner.

nent in the assembly model. The isUsable property
of each component node is initialized to true. The as-
sumption is that during initialization, the components
are not faulty. The isActive and isUsable properties of
the nodes that correspond to the logical-groups (AND,
ALT, MofN) are evaluated based on the relations de-
scribed in Tables 1 and 2, using the value of the boolean
attributes of the child nodes. For the purpose of evaluat-
ing these attributes in the function nodes, the functions
are treated as AND-groups. These values are updated
in a bottom-up fashion in the run-time model.

The next section deals with the reasoning process
that handles the updates from the diagnoser and eval-
uates alternate configurations to restore the functional-
ity.

5.2 The Deliberative Reasoner

The Deliberative Reasoner uses the run-time model to
identify alternate configurations that can restore the
affected functionality. Figure 11 provides an outline of
the algorithm that includes three steps: Init, Solve, and
Update, and it shows the names of the procedures that
are used in each step. A detailed discussion on the al-
gorithm and the associated procedures can be found in
[16].

Init: This step updates the run-time model based on
the fault information. The procedures MarkFaulty and
VisitParent ([16]) are used during this process. Pro-
cedure MarkFaulty sets the isActive and isUsable at-
tribute of the faulty component node (in the run-time
model) to false and invokes the Procedure VisitParent,
which recursively traverses the graph bottom-up (child
to parent) to evaluate and update the isActive and
isUsable property of each node. The recursive update
ends when the isUsable property of a node continues

to remain true. Such nodes are referred to as reconfigu-
ration nodes and used in the next step.

Solve: This step attempts to identify an alternate con-
figuration. It uses the Procedure Reconfig ([16]). The
Procedure Reconfig starts from a reconfiguration node
identified in the previous step (Init) and recursively
traverses the graph top-down (parent to child) through
the nodes that are still usable (isUsable = true) to
identify a new set of component nodes that can be ac-
tivated (by setting the isActive property to true).

Update: This step uses the Procedure ReconfigStop
to update the run-time model to reflect the reconfig-
ured system. The procedure ReconfigStop is invoked on
each of the component nodes whose isActive property
is true, starting first with the components identified
in the previous step (Solve). A recursive traversal is
performed to identify whether the node is contribut-
ing to any useful service; if it is not, it is deactivated
(isActive = false). This is used to deactivate compo-
nents that are not faulty, but do not contribute to any
functionality in the new configuration.

Mitigation Commands: The altered state of com-
ponents in the run-time model is used to generate miti-
gation or reconfiguration commands. These commands
include:

1. START: Instructs a component to switch to the active
mode. This command is issued when a component’s
isActive property has changed to true.

2. STOP: Instructs a component to switch to the inac-
tive mode. This command is issued when a compo-
nent’s isActive property has changed to false.

3. RESET: Instructs a component to reinitialize itself.
This command is issued when a component is faulty
and an alternate configuration cannot be identified
to restore functionality.

4. REWIRE (ri,pc): Instructs a component to rewire
its receptacle Interface (ri) and connect it to the
appropriate provider interface in another component
(pc). This command is issued when the component
that hosted the original provider port is switched to
inactive mode.

5.3 The Deliberative Reasoner and constraint solvers

The problem of identifying alternate configurations to
restore the system functionality can be posed as a con-
straint satisfaction problem (CSP) that can be solved
by external off-the-shelf constraint solvers. One way of
dealing with large Boolean search spaces that has be-
come very efficient in recent years is to use Boolean
satisfiability (SAT) solvers [19]. Modern SAT solvers
can efficiently solve problems containing thousands of

DRAFT



13

variables and tens of thousands of clauses. Another ap-
proach is to use pseudo-Boolean satisfiability solvers,
which are similar to SAT solvers but can handle car-
dinality constraints over the Boolean variables. Yet an-
other approach is to encode the problem as an integer
linear arithmetic problem and use an SMT solver [35]
to find a solution.

The run-time framework is designed in a way that
allows the Deliberative Reasoner to be extended to use
external solvers easily. Figure 9 shows the additional
steps that can be added to the Deliberative Reasoner
to use a solver. These steps include:

Problem encoding: This step involves identifying the
variables and their associated constraints, and trans-
lating these into the domain of the external solver. In
our case, the variables and constraints include those
identified in the run-time model and their underlying
relationships captured in the Equations and Tables in
section 4. Further, the encoded problem accounts for
the faulty components as well as the current component
states. This is to ensure that the resulting solution does
not include the faulty components and is close to the
original component configuration.

Execution: This step involves executing the external
solver. Due to the nature of the environment where
the ACM framework is deployed solvers that provide
a C/C++ library that allows programmatic access for
execution in a Linux-based operating system are pre-
ferred. The solver is expected to provide an API that
allows the deliberative reasoner to input the satisfac-
tion problem, execute the solver, and then retrieve the
solution.

Solution decoding: In this step, the resulting solu-
tion from the solver is translated to the original prob-
lem domain. In our case, this corresponds to setting the
isActive and isUsable properties of the nodes in the
run-time model based on the solution from the solver.

Once these steps are completed, the Deliberative Rea-
soner can invoke the Update step (described earlier) to
update the run-time mode with the new result, verify,
and if required, post-process the result. The following
section describes our approach to integrating one spe-
cific type of solver, a boolean Satisfiability (SAT) solver,
in the run-time framework.

6 Deliberative reasoning with a SAT solver

This section describes the process of integrating the De-
liberative Reasoner with a SAT solver. This involves
generating a Boolean satisfiability encoding of the orig-
inal search problem, invoking the solver and decoding
the solution (if found) produced by the solver. For prac-

tical reasons, modern SAT solvers work with clauses in
conjunctive normal form (CNF). CNF consists of the
conjunction (i.e., logical AND) of a set of clauses, where
each clause is a disjunction (i.e., logical OR) of liter-
als (Boolean variables). Therefore, using a SAT solver
involves (1) encoding the information captured in the
runtime model into a set of clauses in CNF, (2) invok-
ing a SAT solver to try to find a satisfying solution,
and (3) decoding the solution (if found) from the SAT
solver so that the run-time model can be updated and
corresponding mitigation commands can be issued.

6.1 Identifying variables and their relationships

The runtime model, which is the basis of the Deliber-
ative Reasoner, includes boolean properties (isActive
and isUsable) for the functions, the group nodes in the
function allocation model and the components. In ad-
dition, it also includes the information about the com-
ponent’s operational requirement model: the isActive
properties of the consumer and requires ports of each
component and the group nodes associated with this
component operational requirement model. Because these
variables have boolean values, they naturally align with
a Boolean variable in a satisfiability problem. Table 4
lists these categories of Boolean variables and the asso-
ciated Boolean expressions used to evaluate them.

Table 4: Boolean variables for the SAT problem

Type Variable
category

Is Free
Variable

Related Ex-
pression

Component,
comp

Vcomp Yes Set by solver∗

Component,
comp

VCORcomp
No COR(comp)

Consumer,c Vc No isActive (c)
Requires,r Vr No isActive (r)
ALT-
Group,x

Vx No isActive (x)

MofN-
Group,m

Vm No isActive (m)

AND-
Group,a

Va No isActive (a)

Function,f Vf No isActive (f)
∗ - corresponds to the isActive (comp)

6.2 Identifying constraints

The primary set of constraints are expressed over the
Boolean variables assigned to the nodes in the func-
tion allocation model: the functions, the logical groups
(AND, ALT, MofN) and the components. Each logical
group is encoded into one or more Boolean constraints
such that the encoding preserves the semantics of the
logical grouping (Table 2). In the case of function nodes,
the constraints are generated by assuming the function
to be a logical AND grouping.

DRAFT



14

The next set of constraints are related to the com-
ponent operational requirement model and the inter-
actions captured in the assembly model. One or more
Boolean constraints are generated to capture the impli-
cation relationship between the isActive property of a
component and its operational requirement expression
(Equation 3). If a component needs to be active (i.e.,
isActive is set to true), then its corresponding compo-
nent operational requirement expression should evalu-
ate to true. This also involves generating the clauses
corresponding to the logical groups found in the com-
ponent operational requirements model (Tables 3).

Vcomp =⇒ VCORcomp (5)

Additional Boolean constraints are imposed based
on the functional requirement trees. These translate
to a constraint stating that the logical AND of the
isActive property of all the root functions should be
true (Equation 6). Further, in a run-time component
assembly, when the diagnoser reports that certain com-
ponents are faulty, this information needs to be encoded
as additional constraints. The Boolean variable associ-
ated with the isActive property of each faulty compo-
nent is set to false.∧

i∈RF

Vfi
(6)

where
RF is the set of root functions
Vfi

is Boolean variable associated with ith function fi

6.3 Problem encoding: transforming to CNF

The Boolean expressions capturing the relationships be-
tween the Boolean variables and the constraints need to
be converted into conjunctive normal form (CNF) be-
fore they are given to a SAT solver. Such a translation
of Boolean expressions into CNF is discussed in [51].
Our problem includes three additional relations, MofN,
ALT and Implies, which are translated into CNF us-
ing the same encoding techniques described in [51]; we
provide an overview below.

We note that the encodings presented below for ALT
and MofN are straightforward and that alternate encod-
ings, such as the ones based on techniques described in
[20; 5; 58], may be able to reduce the number of re-
quired clauses. The encodings below are presented for
completeness; we are exploring more efficient encodings
as part of our future work.

Handling ALT: While some SAT solvers have spe-
cial constructs to express ALT directly, this is not sup-
ported by most solvers. Hence, the ALT expressions are
translated into CNF in the following way. Intermediate
Boolean variables are introduced, each of which repre-
sents a distinct valid combination of variables that can

satisfy the ALT. Equation 8 lists the n intermediate
Boolean variables introduced and their distinct valid
combination (conjunction) for a successful outcome of
the ALT expression 7 with n components (comp1, comp2,
..., compn). Note that each of the expressions captured
by the intermediate variables allows exactly one child
node to be true, while all other child nodes are ex-
pected to be false. The disjunction of these interme-
diate Boolean variables (Equation 9) is an equivalent
Boolean expression that replaces the original ALT ex-
pression (Equation 7). Since this expression (Equation
9) involves only conjunctions and disjunctions, it can
be easily transformed into the CNF format using the
strategies discussed in [51].

Vx = ALT (comp1, comp2, ..., compn) (7)
Vx1 = comp1 ∧ ¬comp2 ∧ ... ∧ ¬compn

Vx2 = ¬comp1 ∧ comp2 ∧ ... ∧ ¬compn

...

Vxn
= ¬comp1 ∧ ¬comp2... ∧ compn (8)

Vx = Vx1 ∨ Vx2 ∨ ... ∨ Vx3 (9)

Handling MofN: For MofN, at least M out of the N
child nodes should be true. The approach adopted to
capture this relationship in the form of a Boolean ex-
pression with just AND and OR operations is similar
to the case of ALT. Each distinct valid combination
that satisfies the MofN criteria is represented explic-
itly by an intermediate Boolean variable. However, since
MofN does not require that exactly M out of N variables
should be true, but requires that at least M out of N be
true, the expressions of the intermediate variables do
not deal with the variables that are false.

The creation of the intermediate variables (and their
expressions) involves identifying each of the C(M, N)
combinations where M variables are true. Each of these
distinct combinations is expressed as a conjunction of
the true variables, and the result is assigned to an inter-
mediate variable. The final step is to rewrite the MofN
expression as a disjunction of all the intermediate vari-
ables.

Equation 10 captures this process for a simple ex-
ample involving three variables (N=3) and MofN with
M=2. Equation 11 represents the more generic case
where N = n and M = m.

Vm = MofN(comp1, comp2, comp3)
Vm1 = comp1 ∧ comp2

Vm2 = comp1 ∧ comp3

Vm3 = comp2 ∧ comp3

Vm = Vm1 ∨ Vm2 ∨ Vm3 (10)

DRAFT



15

Vm = MofN(comp1, comp2, ..., compn)
Vm1 = comp1 ∧ comp2 ∧ ... ∧ compm−1 ∧ compm

Vm2 = comp1 ∧ comp2 ∧ ... ∧ compm−1 ∧ compm+1

...

VC(M,N) = ...

Vm = Vm1 ∨ Vm2 ∨ ... ∨ VmC(M,N) (11)

Handling implication: In the case of the implies
operator, an implication constraint exists between the
component’s isActive property and the component’s
operational requirement condition (Equation 5). This
implication relationship between the Boolean variables
Vcomp and VCORcomp

needs to be expressed in CNF.
The CNF translation of this implication constraint is
expressed as a Boolean constraint (Equation 12) that
needs to be satisfied by the SAT solver.

VCORcomp ∨ ¬Vcomp (12)

Once these transformations are applied to the ALT,
MofN and Implies relations, the resulting CNF formula
can be handed to the SAT solver.

6.4 Execution and decoding the SAT solver results

Once the steps detailed in the previous sections are per-
formed, the SAT solver can be given the following in-
formation: (1) the variables (literals) and (2) the rela-
tionships and constraints (CNF clauses) capturing the
original problem. Two additional pieces of information
also need to be encoded and given to the solver before
it is started: (1) the faulty components, and (2) the
current state of the components.

Handling faulty components: It is important that
the SAT solver is made aware of faulty components.
Otherwise the solution output from the SAT solver could
continue to include using the services of the faulty com-
ponent(s) to achieve the result (i.e., provide services).
Additional constraints (clauses) are added to the orig-
inal problem expressed in CNF to capture the infor-
mation pertaining to the faulty components. For each
faulty component, comp, a clause that captures the con-
straint expressed in Equation 13 is added. This tells the
SAT solver that the state of this component should be
false in the final solution.

¬comp (13)
where comp is a faulty component

Handling component states: An additional property
that is desired from the SAT solution is that the pro-
cess of identifying a new solution (for reconfiguration)
should take into consideration the current component

configuration in the assembly, with the goal that if pos-
sible, healthy (non-faulty) and active components that
are associated with services that are unaffected should
not be reconfigured. The solution should involve mini-
mal reconfiguration if such a path exists. In order to do
this, the SAT solver used in this exercise (Cryptomin-
isat v.2.9.1 7), allows one to specify a set of assumptions
for the state of one or more literals (which correspond
to the state of the appropriate component). Since there
is a one-to-one association between the literals in the
defined SAT problem and the isActive property of the
components (Vcomp), this step involves identifying the
literal that corresponds to each healthy active compo-
nent and adding an assumption to the SAT problem
that this literal must be true. The components that are
currently stopped or have been detected as faulty are
not considered in this process.

Executing the solver and decoding the solution:
Once all of the steps above have been performed, the
SAT solver can be executed to verify an initial system
configuration (the case where there is no-fault) or to
identify an alternate configuration in the case of a fault.
The verification of an initial solution is performed by in-
voking the SAT solver and setting the assumptions on
the Boolean literal corresponding to each active compo-
nent. If the SAT solver reports that the solution is sat-
isfactory (SAT), then the initial configuration is valid.
Otherwise, the SAT solver results need to be analyzed
to identify problems either in the initial configuration
or in the models.

Whenever a fault report is obtained from the diag-
nosis engine, an additional clause based on Equation 13
is added for each faulty component. Also, the states of
the faulty components are not encoded as assumptions
while invoking the SAT solver. The SAT solver is in-
voked with assumptions only for the states of healthy
and active components. The SAT solver results are then
analyzed for a reconfiguration solution.

Handling UNSAT solutions: In the case where the
SAT solver reports an unsatisfiable problem (UNSAT),
then the assumptions given to the SAT solver are re-
laxed. The SAT solver is queried for the conflicts, and
the assumptions pertaining to the literals reported in
the conflict are removed. The assumptions for the rest
of the healthy and active components are set and the
SAT solver is invoked again. In some cases, all of the
assumptions may need to be removed. This is because
it is possible that for obtaining a valid configuration,
all of the currently active components need to be deac-
tivated and a completely new set of components needs
to be activated. However, it is also possible that af-
ter removing all assumptions, the solver still reports an
UNSAT solution. In such cases, this implies that there
is no redundant configuration that can restore the func-

7 http://www.msoos.org/cryptominisat2/

DRAFT



16

tionality, and the only possible mitigation action is to
reset the faulty component(s).

Handling SAT solutions: When the SAT solver re-
turns with an output indicating satisfiability (SAT),
the results from the SAT solver can be used to recon-
figure the system. The one-to-one correspondence be-
tween the literals in the SAT solver problem and the
Boolean variables associated with the component states
(the isActive property) allows for direct application of
the SAT solver solution. The SAT solver results are used
to update the component states (isActive property) in
the run-time model as if the results were obtained from
the Reconfig procedure of the Deliberative Reasoner.
The update algorithm is run on the entire model so
that the isActive property of each node is updated. At
this point, the ReconfigStop procedure is also invoked to
identify any component that is active but not contribut-
ing to any functionality. Such components are marked
to be deactivated. This can happen in SAT solver solu-
tions because a valid solution may include a component
which is active, but whose parent groups are not ac-
tive because the required set of child components is not
active. Finally, all the components where the isActive
properties have changed are identified and appropriate
mitigation commands issued. Additionally, mitigation
commands for rewiring required interfaces are also sent.

Table 5: Boolean variables for the SAT problem in
Example 1

Variable(s) Category∗ Description

VGP S ,VGP S2,
VSensor,
VSensor2,
VNavDisplay

Vcomp Variables correspond-
ing to a component’s
isActive property. Set
by solver.

VCORGP S
,

VCORGP S2 ,
VCORNavDisplay

VCORcomp
Variables corresponding
to a component’s Opera-
tional Requirement.

Vdat Vc Variable corresponding
to the isActive property
of Consumer (dat) in
NavDisplay.

Vgps Vr Variable corresponding
to the isActive property
of Requires (gps) in
NavDisplay.

Vpos Vf Variable corresponding
to the isActive prop-
erty of GPS Position
Function in Function
Allocation Model.

∗ - Category is described in Table 4.

6.5 Smaller examples

This section illustrates the approach of using a SAT
solver within the Deliberative Reasoner through simple
examples.

Example 1 The example deals with the assembly model
in Figure 2 configured with the goals described in the
system goals model in Figure 4 and the function-allocation
model described in Figure 8. The Boolean variables as-
sociated with the SAT problem are listed in Table 5.
The detailed expression for each component’s opera-
tional requirement and its transformation based on the
ALT and implies relationships can be found in a tech-
nical report[32].

Satisfy: Vpos

Subject to :
¬Vf ∨ VNavDisplay ∧
VCORNavDisplay

∨ ¬VNavDisplay ∧
VCORNavDisplay

∨ ¬Vtemp1 ∧
VCORNavDisplay

∨ ¬Vtemp2 ∧
¬VCORNavDisplay

∨ (Vtemp1 ∨ Vtemp2) ∧
¬Vtemp1 ∨ VGP S ∧
¬Vtemp2 ∨ VGP S2 ∧
VCORGP S

∨ ¬VGP S ∧
VCORGP S2 ∨ ¬VGP S2 ∧
¬VCORGP S

∨ VSensor ∧
¬VCORGP S2 ∨ VSensor2 (14)
Equation 14 captures the final set of formulas in

CNF that are given to the SAT solver. Each line in
this formula captures a relation that needs to be true.
The set of formulas (Listing 14) were input to a SAT
solver and the assumptions related to the initial system
state were set. This included setting the literals asso-
ciated with all component nodes except GPS2 to true.
This was because the GPS2 component was set to semi-
active execution mode, while the rest of the components
were set to active-mode.

As a first step, the external engine (SAT solver) was
invoked to verify that the system state based on the ini-
tial component configurations can provide the required
functionality. Once this was confirmed, the next step in-
volved testing the reconfiguration after injecting a fault.

A fault was introduced in the Sensor component.
This was correctly diagnosed by the Diagnosis Engine
component and resulted in the Deliberative Reasoner
being triggered. An additional constraint (¬VSensor),
reflecting the non-availability of the faulty sensor com-
ponent, was added to the set of clauses in Equation
14. The current state of the healthy components (GPS,
NavDisplay and Sensor2) was fed as a set of assump-
tions to the SAT solver. The SAT solver produced a

DRAFT



17

Fig. 12: Example 2: Assembly Model

SAT solution with a configuration that involved turn-
ing off the Sensor and GPS components and activating
the GPS2 component, while retaining the active state
of the Sensor2 and NavDisplay components

The reconfiguration comands from the Deliberative
Reasoner were:
1. STOP Sensor, STOP GPS
2. START GPS2
3. REWIRE NavDisplay: New Provider GPS2

The resulting configuration was able to restore the
functionality. This exercise demonstrated a simple ex-
ample of using the Deliberative Reasoner with a SAT
solver to reproduce the results obtained using the na-
tive Deliberative Reasoner discussed in [16]. Further,
this example used a more concise function allocation
model and derived the component operational require-
ment relations from the assembly model.

Example 2 In this example, the Deliberative Reasoner
with a SAT solver is tested on a more complicated
model. The assembly model is described in Figure 12.
The function allocation model and component opera-
tional model are shown in Figure 13. Track-Function1
and Track-Function2 (in Figure 13) are the services re-
quired to satisy the system goals. The complication in
this model is brought about by the ALT-Groups. In
order for the ALT-group to be active, exactly one of
its child nodes must be active (Table 2). More impor-
tantly, this example (Figure 13) includes a component,
GPS2, that is contained in two ALT-Groups (ALT-
Group1 and ALT-Group2), each of which has to be ac-
tive to satisfy the system goals (Track-Function1 and
Track-Function2).

The initial system state is as follows

* Active Components: Sensor1, Sensor2, Sensor3,
GPS1, GPS3, NavDislay1 and NavDisplay2.

* Active Functions: TrackFunction1, TrackFunction2,
and Tracking.

* Stopped Components: GPS2.

Fig. 13: Example 2: Equivalent Core Function
Allocation Model and the Implicit Component

Operational Requirements

* RMI Wiring: NavDisplay2 to GPS3, and NavDis-
play1 to GPS1 .

The Deliberative Reasoner with SAT was able to verify
the initial state of the system. A fault was introduced in
the Sensor3 component. The Deliberative Reasoner us-
ing the SAT solver issued the following reconfiguration
commands
1. STOP Sensor3, STOP GPS3.
2. STOP Sensor1, STOP GPS1.
3. START GPS2.
4. REWIRE NavDisplay2 to GPS2.
5. REWIRE NavDisplay1 to GPS2.

Upon reconfiguration, the system state was as fol-
lows
* Active Components: Sensor2, GPS2, NavDislay1, and

NavDisplay2.
* Faulty Components: Sensor3.
* Stopped Components: Sensor1, Sensor3, GPS1, and

GPS3
* Active Functions: TrackFunction1, TrackFunction2,

and Tracking.
* RMI Wiring: NavDisplay2 to GPS2, and NavDis-

play1 to GPS2 .
It can be seen that the reconfiguration solution obeys
the ALT constraint. It switches off the faulty compo-
nent Sensor3 and GPS3 that relies on Sensor3. Further,
to satisfy the ALT constraint it switches off GPS1 and
activates GPS2. Furthermore, it switches off the Sen-
sor1 component as its services are no longer required.

6.6 A larger case study: IMU

We use a larger example of an inertial measurement
unit (IMU) to present further details about the Delib-
erative Reasoner. An IMU is a software assembly that
uses accelerometers and GPS units to track the inertial
position in an avionics system8. The IMU assembly (see
Figure 14) includes redundant configurations with four
kinds of subsystems, described below.

8 See technical report [17] for a detailed discussion

DRAFT



18

Fig. 14: The layout of the inertial measurement unit

Fig. 15: ADIRU.

6.6.1 Air Data Inertial Reference Unit (ADIRU)

The IMU system includes a primary and a backup ADIRU
subsystem. The architecture of the ADIRU subsystem
(see Figure 15) is based on the ADIRU used on a Boe-
ing 777 aircraft [33; 47]. It includes six accelerometer
components, four ADIRU Processor components and
three Voter components. Each accelerometer compo-
nent publishes data to all the four ADIRU processors
by reading an emulated sensor. Each ADIRU processor
uses a set of linear regression equations to periodically
estimate the body acceleration and publish it to the
voter components. Each voter component votes upon
the body-axis estimate of the ADIRU processors and

Fig. 16: GPS Subsystem

Fig. 17: PFC Subsystem.

publishes the result to the Primary Flight Computer
(PFC) components.

6.6.2 GPS Subsystem

The IMU system includes a primary and backup GPS
subsystem (Figure 16 ) which includes two components.
The GPS receiver component emulates a software sen-
sor providing the hardware readout to the GPS proces-
sor component that implements a Kalman Filter. On
each update, the GPS processor notifies the PFC com-
ponents.

6.6.3 Primary Flight Computer (PFC) Subsystem

The PFC subsystem shown in Figure 17 emulates the
flight computer which uses the body acceleration data
fed by the ADIRU to track the airplane’s inertial po-
sition. The IMU system is configured with three PFC
subsystems: left, right, and center - that actively receive
the input from a Voter component in the ADIRU sub-
system (see Figure 14). Given that the inertial system
using the body acceleration values tends to drift over
time, the PFC NavFilter component uses a receptacle
port to fetch the more accurate but slowly refreshing
GPS data.

6.6.4 Display subsystem

The Pilot and Co-Pilot Display subsystems (Figure 18)
receive update notifications from the three PFC subsys-
tems. The Display component periodically fetches the
updated data (through its requires ports) from each of
the PFC components and displays a median value.

6.6.5 System goals for IMU

The IMU system goal ( see Figure (19) is to provide
inertial tracking functionality. Inertial tracking depends
on determining gps position as well as position tracking.
Position tracking, in turn, depends on the ability of the
system to determine the body acceleration.

DRAFT



19

Fig. 18: Display Subsystem

Fig. 19: IMU Functional Requirements.

6.6.6 Function Allocation in IMU

The mathematical relations that capture the function
allocation models in the IMU system are listed below.

* The GPS-Position functionality requires exactly one
of the GPS subsystems, i.e.
GPSPosition→ EXACTLY(1, P rimary, Secondary
GPSsubsystem).

* The Position-tracking functionality requires at
least 1 of the PFC subsystems, i.e.
PositionTracking → ATLEAST(1)(Left, Center,
RightPFCSubsystem).

* The Body Acceleration functionality requires ex-
actly 1 of the ADIRU subsystems, i.e.
BodyAcceleration→ EXACTLY(1, P rimary,
SecondaryADIRUsubsystem).

6.6.7 Component operational requirements in IMU

The following are the explicitly specified component op-
erational requirements in the IMU system.

* The Display component needs at least one of its
consumers to be active:
→ ATLEAST(1)(left, right, center) consumer.

* The ADIRU Processor component requires at least
4 of its 6 consumers to be active :
→ ATLEAST(4)(Allconsumers).

* The Voter component in the ADIRU subsystem re-
quires at least 2 of its 4 consumers to be active :
→ ATLEAST(4)(Allconsumers).

The operational requirement for the other components
is derived implicitly using Equation 4.

6.6.8 Redundant configurations in IMU

The IMU subsystem includes 9 subsystems (2 ADIRU
subsystems, 2 GPS subsystems, 3 PFC subsystems and,
2 Display subsystems) with a total of 40 components be-
tween them. Based on the function-allocation and com-
ponent operational requirement models, the number of
alternate configurations can be identified as follows:
* 2 alternate configurations support GPS-Position func-

tionality (using Primary or Secondary GPS subsys-
tem).

* 7 alternate configurations support Position-Tracking
functionality (At least 1 of the 3 PFC subsystems
needs to be active i.e. 3C3 +3 C2 +3 C1) = 7).

* 2 alternate configurations support Body-Acceleration
functionality (Primary or Secondary ADIRU).

* 37 alternate configurations of the accelerometer com-
ponents in each ADIRU subsytem ( 4 out of the 6
accelerometers required i.e.6C6 +6 C5 +6 C4) = 37).

* 17 alternate configurations of the ADIRU processor
components in each ADIRU subsystem( 2 out of the
4 processors required i.e.4C4 +4 C3 +4 C2 = 17).

The total possible configurations is a product of the
number of alternate configurations available in each case
above, i.e. 17612 (= 2 ∗ 7 ∗ 2 ∗ 37 ∗ 17).

6.6.9 IMU health management using Deliberative
Reasoner with a SAT solver

The whole IMU assembly was deployed on four hosts
using one core clocked at 2.4 GHZ in each hosts. The
SLHM components associated with the assembly were
deployed on a separate dedicated core. A Deliberative
Reasoner with a SAT solver 9 was used to identify al-
ternative configurations to mitigate fault-effects and re-
store the IMU functionality. The CNF encoding for the
IMU system included 493 variables and 1776 clauses.
The system was initialized with the components in the
following subsystems set to active mode: Primary ADIRU,
Primary GPS, All PFCs and all Display subsystems.
The secondary GPS and ADIRU subsystems were set
to inactive mode. The initial configuration was verified
using the SAT solver in 4.228 milliseconds. Thereafter,
the above setup was tested for a specific fault scenario.
The sequence of faults, the time for computing recon-
figuration commands for each fault and the reconfigu-
ration commands issued after each fault are listed in
Table 6.

When the first fault is triggered (Accelerometer6 in
Primary ADIRU subsystem), the reconfiguration engine
correctly identified a solution with minimal reconfigura-
tion (see Section 6.4) to restore the functionality. In this
case, the faulty component (Accelerometer6) is turned
off. It did the same when another accelerometer turned
faulty (Accelerometer 5), as the ADIRU can tolerate up

9 http://www.msoos.org/cryptominisat2/, v2.9.1

DRAFT



20

to two Accelerometer faults. When the third Accelerom-
eter failed (Accelerometer4), the reconfiguration engine
correctly identified that the Primary ADIRU was no
longer capable of supporting the desired functionality
and switched to using the secondary ADIRU subsys-
tem. In the case of the fault in the GPS component, the
reconfiguration engine switched to the Secondary GPS
subsystem and rewired the PFCs to use the provider
ports in the Secondary GPS subsystem.

7 Deliberative reasoning using a
Pseudo-Boolean solver

This section describes the process of integrating the De-
liberative Reasoner with a pseudo-Boolean (PB) solver
[20]. As in the case of integrating with a SAT solver
(section 6), this involves (1) translating the information
captured in the runtime model into a set of pseudo-
Boolean clauses, (2) invoking a PB solver to try to find
a satisfying solution, and (3) decoding the solution (if
found) from the PB solver back into the runtime model
and issuing the appropriate mitigation commands.

7.1 Encoding for using PB solvers

PB solvers are extensions to SAT solvers. In addition to
handling regular Boolean satisfiability constraints, they
can also handle cardinality constraints over Boolean
variables. The variables and constraints that need to
be input to the PB solver are exactly the same as the
ones described in the case of SAT solver (see Sections
6.1 and 6.2). The encodings for the AND-groups, func-
tions, component operational requirements, faulty com-
ponents and component states are quite similar and can
be derived from the CNF encodings presented in Sec-
tion 6.3. However, the pseudo-Boolean encoding for the
ALT and MofN groups is much simpler. The following
paragraphs describe the PB encoding for each of these
cases.

Handling AND: The PB encoding for handling the
AND relation between two variables V1 and V2 is cap-
tured by the inequalities in 15, where Va represents the
AND relation itself. Equation 16 captures the corre-
sponding CNF encoding. The one-to-one relationship
between the two translations is evident. The PB en-
coding for an AND relation involving N variables -
V1, V2, ..., VN is captured by the inequalities in 17.

−Va + V1 ≥ 0
−Va + V2 ≥ 0
Va − V1 − V2 ≥ −1 (15)

¬Va ∨ V1 ∧
¬Va ∨ V2 ∧
Va ∨ ¬V1¬V2 ∧ (16)

−N × Va + V1 + V2 + ... + VN ≥ 0
Va − V1 − V2 − ...− VN ≥ −N + 1 (17)

Handling ALT: The encoding of the ALT-groups is
greatly simplified in the case of PB solvers. An ALT
relationship between N variables - V1, V2, ..., VN is cap-
tured by Equation 18, where Va represents the ALT
relation (Va is true if and only if the ALT relation is
satisfied).

Va − V1 − V2 − ...− VN = 0 (18)

Handling MofN: Like ALT-groups, the PB encoding
for MofN groups is much simpler than the correspond-
ing CNF encoding. An MofN relationship between N
variables - V1, V2, ..., VN is captured by Equation 19
where Va represents the MofN relation (Va is true if
and only if the MofN relation is satisfied).

−M × Va + V1 + V2 + ... + VN ≥ 0
(N −M + 1)× Va − V1 − V2 − ...− VN ≥ −M + 1

(19)

Maximal activation in MofN: While the MofN re-
lation described above captures the requirement that a
minimum of M nodes are required to satisfy an MofN
relation, we are interested in a maximal solution, i.e.,
when an MofN node is active, we want to activate as
many of its child nodes as possible. This is enforced
through a minimization constraint supported by PB
solvers. Equation 20 captures the minimization con-
straint for each MofN, where Va, V1, V2, ..., VN represent
the state of the variables in Equation 19.

minimize {Va · (N · Va − V1 − V2 − ...− VN )}
(20)

Handling implies: The PB encoding for the implies
relationship between the isActive property of a compo-
nent and its component operational requirement is simi-
lar to its CNF encoding (Formula 12); the PB encoding
is shown in Equation 21, where Vcomp and VCORcomp

represent the isActive property and component opera-
tional requirement for a component comp, respectively.

Vcomp − VCORcomp
= 0 (21)

Handling faulty components: An additional clause
(Equation 22 ) is added for each faulty component comp.

Vcomp = 0 (22)

DRAFT



21

Table 6: Results of using the deliberative reasoner with the SAT solver on the IMU assembly

Sequence No. Fault Compute Reconfig Commands
Time (ms)

Primary
1 ADIRU 2.98 STOP (Primary ADIRU Accelerometer6)

Accelerometer6

Primary
2 ADIRU 3.15 STOP (Primary ADIRU Accelerometer5)

Accelerometer5

Primary STOP (Primary ADIRU Accelerometer4)
3 ADIRU 2.082 STOP (Primary ADIRU subsystem)

Accelerometer4 START ( Secondary ADIRU subsystem)

STOP (Primary GPS Receiver)
STOP (Primary GPS Processor)

START (Secondary GPS Receiver)
START (Secondary GPS Processor)

Primary REWIRE (Left PFC, GPS Data Source, Secondary GPS Processor)
GPS REWIRE (Right PFC, GPS Data Source, Secondary GPS Processor)

4 Processor 4.720 REWIRE (Center PFC, GPS Data Source, Secondary GPS Processor)

Handling component states: As in the case of SAT
solvers, the component states are provided to the PB
solver as assumptions. The literals corresponding to the
healthy active components are set to true.

Handling functions and solutions: As in the case of
the CNF encoding, the AND relationship described in
Equation 17 is used to capture the inter-dependencies
between the functions (in the system goal model) as well
as the relationships between the root functions and the
solution variable (Vs). The constraint on the solution
variable, Vs is expressed by the Equation 23.

Vs = 1 (23)

The relations captured in this section were used to set
up the pseudo-Boolean problem for illustrative exam-
ples similar to those in Section 6.5. A pseudo-Boolean
solver, MINISAT+10, was used to solve the problem.
The resulting solutions captured the correct reconfigu-
ration strategies, and a more detailed discussion of these
results is planned as future work.

8 Discussion and future work

The search process of the native Deliberative Reasoner
(summarized in section 5.2, discussed in detail in [16]) is
rather simple and straightforward. The search process is
very effective, in that it deals only with the affected por-
tion of the graph and performs a local-search as close
as possible to the affected nodes in the original con-
figuration. In certain scenarios, such as the exclusivity
10 http://minisat.se/MiniSat+.html

relationship imposed by ALT-groups, the SAT solver is
useful, as demonstrated by the results of the examples
in the previous sections. Setting an assumption on the
literals associated with the active-healthy components
allows us to direct the SAT solver to find an existing so-
lution that does not affect the functioning parts of the
system. The encoding for the pseudo-Boolean solvers
(presented in Section 7) is much more direct and sim-
ple than the CNF encoding for the SAT solvers. This is
especially true for the MofN relation. Our tests, thus far
on simple illustrative examples, have been very promis-
ing, and we plan to test this approach on larger systems.
We are also exploring the use of other solvers, such as
SMT solvers [35].

Our current approach lacks the ability to use a solver
selectively for a subset of the problem. For example, it
is possible to extend the approach and formulate the
problem so that it deals exclusively with the functions
and groups that are related to the affected components
(those affected due to discovered faults). This can im-
prove scalability in very large systems.

Additionally, the current approach uses either the
Solve step of the Deliberative Reasoner or uses an ex-
ternal solver for the entire problem. If the problem can
be broken down through offline analysis or analysis at
initialization time, it should be possible to use an ar-
ray of solvers for the different parts of the problem.
The hybrid approach could also involve abstracting the
problem sent to the external solver, so that the sim-
pler native Deliberative Reasoning approach is used to
post-process additional results based on the configura-
tion supplied by the external solver.

Apart from solutions that enhance runtime perfor-
mance, additional tools to help at design-time should
be created as well. These tools can help verify the con-

DRAFT



22

sistency of the system on an incremental basis so that
problems with the design-time specifications can be fixed.

9 Related research

The work described in this paper generally falls into two
categories (a) runtime monitoring, and (b) self-adaptive
software systems. The difference clearly lies in moni-
toring and detection vs. monitoring and detection and
mitigation. The work presented in this paper is focusing
primarily on the mitigation aspects. However, it uses
our work in the area of monitoring, detection, and fault
isolation.

9.1 Run-time monitoring and detection

Methods for run-time detection of faults can be classi-
fied either as acceptance-based testing, or comparison-
based testing. The former involves monitoring a com-
ponent or subsystem with respect to some acceptance
criteria, while the latter uses multiple executions whose
results are then compared.

Pike et. al. described the Copilot run-time monitor
for periodic tasks in embedded systems in [39]. They de-
scribed their approach for establishing a run-time mon-
itoring framework where monitors can be scheduled by
integrating the monitor executions in the system sched-
ule such that all the task deadlines are still satisfied.
They provided a domain specific language for creating
the monitors.

Jagadeesan and Viswanathan provide a formal dis-
cussion on observing properties in a system at run-time
in [24]. They make a distinction between two kinds of
run-time verification: active testing and passive testing.
In the former, the observations of timed event traces
are made from the initial state, while in the latter, ob-
servations of the system are obtained mid-stream. They
identify that a property can be tested passively (i.e. it is
acceptable to not observe the events all the time) if and
only if it is prefix-closed and suffix-closed. The proper-
ties to be tested are modeled as a timed automaton.
They provide an example system in which the passive
properties are checked using UPPAAL [7] by checking if
the composition of timed automaton generated by the
observed trace and the property timed automaton is
empty or not.

Goldberg and Horvath have discussed discrepancy
monitoring [22] in the context of the health manage-
ment architecture supported by ARINC-653. They de-
scribe extensions to the application executive compo-
nent, software instrumentation and a temporal logic
run-time framework. Their method primarily depends
on modeling the expected timed behavior of a process, a
partition or a core module - the different levels of fault-
protection layers. All behavior models contain “faulty
states” which represent the violation of an expected

property. They associate mitigation functions using call-
backs with each fault.

Sammapun et al. describe a run-time verification ap-
proach for properties written in a timed variant of Lin-
ear Temporal Logic (LTL) called MEDL in [43]. They
described an architecture called RT-MaC for checking
the properties of a target program during run-time. All
properties are evaluated based on a sequence of obser-
vations made on a “target program”. To make these ob-
servations, all target programs are modified to include a
“filter” that generates the interesting event and reports
values to the event recognizer. The event recognizer is
a module that forwards the events to a checker that
can check the property. Timing properties are checked
using watchdog timers on the machines executing the
target program. The main difference in this approach
and the approach of Goldberg and Horvath outlined in
the previous paragraph is that RT-MaC supports an
“until” operator that allows the specification of a time
bound where a given property must hold. Both of these
works provided us with valuable input and influenced
the design of our run-time component level health man-
agement.

Wang et al. [53] have described an online algorithm
for checking past LTL properties of system execution.
However, they allow uncertainty in observations by not-
ing that the recorder might not capture the precise time
the observations had occurred in the past.

9.2 Comparison-based anomaly detection

Comparison based detection schemes involve either ex-
ecuting the same component twice or executing at least
three redundant units and then using a voting com-
ponent. The comparison can be based on either exact
agreement or approximate agreement, i.e. on all values
being within a small distance of each other.

Comparison based detection schemes involve either
executing the same component twice or executing at
least three redundant units with a voting component.
The comparison can be based on either exact agree-
ment or approximate agreement, i.e. on all values being
within a small distance of each other.

Laprie [26; 27] describes different types of redun-
dancy to detect different types of faults that can be
captured by executing the software component twice.
A point to note is that (binary) comparison based ap-
proaches can be used for detection but not masking.
Moreover, they are susceptible to floating point pre-
cision errors. Theoretical analysis shows that at least
three redundant units and a voter (3+1) are required
to mask the detected fault. The categories listed below
include the main variants, however, it must be noted
that the overall approach appears to be more focused
towards hardware faults.

Time-based redundancy: Execute the same software
component twice but during two different time inter-

DRAFT



23

vals. The main idea is that by comparing the two results
separated by time, one can detect discrepancies caused
by transient hardware faults that live for an interval
shorter than the time elapsed between two executions.
This approach will, however, lead to false positives when
the component’s output is dependent on the time of ex-
ecution.

Hardware-based redundancy: Execute the same soft-
ware component on two different hardware units. This
can detect a transient or permanent hardware fault in
any one of the units. It will not work when both hard-
ware units fail in a similar way and cause the software
to produce the same output.

Using diverse software on same hardware: Execute
different versions of software on the same hardware across
two different time intervals. This can catch faults that
are introduced during implementation, although not com-
mon errors in the specification (discussed later). It can
also detect transient hardware faults. This technique
will produce false positives if the software output is
time-dependent.

Using diverse software on diverse hardware: Execute
different versions of software on independent hardware
units. The comparison will detect faults due to design
errors that generate different outputs in the different
versions as well as any faults in the hardware.

9.3 Self-adaptive software systems

The work described here fits in the general area of self-
adaptive software systems, for which a research road
map has been presented in [11]. Our approach focuses
on latent faults in software systems, follows a component-
based architecture with a model-based development pro-
cess and implements all steps in the collect-analyze-
decide-act loop.

One notable approach to system health management
for physical systems is to design a controller that inher-
ently drives the system back into a safe region upon a
system failure. This is the basis of the goal-based control
paradigm [55] that supports a deductive controller re-
sponsible for observing the plant’s state (mode estima-
tion) and issuing commands to move the plant through
a sequence of states that achieves the specified goal.
This approach inherently provides fault recovery by us-
ing the control program to set an appropriate configura-
tion goal that negates the problems caused by faults in
the physical system. However, these control algorithms
are themselves typically implemented in software and
are therefore reliant on the fault-free behavior of related
software components.

Conmy et al. presented a framework for certifying
integrated modular avionics applications built on top of
the ARINC-653 platform in [12]. Their main approach
was the use of ‘safety contracts’ to validate the system
at design time. They defined the relationship between
two or more components within a safety critical system.

However, they did not present any details on the nature
of these contracts and how they can be specified. We be-
lieve that a similar approach can be taken to formulate
acceptance criteria in terms of “correct” value-domain
and temporal-domain properties that will let us detect
any deviation in a component’s behavior.

Nicholson presented the concept of reconfiguration
in integrated modular systems running on operating
systems that provide robust spatial and temporal par-
titioning in [37]. He identified that health monitoring
is crucial for a safety-critical software system, and that
in the future, it will be necessary to trade redundancy
based fault tolerance for the ability of “reconfiguration
on failure” while still operational. He described one pos-
sibility to achieve this goal using a set of lookup ta-
bles, similar to the health monitoring tables used in
the ARINC-653 system specification, that map a trig-
ger event to a set of system blueprints providing the
mapping functions. Furthermore, he identified that this
kind of reconfiguration is more amenable to failures that
happen gradually, indicated by parameter deviations.

Rohr et al. advocate the use of architectural mod-
els for self-management [42]. They suggest the use of
a run-time model to reflect the system state and pro-
vide reconfiguration functionality. From a development
model, they generate a causal graph over various pos-
sible states of its architectural entities. At the core of
their approach, they use specifications based on UML
to define constraints, as well as monitoring and recon-
figuration operations at development time.

Garlan et al. [21] and Dashofy et al. [13] have pro-
posed an approach which bases system adaptation on
architectural models representing the system as a com-
position of several components, their interconnections
and properties of interest. Their work follows the theme
of Rohr et al., where architectural models are used at
run-time to track system state and make reconfigura-
tion decisions using rule-based strategies.

While these works focus on the structural part of
self-managing computing components, others have em-
phasized the need for behavioral modeling of the com-
ponents. For example, Zhang et al. described an ap-
proach to specify the behavior of adaptable programs
in [57]. Their approach is based on separating the adap-
tation behavior specification from the non-adaptive be-
havior specification in autonomic computing software.
They model the source and target models for the pro-
gram using Statecharts and then specify an adaptation
model, i.e., the model for the adaptation set connecting
the source model to the target model using a variant of
Linear Temporal Logic [56].

Williams’s research [41] concentrates on model-based
autonomy. The paper suggests that an emphasis should
be placed on developing techniques to enable software
to recognize that it has failed and to recover from the
failure. Their technique lies in the use of a Reactive
Model-based Programming Language (RMPL)[54] for

DRAFT



24

specifying both correct and faulty behavior of the soft-
ware components. They also use high-level control pro-
grams [55] for guiding the system to the desirable be-
haviors.

Lately, the focus has started to shift towards formal-
izing concepts of self-management in software engineer-
ing. In [28], Lightstone suggested that systems should
be made “just sufficiently” self-managing and should
not have any unnecessary complicated functions. Shaw
proposes a practical process control approach for auto-
nomic systems in [46]. The author maintains that sev-
eral dependability models commonly used in autonomic
computing are impractical because they require precise
specifications that are difficult to obtain. It is suggested
that practical systems should use development models
that include the variability and uncertainty inherent in
the environment. Additionally, the development meth-
ods should not pursue absolute correctness regarding
adaption, but instead should focus on the fitness for
the intended task, or sufficient correctness. Several au-
thors have also considered the application of traditional
requirements engineering to the development of auto-
nomic computing systems [8; 49].

The work described here is closely related to the
larger field of software fault tolerance: principles, meth-
ods, techniques and tools that ensure that a system
can survive software defects that manifest themselves
at run-time [30], [40]. Arguably, our approach comes
closest to dynamic software fault removal, performed
at run-time. The overall architecture presented below
shows a specific implementation of the functions needed
to perform this task.

10 Conclusion

This paper presented the design, implementation, and
results of a deliberative, search-based strategy to re-
store the health of a software system. The three key
design-time concepts are: (1) the system goals model,
(2) the functional redundancy and allocation model,
and (3) the implicit and explicit component operational
requirements model. We described the semantics asso-
ciated with each aspect of the individual models and
used illustrative examples to derive the associated re-
lationships. We presented key aspects of the runtime
framework in detail, including the automatic generation
of the runtime model from the static design-time speci-
fications, the workings of the deliberative reasoner and
the integration with external off-the-shelf solvers. The
inherent workflow and the inter-relationship between
the runtime elements was also described. Both Boolean
and pseudo-Boolean satisfiability encodings for the re-
configuration problem were presented. Real-time and
online reconfiguration using the Deliberative Reasoner
with an external Boolean Satisfiability Solver (Cryp-
toMiniSat) was successfully demonstrated on both il-

lustrative examples and a realistic case-study from the
avionics domain.

Acknowledgment This paper is based upon work
supported by NASA under award NNX08AY49A. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Aeronautics and Space Administration. Authors would
like to thank Dr. Paul Miner, Eric Cooper, and Suzette
Person of NASA LaRC for their help and guidance on
the project.

References

1. Abdelwahed S, Karsai G, Mahadevan N, Ofsthun SC (2009)
Practical considerations in systems diagnosis using timed
failure propagation graph models. Instrumentation and
Measurement, IEEE Transactions on 58(2):240–247

2. ARINC (2010) ARINC specification 653p1-3: Avionics ap-
plication software standard interface part 1 - required ser-
vices. URL https://www.arinc.com/

3. Australian Transport Safety Bureau (2005) In-flight
upset; 240km NW Perth, WA; Boeing Co 777-200,
9M-MRG. Tech. rep., URL http://www.atsb.gov.au/
publications/investigation_reports/2005/aair/
aair200503722.aspx

4. Australian Transport Safety Bureau (2008) AO-2008-
070: In-flight upset, 154 km west of Learmonth,
WA, 7 October 2008, VH-QPA, Airbus A330-303.
Tech. rep., URL http://www.atsb.gov.au/publications/
investigation_reports/2008/aair/ao-2008-070.aspx

5. Bailleux O, Boufkhad Y (2003) Efficient cnf encoding of
boolean cardinality constraints. In: Principles and Practice
of Constraint Programming - 9th International Conference
(CP 2003), pp 108–122

6. Barry M (2008) http://www.kestreltechnology.com/
downloads/FailsafeOverview.pdf

7. Bengtsson J, Larsen K, Larsson F, Pettersson P, Yi W
(1996) UPPAAL - a tool suite for automatic verifica-
tion of real-time systems. In: Proceedings of the DI-
MACS/SYCON workshop on Hybrid systems III : verifica-
tion and control, Springer-Verlag New York, Inc., Secaucus,
NJ, USA, pp 232–243

8. Bustard DW, Sterritt R (2006) A requirements engineer-
ing perspective on autonomic systems development. Auto-
nomic Computing: Concepts, Infrastructure, and Applica-
tions pp 19–33

9. Butler R (2008) A primer on architectural level fault toler-
ance. Tech. rep., NASA Scientific and Technical Informa-
tion (STI) Program Office, Report No. NASA/TM-2008-
215108, available at http://shemesh.larc.nasa.gov/fm/
papers/Butler-TM-2008-215108-Primer-FT.pdf

10. Charette RN (2009) This car runs on code. IEEE
Spectrum 46(3):3, URL http://www.spectrum.ieee.org/
feb09/7649

11. Cheng BH (2009) Software engineering for self-adaptive
systems. Springer-Verlag, Berlin, Heidelberg, chap Soft-
ware Engineering for Self-Adaptive Systems: A Re-
search Roadmap, pp 1–26, DOI http://dx.doi.org/10.1007/
978-3-642-02161-9 1, URL http://dx.doi.org/10.1007/
978-3-642-02161-9_1

12. Conmy P, McDermid J, Nicholson M (2002) Safety analysis
and certification of open distributed systems. In: Interna-
tional System Safety Conference„ Denver

13. Dashofy EM, van der Hoek A, Taylor RN (2002) To-
wards architecture-based self-healing systems. In: WOSS

DRAFT



25

’02: Proceedings of the first workshop on Self-healing sys-
tems, ACM Press, New York, NY, USA, pp 21–26, DOI
http://doi.acm.org/10.1145/582128.582133

14. Dubey A, Karsai G, Mahadevan N (2011) A component
model for hard real-time systems: CCM with ARINC-
653. Software: Practice and Experience 41(12):1517–
1550, DOI 10.1002/spe.1083, URL http://dx.doi.org/
10.1002/spe.1083

15. Dubey A, Karsai G, Mahadevan N (2011) Model-based
Software Health Management for Real-Time Systems. In:
Aerospace Conference, 2011 IEEE, IEEE, pp 1–18

16. Dubey A, Mahadevan N, Karsai G (2012) A delib-
erative reasoner for model-based software health man-
agement. In: The Eighth International Conference on
Autonomic and Autonomous Systems, DOI http://doi.
ieeecomputersociety.org/10.1109/ISORC.2010.39

17. Dubey A, Mahadevan N, Karsai G (2012) The iner-
tial measurement unit example: A software health man-
agement case study. Tech. Rep. ISIS-12-101, Institute
for Software Integrated Systems, Vanderbilt University,
URL http://www.isis.vanderbilt.edu/sites/default/
files/TechReport_IMU.pdf

18. Dubey A, Karsai G, Mahadevan N (2013) Fault-adaptivity
in hard real-time component based systems. In: de Lemos
R, Giese H, Muller HA, Shaw M (eds) Software Engineering
for Self-Adaptive Systems II, Springer-Verlag, no. 7475 in
Lecture Notes in Computer Science, pp 294–323

19. Eén N, Sörensson N (2003) An extensible sat-solver. In:
Theory and Applications of Satisfiability Testing, 6th In-
ternational Conference (SAT 2003), pp 502–518

20. Eén N, Sörensson N (2006) Translating pseudo-boolean
constraints into sat. JSAT 2(1-4):1–26

21. Garlan D, Cheng SW, Schmerl B (2003) Architecting
dependable systems. Springer-Verlag, Berlin, Heidelberg,
chap Increasing system dependability through architecture-
based self-repair, pp 61–89, URL http://dl.acm.org/
citation.cfm?id=1768179.1768183

22. Goldberg A, Horvath G (2007) Software fault protection
with ARINC 653. In: Proc. IEEE Aerospace Conference,
pp 1–11

23. Greenwell WS, Knight J, Knight JC (2003) What should
aviation safety incidents teach us? Tech. rep., Uni-
versity of Virginia, http://dependability.cs.virginia.
edu/publications/safecomp.2003.lessons.pdf

24. Jagadeesan LJ, Viswanathan R (2005) Passive mid-stream
monitoring of real-time properties. In: EMSOFT ’05: Pro-
ceedings of the 5th ACM international conference on Em-
bedded software, ACM, New York, NY, USA, pp 343–352,
DOI http://doi.acm.org/10.1145/1086228.1086291

25. Johnson SB, Gormley TJ, Kessler SS, Mott CD, Patterson-
Hine A, Reichard KM, Scandura PA (2011) System Health
Management: With Aerospace Applications. John Wiley &
Sons, Inc

26. Laprie JC (1995) Dependable computing and fault
tolerance: Concepts and terminology. In: Proc. Twenty-
Fifth International Symposium on Fault-Tolerant Com-
puting, ’ Highlights from Twenty-Five Years’, p 2,
URL http://ieeexplore.ieee.org/iel3/3846/11214/
00532603.pdf?arnumber=532603

27. Laprie JC, Arlat J, B’eounes C, , Kanoun K (1995)
Architectural issues in software fault-tolerance. Soft-
ware Fault Tolerance URL http://www.cse.cuhk.edu.hk/
˜lyu/book/sft/pdf/chap3.pdf, chapter 2

28. Lightstone S (2007) Seven software engineering principles
for autonomic computing development. ISSE 3(1):71–74

29. Lyu MR (1995) Software Fault Tolerance, vol New York,
NY, USA. John Wiley & Sons, Inc, URL http://www.cse.
cuhk.edu.hk/˜lyu/book/sft/

30. Lyu MR (2007) Software reliability engineering: A
roadmap. In: 2007 Future of Software Engineering, IEEE

Computer Society, Washington, DC, USA, FOSE ’07,
pp 153–170, DOI http://dx.doi.org/10.1109/FOSE.2007.
24, URL http://dx.doi.org/10.1109/FOSE.2007.24

31. Mahadevan N, Dubey A, Karsai G (2011) Application
of software health management techniques. In: Proceed-
ings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
ACM, New York, NY, USA, SEAMS ’11, pp 1–10, DOI
10.1145/1988008.1988010, URL http://doi.acm.org/10.
1145/1988008.1988010

32. Mahadevan N, Dubey A, Balasubramaniam D, Kar-
sai G (2013) Deliberative reasoning in software health
management. Tech. Rep. ISIS-13-111, Institute for
Software Integrated Systems, Vanderbilt University,
www.isis.vanderbilt.edu/sites/default/files/
TechReport2013.pdf

33. Mcintyre MDW, Sebring DL (1994) Integrated fault-
tolerant air data inertial reference system

34. Potocti de Montalk J (1991) Computer software in civil air-
craft. In: Digital Avionics Systems Conference, 1991. Pro-
ceedings., IEEE/AIAA 10th, pp 324 –330, DOI 10.1109/
DASC.1991.177187

35. de Moura LM, Bjørner N (2008) Z3: An efficient smt solver.
In: Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pp 337–340

36. NASA (2000) Report on the loss of the mars po-
lar lander and deep space 2 missions. Tech. rep.,
NASA, URL ftp://ftp.hq.nasa.gov/pub/pao/reports/
2000/2000_mpl_report_1.pdf

37. Nicholson M (2007) Health monitoring for reconfigurable
integrated control systems. Constituents of Modern Sys-
tem safety Thinking Proceedings of the Thirteenth Safety-
critical Systems Symposium 5:149–162

38. Ofsthun S (2002) Integrated vehicle health management for
aerospace platforms. Instrumentation Measurement Maga-
zine, IEEE 5(3):21 – 24, DOI 10.1109/MIM.2002.1028368

39. Pike L, Goodloe A, Morisset R, Niller S (2010) Copilot: A
hard real-time runtime monitor. In: Runtime Verification,
Springer, pp 345–359

40. Pullum LL (2001) Software fault tolerance techniques and
implementation. Artech House, Inc., Norwood, MA, USA

41. Robertson P, Williams B (2006) Automatic recovery from
software failure. Commun ACM 49(3):41–47, DOI http://
doi.acm.org/10.1145/1118178.1118200

42. Rohr M, Boskovic M, Giesecke S, Hasselbring W (2006)
Models in software engineering, workshops, and symposia
at models 2006. In: Proceedings of the Workshop “Mod-
els@run.time” at the 9th International Conference on
model Driven Engineering Languages and Systems (MoD-
ELS/UML’06), vol 4364

43. Sammapun U, Lee I, Sokolsky O (2005) Rt-MaC: run-
time monitoring and checking of quantitative and proba-
bilistic properties. In: Proc. 11th IEEE International Con-
ference on Embedded and Real-Time Computing Systems
and Applications, pp 147–153, DOI http://dx.doi.org/10.
1109/RTCSA.2005.84

44. Schumann J, Srivastava AN, Mengshoel OJ (2010) Who
guards the guardians?: toward v&#38;v of health man-
agement software. In: Proceedings of the First interna-
tional conference on Runtime verification, Springer-Verlag,
Berlin, Heidelberg, RV’10, pp 399–404, URL http://dl.
acm.org/citation.cfm?id=1939399.1939432

45. Sha L (2006) The complexity challenge in modern avion-
ics software. In: National Workshop on Aviation Software
Systems: Design for Certifiably Dependable Systems

46. Shaw M (2002) ”self-healing”: softening precision to avoid
brittleness: position paper for woss ’02: workshop on self-
healing systems. In: WOSS ’02: Proceedings of the first
workshop on Self-healing systems, ACM Press, New York,
NY, USA, pp 111–114, DOI http://doi.acm.org/10.1145/

DRAFT



26

582128.582152
47. Sheffels M (1992) A fault-tolerant air data/inertial refer-

ence unit. In: Digital Avionics Systems Conference, 1992.
Proceedings., IEEE/AIAA 11th, pp 127 –131, DOI 10.
1109/DASC.1992.282171

48. Srivastava A, Schumann J (2011) The Case for Software
Health Management. In: Fourth IEEE International Con-
ference on Space Mission Challenges for Information Tech-
nology, 2011. SMC-IT 2011., pp 3–9

49. Taleb-Bendiab A, Bustard DW, Sterritt R, Laws AG,
Keenan F (2005) Model-based self-managing systems en-
gineering. In: DEXA Workshops, pp 155–159

50. Torres-pomales W (2000) Software fault tolerance: A
tutorial. Tech. rep., NASA, URL http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8307,
available at http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.32.8307

51. Tseitin GS (1968) On the complexity of derivations in the
propositional calculus. Studies in Mathematics and Math-
ematical Logic Part II:115–125

52. Wang N, Schmidt DC, O’Ryan C (2001) Overview of the
CORBA component model. In: Component-based software
engineering: putting the pieces together, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, pp 557–
571

53. Wang S, Ayoub A, Sokolsky O, Lee I (2012) Runtime veri-
fication of traces under recording uncertainty. In: Proceed-
ings of the Second international conference on Runtime
verification, Springer-Verlag, Berlin, Heidelberg, RV’11, pp
442–456, DOI 10.1007/978-3-642-29860-8 35, URL http:
//dx.doi.org/10.1007/978-3-642-29860-8_35

54. Williams B, Williams B, Ingham M, Chung S, Elliott P
(2003) Model-based programming of intelligent embedded
systems and robotic space explorers. Proceedings of the
IEEE 91(1):212–237, DOI 10.1109/JPROC.2002.805828

55. Williams BC, Ingham M, Chung S, Elliott P, Hofbaur M,
Sullivan GT (2004) Model-based programming of fault-
aware systems. AI Magazine 24(4):61–75

56. Zhang J, Cheng BHC (2005) Specifying adaptation seman-
tics. In: WADS ’05: Proceedings of the 2005 workshop on
Architecting dependable systems, ACM, New York, NY,
USA, pp 1–7, DOI http://doi.acm.org/10.1145/1083217.
1083220

57. Zhang J, Cheng BHC (2006) Model-based development of
dynamically adaptive software. In: ICSE ’06: Proceeding of
the 28th international conference on Software engineering,
ACM, New York, NY, USA, pp 371–380, DOI http://doi.
acm.org/10.1145/1134285.1134337

58. Marques-Silva J, Lynce I (2007) Towards robust cnf encod-
ings of cardinality constraints. In: PROC. 13TH INTER-
NATIONAL CONFERENCE ON PRINCIPLES AND
PRACTICE OF CONSTRAINT PROGRAMMING (CP
2007), VOL. 4741 OF LNCS, Springer, pp 483–497DRAFT




